期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Machine learning prediction model for gray-level co-occurrence matrix features of synchronous liver metastasis in colorectal cancer
1
作者 Kai-Feng Yang Sheng-Jie Li +1 位作者 Jun Xu Yong-Bin Zheng 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第6期1571-1581,共11页
BACKGROUND Synchronous liver metastasis(SLM)is a significant contributor to morbidity in colorectal cancer(CRC).There are no effective predictive device integration algorithms to predict adverse SLM events during the ... BACKGROUND Synchronous liver metastasis(SLM)is a significant contributor to morbidity in colorectal cancer(CRC).There are no effective predictive device integration algorithms to predict adverse SLM events during the diagnosis of CRC.AIM To explore the risk factors for SLM in CRC and construct a visual prediction model based on gray-level co-occurrence matrix(GLCM)features collected from magnetic resonance imaging(MRI).METHODS Our study retrospectively enrolled 392 patients with CRC from Yichang Central People’s Hospital from January 2015 to May 2023.Patients were randomly divided into a training and validation group(3:7).The clinical parameters and GLCM features extracted from MRI were included as candidate variables.The prediction model was constructed using a generalized linear regression model,random forest model(RFM),and artificial neural network model.Receiver operating characteristic curves and decision curves were used to evaluate the prediction model.RESULTS Among the 392 patients,48 had SLM(12.24%).We obtained fourteen GLCM imaging data for variable screening of SLM prediction models.Inverse difference,mean sum,sum entropy,sum variance,sum of squares,energy,and difference variance were listed as candidate variables,and the prediction efficiency(area under the curve)of the subsequent RFM in the training set and internal validation set was 0.917[95%confidence interval(95%CI):0.866-0.968]and 0.09(95%CI:0.858-0.960),respectively.CONCLUSION A predictive model combining GLCM image features with machine learning can predict SLM in CRC.This model can assist clinicians in making timely and personalized clinical decisions. 展开更多
关键词 Colorectal cancer Synchronous liver metastasis gray-level co-occurrence matrix Machine learning algorithm Prediction model
下载PDF
Automatic Identification of Butterfly Species Based on Gray-Level Co-occurrence Matrix Features of Image Block 被引量:4
2
作者 XUE Ankang LI Fan XIONG Yin 《Journal of Shanghai Jiaotong university(Science)》 EI 2019年第2期220-225,共6页
In recent years, automatic identification of butterfly species arouses more and more attention in different areas. Because most of their larvae are pests, this research is not only meaningful for the popularization of... In recent years, automatic identification of butterfly species arouses more and more attention in different areas. Because most of their larvae are pests, this research is not only meaningful for the popularization of science but also important to the agricultural production and the environment. Texture as a notable feature is widely used in digital image recognition technology; for describing the texture, an extremely effective method, graylevel co-occurrence matrix(GLCM), has been proposed and used in automatic identification systems. However,according to most of the existing works, GLCM is computed by the whole image, which likely misses some important features in local areas. To solve this problem, this paper presents a new method based on the GLCM features extruded from three image blocks, and a weight-based k-nearest neighbor(KNN) search algorithm used for classifier design. With this method, a butterfly classification system works on ten butterfly species which are hard to identify by shape features. The final identification accuracy is 98%. 展开更多
关键词 automatic identification butterfly species gray-level co-occurrence matrix(glcm) features of image block
原文传递
Identification of Textile Defects Based on GLCM and Neural Networks
3
作者 Gamil Abdel Azim 《Journal of Computer and Communications》 2015年第12期1-8,共8页
In modern textile industry, Tissue online Automatic Inspection (TAI) is becoming an attractive alternative to Human Vision Inspection (HVI). HVI needs a high level of attention nevertheless leading to low performance ... In modern textile industry, Tissue online Automatic Inspection (TAI) is becoming an attractive alternative to Human Vision Inspection (HVI). HVI needs a high level of attention nevertheless leading to low performance in terms of tissue inspection. Based on the co-occurrence matrix and its statistical features, as an approach for defects textile identification in the digital image, TAI can potentially provide an objective and reliable evaluation on the fabric production quality. The goal of most TAI systems is to detect the presence of faults in textiles and accurately locate the position of the defects. The motivation behind the fabric defects identification is to enable an on-line quality control of the weaving process. In this paper, we proposed a method based on texture analysis and neural networks to identify the textile defects. A feature extractor is designed based on Gray Level Co-occurrence Matrix (GLCM). A neural network is used as a classifier to identify the textile defects. The numerical simulation showed that the error recognition rates were 100% for the training and 100%, 91% for the best and worst testing respectively. 展开更多
关键词 Image Processing NEURAL Network gray-level co-occurrence MATRICES (glcm)
下载PDF
洪泽湖湿地纹理特征参数分析 被引量:13
4
作者 张楼香 阮仁宗 夏双 《国土资源遥感》 CSCD 北大核心 2015年第1期75-80,共6页
应用纹理特征进行影像分类,关键在于纹理特征参数的确定。以洪泽湖湿地典型地区为研究对象,选择灰度共生矩阵进行纹理特征计算,探讨灰度共生矩阵窗口尺寸、移动步长、方向和纹理特征统计量对淡水湖泊湿地的区分能力;然后,利用纹理特征... 应用纹理特征进行影像分类,关键在于纹理特征参数的确定。以洪泽湖湿地典型地区为研究对象,选择灰度共生矩阵进行纹理特征计算,探讨灰度共生矩阵窗口尺寸、移动步长、方向和纹理特征统计量对淡水湖泊湿地的区分能力;然后,利用纹理特征和地物光谱特征,结合决策树方法对研究区湿地及其他主要地类进行分类,并通过混淆矩阵进行精度评价。结果表明:研究区湿地分类中纹理特征的最佳窗口大小为3像元×3像元,方向为90°,步长为1个像元,纹理特征统计量组合为均值、熵和相关度;分类精度为83.24%,Kappa为0.788,其结果验证了纹理特征参数选择的科学性和合理性。 展开更多
关键词 洪泽湖湿地 纹理特征 窗口尺寸 移动步长和方向 灰度共生矩阵 GRAY level co-occurrence matrix(glcm)
下载PDF
基于多特征的金属断口图像疲劳条带分割 被引量:1
5
作者 梁欣 黎明 冷璐 《计算机仿真》 CSCD 北大核心 2014年第4期384-388,429,共6页
疲劳条带是疲劳断口典型的微观特征,分割是对金属断口图像进行定量分析以反推疲劳寿命和疲劳应力的重要环节。由于断裂过程中的复杂性使得实际断口多表现为多样性的混合形态,且不同区域的疲劳条带周期差别很大,使得疲劳条带纹理区域和... 疲劳条带是疲劳断口典型的微观特征,分割是对金属断口图像进行定量分析以反推疲劳寿命和疲劳应力的重要环节。由于断裂过程中的复杂性使得实际断口多表现为多样性的混合形态,且不同区域的疲劳条带周期差别很大,使得疲劳条带纹理区域和纹理边缘的准确定位成为分割的一大难点。传统单一纹理特征对这类复杂的自然纹理分割准确性低。通过分析断口的自然纹理特性,提出结合灰度共生矩阵和小波包变换,采用多特征对断口图像的疲劳条带进行准确分割,从而发挥了时域和频域两类特征的双重优势。实验结果表明,改进的多特征方法对疲劳条带自动分割精度优于传统方法。 展开更多
关键词 疲劳条带分割 金属断口图像 纹理特征 灰度共生矩阵 小波包变换 GRAY level co-occurrence matrix (glcm) wavelet packet transform (WPT)
下载PDF
Case study on the extraction of land cover information from the SAR image of a coal mining area 被引量:11
6
作者 HU Zhao-ling LI Hai-quan DU Pei-jun 《Mining Science and Technology》 EI CAS 2009年第6期829-834,共6页
In this study,analyses are conducted on the information features of a construction site,a cornfield and subsidence seeper land in a coal mining area with a synthetic aperture radar (SAR) image of medium resolution. Ba... In this study,analyses are conducted on the information features of a construction site,a cornfield and subsidence seeper land in a coal mining area with a synthetic aperture radar (SAR) image of medium resolution. Based on features of land cover of the coal mining area,on texture feature extraction and a selection method of a gray-level co-occurrence matrix (GLCM) of the SAR image,we propose in this study that the optimum window size for computing the GLCM is an appropriate sized window that can effectively distinguish different types of land cover. Next,a band combination was carried out over the text feature images and the band-filtered SAR image to secure a new multi-band image. After the transformation of the new image with principal component analysis,a classification is conducted selectively on three principal component bands with the most information. Finally,through training and experimenting with the samples,a better three-layered BP neural network was established to classify the SAR image. The results show that,assisted by texture information,the neural network classification improved the accuracy of SAR image classification by 14.6%,compared with a classification by maximum likelihood estimation without texture information. 展开更多
关键词 SAR image gray-level co-occurrence matrix texture feature neural network classification coal mining area
下载PDF
Development and validation of a postoperative pulmonary infection prediction model for patients with primary hepatic carcinoma 被引量:2
7
作者 Chao Lu Zhi-Xiang Xing +4 位作者 Xi-Gang Xia Zhi-Da Long Bo Chen Peng Zhou Rui Wang 《World Journal of Gastrointestinal Oncology》 SCIE 2023年第7期1241-1252,共12页
BACKGROUND There are factors that significantly increase the risk of postoperative pulmonary infections in patients with primary hepatic carcinoma(PHC).Previous reports have shown that over 10%of patients with PHC exp... BACKGROUND There are factors that significantly increase the risk of postoperative pulmonary infections in patients with primary hepatic carcinoma(PHC).Previous reports have shown that over 10%of patients with PHC experience postoperative pulmonary infections.Thus,it is crucial to prioritize the prevention and treatment of postoperative pulmonary infections in patients with PHC.AIM To identify the risk factors for postoperative pulmonary infection in patients with PHC and develop a prediction model to aid in postoperative management.METHODS We retrospectively collected data from 505 patients who underwent hepatobiliary surgery between January 2015 and February 2023 in the Department of Hepatobiliary and Pancreaticospleen Surgery.Radiomics data were selected for statistical analysis,and clinical pathological parameters and imaging data were included in the screening database as candidate predictive variables.We then developed a pulmonary infection prediction model using three different models:An artificial neural network model;a random forest model;and a generalized linear regression model.Finally,we evaluated the accuracy and robustness of the prediction model using the receiver operating characteristic curve and decision curve analyses.RESULTS Among the 505 patients,86 developed a postoperative pulmonary infection,resulting in an incidence rate of 17.03%.Based on the gray-level co-occurrence matrix,we identified 14 categories of radiomic data for variable screening of pulmonary infection prediction models.Among these,energy,contrast,the sum of squares(SOS),the inverse difference(IND),mean sum(MES),sum variance(SUV),sum entropy(SUE),and entropy were independent risk factors for pulmonary infection after hepatectomy and were listed as candidate variables of machine learning prediction models.The random forest model algorithm,in combination with IND,SOS,MES,SUE,SUV,and entropy,demonstrated the highest prediction efficiency in both the training and internal verification sets,with areas under the curve of 0.823 and 0.801 and a 95%confidence interval of 0.766-0.880 and 0.744-0.858,respectively.The other two types of prediction models had prediction efficiencies between areas under the curve of 0.734 and 0.815 and 95%confidence intervals of 0.677-0.791 and 0.766-0.864,respectively.CONCLUSION Postoperative pulmonary infection in patients undergoing hepatectomy may be related to risk factors such as IND,SOS,MES,SUE,SUV,energy,and entropy.The prediction model in this study based on diffusion-weighted images,especially the random forest model algorithm,can better predict and estimate the risk of pulmonary infection in patients undergoing hepatectomy,providing valuable guidance for postoperative management. 展开更多
关键词 Primary hepatic carcinoma Pulmonary infection gray-level co-occurrence matrix Machine learning PREDICTION
下载PDF
Digital Forensics for Skulls Classification in Physical Anthropology Collection Management
8
作者 Imam Yuadi Myrtati D.Artaria +1 位作者 Sakina A.Taufiq Asyhari 《Computers, Materials & Continua》 SCIE EI 2021年第9期3979-3995,共17页
The size,shape,and physical characteristics of the human skull are distinct when considering individual humans.In physical anthropology,the accurate management of skull collections is crucial for storing and maintaini... The size,shape,and physical characteristics of the human skull are distinct when considering individual humans.In physical anthropology,the accurate management of skull collections is crucial for storing and maintaining collections in a cost-effective manner.For example,labeling skulls inaccurately or attaching printed labels to skulls can affect the authenticity of collections.Given the multiple issues associated with the manual identification of skulls,we propose an automatic human skull classification approach that uses a support vector machine and different feature extraction methods such as gray-level co-occurrence matrix features,Gabor features,fractal features,discrete wavelet transforms,and combinations of features.Each underlying facial bone exhibits unique characteristics essential to the face’s physical structure that could be exploited for identification.Therefore,we developed an automatic recognition method to classify human skulls for consistent identification compared with traditional classification approaches.Using our proposed approach,we were able to achieve an accuracy of 92.3–99.5%in the classification of human skulls with mandibles and an accuracy of 91.4–99.9%in the classification of human skills without mandibles.Our study represents a step forward in the construction of an effective automatic human skull identification system with a classification process that achieves satisfactory performance for a limited dataset of skull images. 展开更多
关键词 Discrete wavelet transform GABOR gray-level co-occurrence matrix human skulls physical anthropology support vector machine
下载PDF
Underwater Digital Terrain Model with GPS-aided High-resolution Profile-scan Sonar Images
9
作者 周拥军 寇新建 《Journal of Shanghai Jiaotong university(Science)》 EI 2008年第2期233-238,共6页
The whole procedures of underwater digital terrain model (DTM) were presented by building with the global positioning system (GPS) aided high-resolution profile-scan sonar images.The algorithm regards the digital imag... The whole procedures of underwater digital terrain model (DTM) were presented by building with the global positioning system (GPS) aided high-resolution profile-scan sonar images.The algorithm regards the digital image scanned in a cycle as the raw data.First the label rings are detected with the improved Hough transform (HT) method and followed by curve-fitting for accurate location;then the most probable window for each ping is detected with weighted neighborhood gray-level co-occurrence matrix;and finally the DTM is built by integrating the GPS data with sonar data for 3D visualization.The case of an underwater trench for immersed tube road tunnel is illustrated. 展开更多
关键词 digital terrain model high-resolution sonar Hough transform neighborhood gray-level co-occurrence matrix
下载PDF
An Approach to Fault Diagnosis of Rotating Machinery Using the Second-Order Statistical Features of Thermal Images and Simplified Fuzzy ARTMAP
10
作者 Faisal Al Thobiani Van Tung Tran Tiedo Tinga 《Engineering(科研)》 2017年第6期524-539,共16页
Thermal image, or thermogram, becomes a new type of signal for machine condition monitoring and fault diagnosis due to the capability to display real-time temperature distribution and possibility to indicate the mach... Thermal image, or thermogram, becomes a new type of signal for machine condition monitoring and fault diagnosis due to the capability to display real-time temperature distribution and possibility to indicate the machine’s operating condition through its temperature. In this paper, an investigation of using the second-order statistical features of thermogram in association with minimum redundancy maximum relevance (mRMR) feature selection and simplified fuzzy ARTMAP (SFAM) classification is conducted for rotating machinery fault diagnosis. The thermograms of different machine conditions are firstly preprocessed for improving the image contrast, removing noise, and cropping to obtain the regions of interest (ROIs). Then, an enhanced algorithm based on bi-dimensional empirical mode decomposition is implemented to further increase the quality of ROIs before the second-order statistical features are extracted from their gray-level co-occurrence matrix (GLCM). The highly relevant features to the machine condition are selected from the total feature set by mRMR and are fed into SFAM to accomplish the fault diagnosis. In order to verify this investigation, the thermograms acquired from different conditions of a fault simulator including normal, misalignment, faulty bearing, and mass unbalance are used. This investigation also provides a comparative study of SFAM and other traditional methods such as back-propagation and probabilistic neural networks. The results show that the second-order statistical features used in this framework can provide a plausible accuracy in fault diagnosis of rotating machinery. 展开更多
关键词 Thermal Images SECOND-ORDER Statistical Features gray-level co-occurrence matrix Minimum Redundancy Maximum RELEVANCE Rotating Machinery Fault Diagnosis Simplified Fuzzy ARTMAP
下载PDF
Detection of fabric defects based on frequency-tuned salient algorithm
11
作者 王传桐 Hu Feng Xu Qiyong 《石化技术》 CAS 2017年第4期103-103,共1页
The correct rate of detection for fabric defect is affected by low contrast of images. Aiming at the problem,frequencytuned salient map is used to detect the fabric defect. Firstly,the images of fabric defect are divi... The correct rate of detection for fabric defect is affected by low contrast of images. Aiming at the problem,frequencytuned salient map is used to detect the fabric defect. Firstly,the images of fabric defect are divided into blocks. Then,the blocks are highlighted by frequency-tuned salient algorithm. Simultaneously,gray-level co-occurrence matrix is used to extract the characteristic value of each rectangular patch. Finally,PNN is used to detect the defect on the fabric image. The performance of proposed algorithm is estimated off-line by two sets of fabric defect images. The theoretical argument is supported by experimental results. 展开更多
关键词 FABRIC defect frequency-tuned salient ALGORITHM gray-level co-occurrence matrix PNN
下载PDF
Study of Texture Segmentation and Classification for Grading Small Hepatocellular Carcinoma Based on CT Images 被引量:4
12
作者 Bei Hui Yanbo Liu +3 位作者 Jiajun Qiu Likun Cao Lin Ji Zhiqiang He 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2021年第2期199-207,共9页
To grade Small Hepatocellular Car Cinoma(SHCC)using texture analysis of CT images,we retrospectively analysed 68 cases of Grade II(medium-differentiation)and 37 cases of Grades III and IV(high-differentiation).The gra... To grade Small Hepatocellular Car Cinoma(SHCC)using texture analysis of CT images,we retrospectively analysed 68 cases of Grade II(medium-differentiation)and 37 cases of Grades III and IV(high-differentiation).The grading scheme follows 4 stages:(1)training a Super Resolution Generative Adversarial Network(SRGAN)migration learning model on the Lung Nodule Analysis 2016 Dataset,and employing this model to reconstruct Super Resolution Images of the SHCC Dataset(SR-SHCC)images;(2)designing a texture clustering method based on Gray-Level Co-occurrence Matrix(GLCM)to segment tumour regions,which are Regions Of Interest(ROIs),from the original and SR-SHCC images,respectively;(3)extracting texture features on the ROIs;(4)performing statistical analysis and classifications.The segmentation achieved accuracies of 0.9049 and 0.8590 in the original SHCC images and the SR-SHCC images,respectively.The classification achived an accuracy of 0.838 and an Area Under the ROC Curve(AUC)of 0.84.The grading scheme can effectively reduce poor impacts on the texture analysis of SHCC ROIs.It may play a guiding role for physicians in early diagnoses of medium-differentiation and high-differentiation in SHCC. 展开更多
关键词 grading of Small Hepatocellular Car Cinoma(SHCC) gray-level co-occurrence matrix(glcm) texture clustering super-resolution reconstruction
原文传递
Landform classification based on optimal texture feature extraction from DEM data in Shandong Hilly Area, China 被引量:2
13
作者 Hongchun ZHU Yuexue XU +2 位作者 Yu CHENG Haiying LIU Yipeng ZHAO 《Frontiers of Earth Science》 SCIE CAS CSCD 2019年第3期641-655,共15页
Texture and its analysis methods are crucial for image feature extraction and classification. Digital elevation model (DEM) is the most important data source of digital terrain analysis and landform classification, an... Texture and its analysis methods are crucial for image feature extraction and classification. Digital elevation model (DEM) is the most important data source of digital terrain analysis and landform classification, and considerable research values are gained from texture feature extraction and analysis from DEM data. In this research, on the basis of optimal texture feature extraction, the hilly area in Shandong, China, was selected as the study area, and DEM data with a resolution of 500 m were used as the experimental data for landform classification. First, second-order texture measures and texture image were extracted from DEM data by using a gray level cooccurrence matrix (GLCM). Second, the variation characteristics of each texture measure were analyzed, and the optimal feature parameters, such as direction, gray level, and texture window, were determined. Meanwhile, the texture feature value, combined with maximum information, was calculated, and the multiband texture image was obtained by resolving three optimal texture measure images. Finally, a support vector machine (SVM) method was adopted to classify landforms on the basis of the multiband texture image. Results indicated that the texture features of DEM data can be sufficiently represented and measured via the quantitative GLCM method. However, the feature parameters during the texture feature value calculation required further optimization. Based on the image texture from DEM data, efficient classification accuracy and ideal classification effect were achieved. 展开更多
关键词 DEM data image texture feature extraction GRAY Level co-occurrence matrix (glcm) OPTIMAL parametric analysis LANDFORM classification
原文传递
Fast Algorithm for Maneuvering Target Detection in SAR Imagery Based on Gridding and Fusion of Texture Features 被引量:2
14
作者 YUAN Zhan HE You CAI Fuqing 《Geo-Spatial Information Science》 2011年第3期169-176,共8页
Designing detection algorithms with high efficiency for Synthetic Aperture Radar(SAR) imagery is essential for the operator SAR Automatic Target Recognition(ATR) system.This work abandons the detection strategy of vis... Designing detection algorithms with high efficiency for Synthetic Aperture Radar(SAR) imagery is essential for the operator SAR Automatic Target Recognition(ATR) system.This work abandons the detection strategy of visiting every pixel in SAR imagery as done in many traditional detection algorithms,and introduces the gridding and fusion idea of different texture fea-tures to realize fast target detection.It first grids the original SAR imagery,yielding a set of grids to be classified into clutter grids and target grids,and then calculates the texture features in each grid.By fusing the calculation results,the target grids containing potential maneuvering targets are determined.The dual threshold segmentation technique is imposed on target grids to obtain the regions of interest.The fused texture features,including local statistics features and Gray-Level Co-occurrence Matrix(GLCM),are investigated.The efficiency and superiority of our proposed algorithm were tested and verified by comparing with existing fast de-tection algorithms using real SAR data.The results obtained from the experiments indicate the promising practical application val-ue of our study. 展开更多
关键词 synthetic aperture radar imagery target detection texture feature GRIDDING gray-level co-occurrence matrix FUSION
原文传递
Vibration-based hypervelocity impact identification and localization
15
作者 Jiao BAO Lifu LIU Jiuwen CAO 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2022年第4期515-529,共15页
Hypervelocity impact(HVI)vibration source identification and localization have found wide applications in many fields,such as manned spacecraft protection and machine tool collision damage detection and localization.I... Hypervelocity impact(HVI)vibration source identification and localization have found wide applications in many fields,such as manned spacecraft protection and machine tool collision damage detection and localization.In this paper,we study the synchrosqueezed transform(SST)algorithm and the texture color distribution(TCD)based HVI source identification and localization using impact images.The extracted SST and TCD image features are fused for HVI image representation.To achieve more accurate detection and localization,the optimal selective stitching features OSSST+TCD are obtained by correlating and evaluating the similarity between the sample label and each dimension of the features.Popular conventional classification and regression models are merged by voting and stacking to achieve the final detection and localization.To demonstrate the effectiveness of the proposed algorithm,the HVI data recorded from three kinds of high-speed bullet striking on an aluminum alloy plate is used for experimentation.The experimental results show that the proposed HVI identification and localization algorithm is more accurate than other algorithms.Finally,based on sensor distribution,an accurate four-circle centroid localization algorithm is developed for HVI source coordinate localization. 展开更多
关键词 Ensemble learning Synchrosqueezied transform gray-level co-occurrence matrix Image entropy Distance estimation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部