Based on the Laplace transform, a direct derivation of the ordinary differential equations for the three-dimensional transient free-surface Green function in marine hydrodynamics is presented. The results for the 3D G...Based on the Laplace transform, a direct derivation of the ordinary differential equations for the three-dimensional transient free-surface Green function in marine hydrodynamics is presented. The results for the 3D Green function and all its spatial derivatives are a set of fourth-order ordinary differential equations, which are identical with that of Clement (1998). All of these results may be used to accelerate numerical computation for the time-domain boundary element method in marine hydrodynamics.展开更多
Great attention has been paid to the development of very large floating structures. Owing to their extreme large size and great flexibility, the coupling between the structural deformation and fluid motion is signific...Great attention has been paid to the development of very large floating structures. Owing to their extreme large size and great flexibility, the coupling between the structural deformation and fluid motion is significant. This is a typical problem of hydroelasticity. Efficient and accurate estimation of the hydroelastic response of very large floating structures in waves is very important for design. In this paper, the plate Green function and fluid Green function are combined to analyze the hydroelastic response of very large floating structures. The plate Green function here is a new one proposed by the authors and it satisfies all boundary conditions for free-free rectangular plates on elastic foundations. The results are compared with some experimental data. It is shown that the method proposed in this paper is efficient and accurate. Finally, various factors affecting the hydroelastic response of very large floating structures are also studied.展开更多
This investigation presents the Green functions for a decagonal quasicrystalline ma- terial with a parabolic boundary subject to a line force and a line dislocation by means of the complex variable method. The surface...This investigation presents the Green functions for a decagonal quasicrystalline ma- terial with a parabolic boundary subject to a line force and a line dislocation by means of the complex variable method. The surface Green functions are treated as a special case, and the explicit expressions of displacements and hoop stress at the parabolic boundary are also given. Finally, the stresses and displacements induced by a phonon line force acting at the origin of the lower half-space are presented.展开更多
The derivation of Green function in a two-layer fluid model has been treated in different ways. In a two-layer fluid with the upper layer having a free surface, there exist two modes of waves propagating due to the fr...The derivation of Green function in a two-layer fluid model has been treated in different ways. In a two-layer fluid with the upper layer having a free surface, there exist two modes of waves propagating due to the free surface and the interface. This paper is concerned with the derivation of Green functions in the three dimensional case of a stationary source oscillating. The source point is located either in the upper or lower part of a two-layer fluid of finite depth. The derivation is carried out by the method of singularities. This method has an advantage in that it involves representing the potential as a sum of singularities or multipoles placed within any structures being present. Furthermore, experience shows that the systems of equations resulted from using a singularity method possess excellent convergence characteristics and only a few equations are needed to obtain accurate numerical results. Validation is done by showing that the derived two-layer Green function can be reduced to that of a single layer of finite depth or that the upper Green function coincides with that of the lower, for each case. The effect of the density on the internal waves is demonstrated. Also, it is shown how the surface and internal wave amplitudes are compared for both the wave modes. The fluid in this case is considered to be inviscid and incompressible and the flow is irrotational.展开更多
In this paper,we obtain Green’s functions of two-dimensional(2D)piezoelectric quasicrystal(PQC)in half-space and bimaterials.Based on the elastic theory of QCs,the Stroh formalism is used to derive the general soluti...In this paper,we obtain Green’s functions of two-dimensional(2D)piezoelectric quasicrystal(PQC)in half-space and bimaterials.Based on the elastic theory of QCs,the Stroh formalism is used to derive the general solutions of displacements and stresses.Then,we obtain the analytical solutions of half-space and bimaterial Green’s functions.Besides,the interfacial Green’s function for bimaterials is also obtained in the analytical form.Before numerical studies,a comparative study is carried out to validate the present solutions.Typical numerical examples are performed to investigate the effects of multi-physics loadings such as the line force,the line dislocation,the line charge,and the phason line force.As a result,the coupling effect among the phonon field,the phason field,and the electric field is prominent,and the butterfly-shaped contours are characteristic in 2D PQCs.In addition,the changes of material parameters cause variations in physical quantities to a certain degree.展开更多
The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, ...The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, the integrated Green’s function method has been adopted to solve the 3D Poisson equation subject to open boundary conditions. In this paper, we report on the efficient implementation of this method, which can save more than a factor of 50 computing time compared with the direct brute force implementation and its improvement under certain extreme conditions.展开更多
This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones a...This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.展开更多
Based on one type of practical Biot's equation and the dynamic-stiffness matrices ofa poroelastic soil layer and half-space, Green's functions were derived for unitformly distributed loads acting on an inclined line...Based on one type of practical Biot's equation and the dynamic-stiffness matrices ofa poroelastic soil layer and half-space, Green's functions were derived for unitformly distributed loads acting on an inclined line in a poroelastie layered site. This analysis overcomes significant problems in wave scattering due to local soil conditions and dynamic soil-structure interaction. The Green's functions can be reduced to the case of an elastic layered site developed by Wolf in 1985. Parametric studies are then carried out through two example problems.展开更多
The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green’s functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic(TI)half-s...The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green’s functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic(TI)half-space.The loaded layer is fixed to obtain solutions restricted in it and the corresponding reactions forces,which are then applied to the total system with the opposite sign.By adding solutions restricted in the loaded layer to solutions from the reaction forces,the global solutions in the wavenumber domain are obtained,and the dynamic Green’s functions in the space domain are recovered by the inverse Fourier transform.The presented formulations can be reduced to the isotropic case developed by Wolf(1985),and are further verified by comparisons with existing solutions in a uniform isotropic as well as a layered TI halfspace subjected to horizontally distributed loads which are special cases of the more general problem addressed.The deduced Green’s functions,in conjunction with boundary element methods,will lead to significant advances in the investigation of a variety of wave scattering,wave radiation and soil-structure interaction problems in a layered TI site.Selected numerical results are given to investigate the influence of material anisotropy,frequency of excitation,inclination angle and layered on the responses of displacement and stress,and some conclusions are drawn.展开更多
Quasicrystals have additional phason degrees of freedom not found in conventional crystals. In this paper, we present an exact solution for time-harmonic dynamic Green's function of one-dimensional hexagonal quasicry...Quasicrystals have additional phason degrees of freedom not found in conventional crystals. In this paper, we present an exact solution for time-harmonic dynamic Green's function of one-dimensional hexagonal quasicrystals with the Laue classes 6/mh and 6/mhmm. Through the introduction of two new functions φ and ψ, the original problem is reduced to the determination of Green's functions for two independent Helmholtz equations. The explicit expressions of displacement and stress fields are presented and their asymptotic behaviors are discussed. The static Green's function can be obtained by letting the circular frequency approach zero.展开更多
Green's functions for Blot's dynamic equation in the frequency domain can be a highly useful tool for the investigation of dynamic responses of a saturated porous medium. Its applications are found in soil dynamics,...Green's functions for Blot's dynamic equation in the frequency domain can be a highly useful tool for the investigation of dynamic responses of a saturated porous medium. Its applications are found in soil dynamics, seismology, earthquake engineering, rock mechanics, geophysics, and acoustics. However, the mathematical work for deriving it can be daunting. Green's functions have been presented utilizing an analogy between the dynamic thermoelasticity and the dynamic poroelasticity in the frequency domain using the u-p formulation. In this work, a special term "decoupling coefficient" for the decomposition of the fast and slow dilatational waves is proposed and expressed to present a new methodology for deriving the poroelastodynamic Green's functions. The correct- ness of the solution is demonstrated by numerically comparing the current solution with Cheng's previous solution. The separation of the two waves in the present methodology allows the more accurate evaluation of Green's functions, particularly the solution of the slow dilatational wave. This can be advantageous for the numerical implementation of the boundary element method (BEM) and other applications.展开更多
By the analysis for the vectors of a wave field in the cylindrical coordinate and Sommerfeld's identity as well as Green's functions of Stokes' solution pertaining the conventional elastic dynamic equation, the res...By the analysis for the vectors of a wave field in the cylindrical coordinate and Sommerfeld's identity as well as Green's functions of Stokes' solution pertaining the conventional elastic dynamic equation, the results of Green's function in an infinite space of an axisymmetric coordinate are shown in this paper. After employing a supplementary influence field and the boundary conditions in the free surface of a senti-space, the authors obtain the solutions of Green's function for Lamb's dynamic problem. Besides, the vertical displacement uzz and the radial displacement urz can match Lamb's previous results, and the solutions of the linear expansion source u^r and the linear torsional source uee are also given in the paper. The authors reveal that Green's function of Stokes' solution in the semi-space is a comprehensive form of solution expressing the dynamic Lamb's problem for various situations. It may benefit the investigation of deepening and development of Lamb's problems and solution for pertinent dynamic problems conveniently.展开更多
Because most piezoelectric devices have interfaces with fluid in engineering, it is valuable to study the coupled field between fluid and piezoelectric media. As the fundamental problem, the 3D Green's functions for ...Because most piezoelectric devices have interfaces with fluid in engineering, it is valuable to study the coupled field between fluid and piezoelectric media. As the fundamental problem, the 3D Green's functions for point forces and point charge loaded in the fluid and piezoelectric bimaterials are studied in this paper. Based on the 3D general solutions expressed by harmonic functions, we constructed the suitable harmonic functions with undetermined constants at first. Then, the couple field in the fluid and piezoelectric bimaterials can be derived by substitution of harmonic functions into general solutions. These constants can be obtained by virtue of the compatibility, boundary, and equilibrium conditions. At last, the characteristics of the electromechanical coupled fields are shown by numerical results.展开更多
The possible exotic nuclear properties in the neutron-rich Ca,Ni,Zr,and Sn isotopes are examined with the continuum Skyrme Hartree-Fock-Bogoliubov theory in the framework of the Green’s function method.The pairing co...The possible exotic nuclear properties in the neutron-rich Ca,Ni,Zr,and Sn isotopes are examined with the continuum Skyrme Hartree-Fock-Bogoliubov theory in the framework of the Green’s function method.The pairing correlation,the couplings with the continuum,and the blocking effects for the unpaired nucleon in odd-A nuclei are properly treated.The Skyrme interaction SLy4 is adopted for the ph channel and the density-dependentinteraction is adopted for the pp chan-nel,which well reproduce the experimental two-neutron separation energies S_(2n)and one-neutron separation energies Sn.It is found that the criterion S_(n)>0 predicts a neutron drip line with neutron numbers much smaller than those for S_(2n)>0.Owing to the unpaired odd neutron,the neutron pairing energies−E_(pair)in odd-A nuclei are much lower than those in the neighbor-ing even-even nuclei.By investigating the single-particle structures,the possible halo structures in the neutron-rich Ca,Ni,and Sn isotopes are predicted,where sharp increases in the root-mean-square(rms)radii with significant deviations from the traditional rA^(1∕3)rule and diffuse spatial density distributions are observed.Analyzing the contributions of various partial waves to the total neutron densityρlj(r)∕ρ(r)reveals that the orbitals located around the Fermi surface-particularly those with small angular momenta-significantly affect the extended nuclear density and large rms radii.The number of neutrons Nλ(N_(0))occupying above the Fermi surfacen(continuum threshold)is discussed,whose evolution as a function of the mass number A in each isotope is consistent with that of the pairing energy,supporting the key role of the pairing correlation in halo phenomena.展开更多
Based on the Laplace transform an ordinary differential equation for the two-dimensional time-domain free-surface Green function in ship hydrodynamics is presented. The results for 2D Green function and its horizontal...Based on the Laplace transform an ordinary differential equation for the two-dimensional time-domain free-surface Green function in ship hydrodynamics is presented. The results for 2D Green function and its horizontal derivative are fifth-order ODEs and the vertical derivative satisfies a fourth-order ODE. All of these results may be used to accelerate the numerical computations for the time-domain BEM in marine hydrodynamics.展开更多
In this paper, an extended spectral theorem is given, which enables one to calculate the correlation functions when complex eigenvalues appear. To do so, a Fourier transformation with a complex argument is utilized. W...In this paper, an extended spectral theorem is given, which enables one to calculate the correlation functions when complex eigenvalues appear. To do so, a Fourier transformation with a complex argument is utilized. We treat all the Matsbara frequencies, including Fermionic and Bosonic frequencies, on an equal footing. It is pointed out that when complex eigenvalues appear, the dissipation of a system cannot simply be ascribed to the pure imaginary part of the Green function. Therefore, the use of the name fluctuation-dissipation theorem should be careful.展开更多
By virtue of a complete set of two displacement potentials,an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic substrate–coating system is presented.Three...By virtue of a complete set of two displacement potentials,an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic substrate–coating system is presented.Three-dimensional point–load and patch–load Green’s functions for stresses and displacements are given in line-integral representations.The formulation includes a complete set of transformed stress–potential and displacement–potential relations,with utilizing Fourier series and Hankel transforms.As illustrations,the present Green’s functions are degenerated to the special cases such as an exponentially graded half-space and a homogeneous two-layered half-space Green’s functions.Because of complicated integrand functions,the integrals are evaluated numerically and for numerical computation of the integrals,a robust and effective methodology is laid out which gives the necessary account of the presence of singularities of integration.Comparisons of the existing numerical solutions for homogeneous two-layered isotropic and transversely isotropic half-spaces are made to confirm the accuracy of the present solutions.Some typical numerical examples are also given to show the general features of the exponentially graded two-layered half-space Green’s functions that the effect of degree of variation of material properties will be recognized.展开更多
A novel method of deriving the electromagnetic dyadic Green's functions in an unbounded, lossless, reciprocal and homogeneous chiral media described by the constitutive relations D = εE + jγB and H = jγE + μ^-1...A novel method of deriving the electromagnetic dyadic Green's functions in an unbounded, lossless, reciprocal and homogeneous chiral media described by the constitutive relations D = εE + jγB and H = jγE + μ^-1B - (ωε)^-1γJ is given. The divergenceless and irrotational splitting of dyadic Dirac 8 function and Fourier transformation are used to directly obtain the divergenceless and irrotational component of spectral-domain dyadic Green's functions in chiral media. This method avoids using the dyadic Green's function eigenfunction expansion technique. The method given here can be generalized to a source-free region and an achiral case.展开更多
This work aims at potential fields generated by point sources in conductive perforated fragments of spherical shells. Such fields are interpreted as profiles of Green's functions of relevant boundary-value problems s...This work aims at potential fields generated by point sources in conductive perforated fragments of spherical shells. Such fields are interpreted as profiles of Green's functions of relevant boundary-value problems stated in multiply-connected regions for Laplace equation written in geographical coordinates. Those are efficiently computed by a modification of the method of functional equations, with closed analytical forms preliminary obtained for Green's functions for the corresponding simply-connected regions.展开更多
The pointwise space-time behaviors of the Green’s function and the global solution to the Vlasov-Poisson-Fokker-Planck(VPFP)system in three dimensional space are studied in this paper.It is shown that the Green’s fu...The pointwise space-time behaviors of the Green’s function and the global solution to the Vlasov-Poisson-Fokker-Planck(VPFP)system in three dimensional space are studied in this paper.It is shown that the Green’s function consists of the diffusion waves decaying exponentially in time but algebraically in space,and the singular kinetic waves which become smooth for all(t,x,v)when t>0.Furthermore,we establish the pointwise space-time behaviors of the global solution to the nonlinear VPFP system when the initial data is not necessarily smooth in terms of the Green’s function.展开更多
基金The paper was financially supported by the National Natural Science Foundation of China (No. 19802008)Excellent Doctoral Dissertation Grant of the Ministry of Education of China (No. 199927)
文摘Based on the Laplace transform, a direct derivation of the ordinary differential equations for the three-dimensional transient free-surface Green function in marine hydrodynamics is presented. The results for the 3D Green function and all its spatial derivatives are a set of fourth-order ordinary differential equations, which are identical with that of Clement (1998). All of these results may be used to accelerate numerical computation for the time-domain boundary element method in marine hydrodynamics.
文摘Great attention has been paid to the development of very large floating structures. Owing to their extreme large size and great flexibility, the coupling between the structural deformation and fluid motion is significant. This is a typical problem of hydroelasticity. Efficient and accurate estimation of the hydroelastic response of very large floating structures in waves is very important for design. In this paper, the plate Green function and fluid Green function are combined to analyze the hydroelastic response of very large floating structures. The plate Green function here is a new one proposed by the authors and it satisfies all boundary conditions for free-free rectangular plates on elastic foundations. The results are compared with some experimental data. It is shown that the method proposed in this paper is efficient and accurate. Finally, various factors affecting the hydroelastic response of very large floating structures are also studied.
文摘This investigation presents the Green functions for a decagonal quasicrystalline ma- terial with a parabolic boundary subject to a line force and a line dislocation by means of the complex variable method. The surface Green functions are treated as a special case, and the explicit expressions of displacements and hoop stress at the parabolic boundary are also given. Finally, the stresses and displacements induced by a phonon line force acting at the origin of the lower half-space are presented.
基金supported by the National Natural Science Foundation of China (Grant No. 50779008)
文摘The derivation of Green function in a two-layer fluid model has been treated in different ways. In a two-layer fluid with the upper layer having a free surface, there exist two modes of waves propagating due to the free surface and the interface. This paper is concerned with the derivation of Green functions in the three dimensional case of a stationary source oscillating. The source point is located either in the upper or lower part of a two-layer fluid of finite depth. The derivation is carried out by the method of singularities. This method has an advantage in that it involves representing the potential as a sum of singularities or multipoles placed within any structures being present. Furthermore, experience shows that the systems of equations resulted from using a singularity method possess excellent convergence characteristics and only a few equations are needed to obtain accurate numerical results. Validation is done by showing that the derived two-layer Green function can be reduced to that of a single layer of finite depth or that the upper Green function coincides with that of the lower, for each case. The effect of the density on the internal waves is demonstrated. Also, it is shown how the surface and internal wave amplitudes are compared for both the wave modes. The fluid in this case is considered to be inviscid and incompressible and the flow is irrotational.
基金the National Natural Science Foundation of China(Nos.11972365 and 12102458)。
文摘In this paper,we obtain Green’s functions of two-dimensional(2D)piezoelectric quasicrystal(PQC)in half-space and bimaterials.Based on the elastic theory of QCs,the Stroh formalism is used to derive the general solutions of displacements and stresses.Then,we obtain the analytical solutions of half-space and bimaterial Green’s functions.Besides,the interfacial Green’s function for bimaterials is also obtained in the analytical form.Before numerical studies,a comparative study is carried out to validate the present solutions.Typical numerical examples are performed to investigate the effects of multi-physics loadings such as the line force,the line dislocation,the line charge,and the phason line force.As a result,the coupling effect among the phonon field,the phason field,and the electric field is prominent,and the butterfly-shaped contours are characteristic in 2D PQCs.In addition,the changes of material parameters cause variations in physical quantities to a certain degree.
文摘The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, the integrated Green’s function method has been adopted to solve the 3D Poisson equation subject to open boundary conditions. In this paper, we report on the efficient implementation of this method, which can save more than a factor of 50 computing time compared with the direct brute force implementation and its improvement under certain extreme conditions.
文摘This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.
基金National Natural Science Foundation of China Under Grant No.50378063
文摘Based on one type of practical Biot's equation and the dynamic-stiffness matrices ofa poroelastic soil layer and half-space, Green's functions were derived for unitformly distributed loads acting on an inclined line in a poroelastie layered site. This analysis overcomes significant problems in wave scattering due to local soil conditions and dynamic soil-structure interaction. The Green's functions can be reduced to the case of an elastic layered site developed by Wolf in 1985. Parametric studies are then carried out through two example problems.
基金National Natural Science Foundation of China under grant No.51578373 and 51578372the Natural Science Foundation of Tianjin Municipality under Grant No.16JCYBJC21600
文摘The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green’s functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic(TI)half-space.The loaded layer is fixed to obtain solutions restricted in it and the corresponding reactions forces,which are then applied to the total system with the opposite sign.By adding solutions restricted in the loaded layer to solutions from the reaction forces,the global solutions in the wavenumber domain are obtained,and the dynamic Green’s functions in the space domain are recovered by the inverse Fourier transform.The presented formulations can be reduced to the isotropic case developed by Wolf(1985),and are further verified by comparisons with existing solutions in a uniform isotropic as well as a layered TI halfspace subjected to horizontally distributed loads which are special cases of the more general problem addressed.The deduced Green’s functions,in conjunction with boundary element methods,will lead to significant advances in the investigation of a variety of wave scattering,wave radiation and soil-structure interaction problems in a layered TI site.Selected numerical results are given to investigate the influence of material anisotropy,frequency of excitation,inclination angle and layered on the responses of displacement and stress,and some conclusions are drawn.
基金Project supported by Shanghai Leading Academic Discipline Project (No.Y0103).
文摘Quasicrystals have additional phason degrees of freedom not found in conventional crystals. In this paper, we present an exact solution for time-harmonic dynamic Green's function of one-dimensional hexagonal quasicrystals with the Laue classes 6/mh and 6/mhmm. Through the introduction of two new functions φ and ψ, the original problem is reduced to the determination of Green's functions for two independent Helmholtz equations. The explicit expressions of displacement and stress fields are presented and their asymptotic behaviors are discussed. The static Green's function can be obtained by letting the circular frequency approach zero.
基金Project supported by the National Natural Science Foundation of China(Nos.51478435,11402150,and 11172268)
文摘Green's functions for Blot's dynamic equation in the frequency domain can be a highly useful tool for the investigation of dynamic responses of a saturated porous medium. Its applications are found in soil dynamics, seismology, earthquake engineering, rock mechanics, geophysics, and acoustics. However, the mathematical work for deriving it can be daunting. Green's functions have been presented utilizing an analogy between the dynamic thermoelasticity and the dynamic poroelasticity in the frequency domain using the u-p formulation. In this work, a special term "decoupling coefficient" for the decomposition of the fast and slow dilatational waves is proposed and expressed to present a new methodology for deriving the poroelastodynamic Green's functions. The correct- ness of the solution is demonstrated by numerically comparing the current solution with Cheng's previous solution. The separation of the two waves in the present methodology allows the more accurate evaluation of Green's functions, particularly the solution of the slow dilatational wave. This can be advantageous for the numerical implementation of the boundary element method (BEM) and other applications.
基金supported by the National Natural Science Foundation of China(No.11172268)
文摘By the analysis for the vectors of a wave field in the cylindrical coordinate and Sommerfeld's identity as well as Green's functions of Stokes' solution pertaining the conventional elastic dynamic equation, the results of Green's function in an infinite space of an axisymmetric coordinate are shown in this paper. After employing a supplementary influence field and the boundary conditions in the free surface of a senti-space, the authors obtain the solutions of Green's function for Lamb's dynamic problem. Besides, the vertical displacement uzz and the radial displacement urz can match Lamb's previous results, and the solutions of the linear expansion source u^r and the linear torsional source uee are also given in the paper. The authors reveal that Green's function of Stokes' solution in the semi-space is a comprehensive form of solution expressing the dynamic Lamb's problem for various situations. It may benefit the investigation of deepening and development of Lamb's problems and solution for pertinent dynamic problems conveniently.
基金financial support from the National Natural Science Foundation of China(11572119)
文摘Because most piezoelectric devices have interfaces with fluid in engineering, it is valuable to study the coupled field between fluid and piezoelectric media. As the fundamental problem, the 3D Green's functions for point forces and point charge loaded in the fluid and piezoelectric bimaterials are studied in this paper. Based on the 3D general solutions expressed by harmonic functions, we constructed the suitable harmonic functions with undetermined constants at first. Then, the couple field in the fluid and piezoelectric bimaterials can be derived by substitution of harmonic functions into general solutions. These constants can be obtained by virtue of the compatibility, boundary, and equilibrium conditions. At last, the characteristics of the electromechanical coupled fields are shown by numerical results.
基金the National Natural Science Foundation of China(No.U2032141)the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology(No.NLK2022-02)+4 种基金the Central Government Guidance Funds for Local Scientific and Technological Development,China(Guike ZY22096024)the Natural Science Foundation of Henan Province(No.202300410479)the Guizhou Provincial Science and Technology Projects(No.ZK[2022]203)the Foundation of Fundamental Research for Young Teachers of Zhengzhou University(No.JC202041041)the Physics Research and Development Program of Zhengzhou University(No.32410217).
文摘The possible exotic nuclear properties in the neutron-rich Ca,Ni,Zr,and Sn isotopes are examined with the continuum Skyrme Hartree-Fock-Bogoliubov theory in the framework of the Green’s function method.The pairing correlation,the couplings with the continuum,and the blocking effects for the unpaired nucleon in odd-A nuclei are properly treated.The Skyrme interaction SLy4 is adopted for the ph channel and the density-dependentinteraction is adopted for the pp chan-nel,which well reproduce the experimental two-neutron separation energies S_(2n)and one-neutron separation energies Sn.It is found that the criterion S_(n)>0 predicts a neutron drip line with neutron numbers much smaller than those for S_(2n)>0.Owing to the unpaired odd neutron,the neutron pairing energies−E_(pair)in odd-A nuclei are much lower than those in the neighbor-ing even-even nuclei.By investigating the single-particle structures,the possible halo structures in the neutron-rich Ca,Ni,and Sn isotopes are predicted,where sharp increases in the root-mean-square(rms)radii with significant deviations from the traditional rA^(1∕3)rule and diffuse spatial density distributions are observed.Analyzing the contributions of various partial waves to the total neutron densityρlj(r)∕ρ(r)reveals that the orbitals located around the Fermi surface-particularly those with small angular momenta-significantly affect the extended nuclear density and large rms radii.The number of neutrons Nλ(N_(0))occupying above the Fermi surfacen(continuum threshold)is discussed,whose evolution as a function of the mass number A in each isotope is consistent with that of the pairing energy,supporting the key role of the pairing correlation in halo phenomena.
文摘Based on the Laplace transform an ordinary differential equation for the two-dimensional time-domain free-surface Green function in ship hydrodynamics is presented. The results for 2D Green function and its horizontal derivative are fifth-order ODEs and the vertical derivative satisfies a fourth-order ODE. All of these results may be used to accelerate the numerical computations for the time-domain BEM in marine hydrodynamics.
文摘In this paper, an extended spectral theorem is given, which enables one to calculate the correlation functions when complex eigenvalues appear. To do so, a Fourier transformation with a complex argument is utilized. We treat all the Matsbara frequencies, including Fermionic and Bosonic frequencies, on an equal footing. It is pointed out that when complex eigenvalues appear, the dissipation of a system cannot simply be ascribed to the pure imaginary part of the Green function. Therefore, the use of the name fluctuation-dissipation theorem should be careful.
文摘By virtue of a complete set of two displacement potentials,an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic substrate–coating system is presented.Three-dimensional point–load and patch–load Green’s functions for stresses and displacements are given in line-integral representations.The formulation includes a complete set of transformed stress–potential and displacement–potential relations,with utilizing Fourier series and Hankel transforms.As illustrations,the present Green’s functions are degenerated to the special cases such as an exponentially graded half-space and a homogeneous two-layered half-space Green’s functions.Because of complicated integrand functions,the integrals are evaluated numerically and for numerical computation of the integrals,a robust and effective methodology is laid out which gives the necessary account of the presence of singularities of integration.Comparisons of the existing numerical solutions for homogeneous two-layered isotropic and transversely isotropic half-spaces are made to confirm the accuracy of the present solutions.Some typical numerical examples are also given to show the general features of the exponentially graded two-layered half-space Green’s functions that the effect of degree of variation of material properties will be recognized.
基金Sponsored by the Natural Science Foundation of Liaoning Province (Grant No.20092146)
文摘A novel method of deriving the electromagnetic dyadic Green's functions in an unbounded, lossless, reciprocal and homogeneous chiral media described by the constitutive relations D = εE + jγB and H = jγE + μ^-1B - (ωε)^-1γJ is given. The divergenceless and irrotational splitting of dyadic Dirac 8 function and Fourier transformation are used to directly obtain the divergenceless and irrotational component of spectral-domain dyadic Green's functions in chiral media. This method avoids using the dyadic Green's function eigenfunction expansion technique. The method given here can be generalized to a source-free region and an achiral case.
文摘This work aims at potential fields generated by point sources in conductive perforated fragments of spherical shells. Such fields are interpreted as profiles of Green's functions of relevant boundary-value problems stated in multiply-connected regions for Laplace equation written in geographical coordinates. Those are efficiently computed by a modification of the method of functional equations, with closed analytical forms preliminary obtained for Green's functions for the corresponding simply-connected regions.
基金supported by National Natural Science Foundation of China(11671100 and 12171104)the National Science Fund for Excellent Young Scholars(11922107)Guangxi Natural Science Foundation(2018GXNSFAA138210 and 2019JJG110010)。
文摘The pointwise space-time behaviors of the Green’s function and the global solution to the Vlasov-Poisson-Fokker-Planck(VPFP)system in three dimensional space are studied in this paper.It is shown that the Green’s function consists of the diffusion waves decaying exponentially in time but algebraically in space,and the singular kinetic waves which become smooth for all(t,x,v)when t>0.Furthermore,we establish the pointwise space-time behaviors of the global solution to the nonlinear VPFP system when the initial data is not necessarily smooth in terms of the Green’s function.