Strategy of development trends in this moment and at this stage of the traffic comes from understanding the possibilities of the implementation of measures to raise the quality of movement and life in the city. It als...Strategy of development trends in this moment and at this stage of the traffic comes from understanding the possibilities of the implementation of measures to raise the quality of movement and life in the city. It also includes planning and implementation of targeted interventions in the transport network or facilities. Mobility is a complex process in the area, starting from the departure from the apartment, using various means of transportation, a number of activities in different goals until to return to the location of the apartment. It thus requires extensive transport infrastructure in the form of walkways, bicycle paths, street and railway network. At the same time, reshaping of public transport facilities is needed in which the pedestrian, biker and green concept shall be the main elements of the new spatial conditions. Pedestrian zones development in the city means to create pedestrian areas and green islands in all the places in the city where possible. This process is essential for the transformation of public spaces, in particular, transport corridors. To accomplish the concept of the green transport plan, the need for change in the parking policy is emphasized. This should be an integral part of the city planning and should go hand in hand with the traffic policy.展开更多
Urban traffic and urban environmental pollution are important issues that must be taken into account in the process of urbanization,especially in China.Modernization has enabled many developed countries in the west to...Urban traffic and urban environmental pollution are important issues that must be taken into account in the process of urbanization,especially in China.Modernization has enabled many developed countries in the west to carry out rational city traffic planning.At the same time,the concept of green transportation has also emerged,integrating low-energy consumption,low pollution,comfort,and safety into urban traffic to effectively solve issues pertaining to traffic and pollution.The concept of green transportation has been widely adopted in China and made popular in many cities,thereby promoting the sustainable development of cities.展开更多
Launching the evaluation research of green transportation can grasp the green transportation implementation accurately and diagnose the existing problems. From the perspective of green transportation, this research ch...Launching the evaluation research of green transportation can grasp the green transportation implementation accurately and diagnose the existing problems. From the perspective of green transportation, this research chose Dongguan “motorcycle ban” policy as the research object, and constructed secondary evaluation index system in transportation and environmental harmony, transportation and future harmony, transportation and society harmony, transportation and resource harmony, four dimensions. Then it used fuzzy comprehensive evaluation model to do the evaluation and found that the policy’s positive effect on the Dongguan green transportation development was average. Finally, based on the evaluation results, measures and advices were proposed.展开更多
Taking the planning practice of green transportation in Sino-Singapore Tianjin Eco-city as an example,the key factors and design strategies for its healthy development were summarized from the aspects of the coordinat...Taking the planning practice of green transportation in Sino-Singapore Tianjin Eco-city as an example,the key factors and design strategies for its healthy development were summarized from the aspects of the coordination of land use and traffic development,the development of the public transport plus slow traffic model,and the development of reasonable and humanized traffic management measures,through analyzing the connotation and scale of green cluster.In addition,the design strategies of the green transportation concept suitable for the development of urban clusters represented by Guangming New District in Shenzhen were proposed,so as to provide a reference for promoting better the coordinated development of green traffic and cities,and maximizing the economic,social and environmental benefits of green transportation development.展开更多
With the development of the city and the increase of the population, the de<span style="font-family:Verdana;">mand for transportation is increasing. The increases in transportation ways </span>&l...With the development of the city and the increase of the population, the de<span style="font-family:Verdana;">mand for transportation is increasing. The increases in transportation ways </span><span style="font-family:Verdana;">and demand have also brought certain energy and environmental problems t</span><span style="font-family:Verdana;">o transportati</span><span style="font-family:Verdana;">on construction. A good transportation environment and green travel experience have an important role in promoting the happiness of urban lif</span><span style="font-family:Verdana;">e and the sustainable development of society. Based on this, the follo</span><span style="font-family:Verdana;">wing solutions are proposed for the construction and development of urban green </span><span style="font-family:Verdana;">transportation. First, as a guiding role, the government should formulate active transportation and green transportation policies to promote the reform of multiple p</span><span style="font-family:Verdana;">ublic transportation methods. Second, as a leading role, the market can support a variety of the construction of green travel modes, which could encourage the development of shared bicycles and new energy vehicles. Third, </span><span style="font-family:Verdana;">as the main role of city, the citizens would like to choose green travel tools wi</span><span style="font-family:Verdana;">th the guid</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ance</span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> in the conscious level. If we built green behavior into a fashionable business card of the city, green behavior will lead the city’s transportation construction and development.</span></span></span></span></span>展开更多
Since the 21 st century, the transportation industry in China has achieved rapid growth with a significant increase in the transport capacity; however the development has also greatly impacted the energy saving & ...Since the 21 st century, the transportation industry in China has achieved rapid growth with a significant increase in the transport capacity; however the development has also greatly impacted the energy saving & environmental conservation. This paper takes into account non-commercial vehicles such as private cars in the statistics of energy consumption and pollution of Chinese transportation system. This method extends on previous methods which solely include commercial vehicles in these statistics. Based on more comprehensive quantitative data, it reviews the progress in the energy saving and environmental conservation efforts by the Chinese transportation industry and points out that the rapid increase of energy consumption and pollution emission and the deterioration of traffic congestion are prominent problems in the development of the Chinese transport industry. The main reasons for theses problems include the unbalanced development of different transport modes, the irrational layout of integrated transport hubs, the inadequate law, regulations and standards, and the use of suboptimal technology. Based on these findings, this paper proposes several goals for the construction of a green transportation system in China including the establishment of a transportation management system, the improvement of transportation energy efficiency, the control of environmental pollution and the alleviating of urban traffic congestion. Additionally, it points out that in order to build a green transportation system in China, multiple aspects should be enhanced, i.e., the formulation of traffic planning, the optimization of transport structure, the development of urban public transport, improvement of integrated hubs, administration of energy saving and environmental conservation, development of intelligent transportation systems, technical innovations, etc..展开更多
Despite the significant number of boundary element method (BEM) solutions of time-dependent problems, certain concerns still need to be addressed. Foremost among these is the impact of different time discretization sc...Despite the significant number of boundary element method (BEM) solutions of time-dependent problems, certain concerns still need to be addressed. Foremost among these is the impact of different time discretization schemes on the accuracy of BEM modeling. Although very accurate for steady-state problems, the boundary element methods more often than not are computationally challenged when applied to transient problems. For the work reported herein, we investigate the level of accuracy achieved with different time-discretization schemes for the Green element method (GEM) solution of the unsteady convective transport equation. The Green element method (a modified BEM formulation) solves the boundary integral theory (A Fredholm integral equation of the second kind) on a generic element of the problem domain in a way that is typical of the finite element method (FEM). In this integration process a new system of discrete equations is produced which is banded and hence amenable to matrix manipulations. This is subsequently deployed to investigate the proper resolution in both space and time for the chosen transient 1D transport problems especially those involving shock wave propagation and different types of boundary conditions. It is found that for three out of the four numerical models developed in this study, the new system of discrete element equations generated for both space and temporal domains exhibits accurate characteristics even for cases involving advection-dominant transport. And for all the cases considered, the overall performance relies heavily on the temporal discretization scheme adopted.展开更多
We investigate atomic and electronic structures of boron nanotubes (BNTs) by using the density functional theory (DFT). The transport properties of BNTs with different diameters and chiralities are studied by the ...We investigate atomic and electronic structures of boron nanotubes (BNTs) by using the density functional theory (DFT). The transport properties of BNTs with different diameters and chiralities are studied by the Keldysh nonequilibrium Green function (NEGF) method. It is found that the cohesive energies and conductances of BNTs decrease as their diameters decrease. It is more difficult to form (N, 0) tubes than (M, M) tubes when the diameters of the two kinds of tubes are comparable. However, the (N, 0) tubes have a higher conductance than the (M, M) tubes. When the BNTs are connected to gold electrodes, the coupling between the BNTs and the electrodes will affect the transport properties of tubes significantly.展开更多
The RNA transcripted in vitro was used as the standard quantitative template to make the standard curve and establish the fluorescence quantitative RT-PCR (FQ-PCR) method. By means of FQ-PCR, the transcription chang...The RNA transcripted in vitro was used as the standard quantitative template to make the standard curve and establish the fluorescence quantitative RT-PCR (FQ-PCR) method. By means of FQ-PCR, the transcription changes of HSP70 and HSP90 mRNA in the livers and hearts of transport stressed pigs were studied. The level of HSP70 mRNA transcription increased continuously from the beginning of transportation. The inductions of HSP70 mRNA transcription in the livers and hearts of 10 h transport stressed pigs were 2.5 and 4.1 times higher than that of the un-transport stressed pigs (P〈0.01). However, the transcription levels of HSP90 mRNA in the livers and hearts decreased with the transport stress.展开更多
The structure of a heterojunction made up of an (8, 0) carbon nanotube and an (8, 0) boron nitride nanotube is achieved through geometry optimization implemented in the CASTEP package. Based on the optimized geome...The structure of a heterojunction made up of an (8, 0) carbon nanotube and an (8, 0) boron nitride nanotube is achieved through geometry optimization implemented in the CASTEP package. Based on the optimized geometry, the model of the heterojunction is established. Its transport properties are investigated by combining the nonequilibrium Green's function with density functional theory. Results show that both the lowest unoccupied molecular orbital and the highest occupied molecular orbital mainly locate on the carbon nanotube section. In the current-voltage characteristic of the heterojunction, a rectification feature is revealed.展开更多
As the specialty of the product and the dim conscio us ness of environmental protection, the status of dirty, chaos and difference is l ong-term existed in the machine process factory. It seriously affects workers’ w...As the specialty of the product and the dim conscio us ness of environmental protection, the status of dirty, chaos and difference is l ong-term existed in the machine process factory. It seriously affects workers’ work and living environment, and restricts the total level of the environment p rotection in our country. The project is the fatal scientific research task of H enan province in 2001. As the members’ endeavor of task group, we have finished the total plan of green project system and some other key equipment to the mach ine process factory, such as the design of conveyer of chip, hydraulic former of chip, rough conveyer and dirt collector. And the green project system is made i nto model that the manufacturer can select. This item is a fire-new work. We ho pe that the expert of machine, environment protection and government official ca n put forward some advices by lodging this article. We contribute for our countr y’ environment protection and make it attain a new level.展开更多
We investigate the time-modulated electronic and spin transport properties through two T-shaped three-quantum-dot molecules embedded in an Aharonov-Bohm(A-B) interferometer. By using the Keldysh non-equilibrium Gree...We investigate the time-modulated electronic and spin transport properties through two T-shaped three-quantum-dot molecules embedded in an Aharonov-Bohm(A-B) interferometer. By using the Keldysh non-equilibrium Green's function technique, the photon-assisted spin-dependent average current is analyzed. The T-shaped three-quantum-dot molecule A-B interferometer exhibits excellent controllability in the average current resonance spectra by adjusting the interdot coupling strength, Rashba spin-orbit coupling strength, magnetic flux, and amplitude of the time-dependent external field.Efficient spin filtering and multiple electron-photon pump functions are exploited in the multi-quantum-dot molecule A-B interferometer by a time-modulated external field.展开更多
The transport properties of hexagonal boron-nitride nanoribbons under the uniaxial strain are investigated by the Green's function method. We find that the transport properties of armchair boron-nitride nanoribbon st...The transport properties of hexagonal boron-nitride nanoribbons under the uniaxial strain are investigated by the Green's function method. We find that the transport properties of armchair boron-nitride nanoribbon strongly depend on the strain. In particular, the features of the conductance steps such as position and width are significantly changed by strain. As a strong tensile strain is exerted on the nanoribbon, the highest conductance step disappears and subsequently a dip emerges instead. The energy band structure and the local current density of armchair boron nitride nanoribbon under strain are calculated and analysed in detail to explain these characteristics. In addition, the effect of strain on the conductance of zigzag boron-nitride nanoribbon is weaker than that of armchair boron nitride nanoribbon.展开更多
In this work,the electronic transport properties of Z-shaped silicene nanoribbon(ZsSiNR) structure are investigated.The calculations are based on the tight-binding model and Green's function method in Landauer-Biit...In this work,the electronic transport properties of Z-shaped silicene nanoribbon(ZsSiNR) structure are investigated.The calculations are based on the tight-binding model and Green's function method in Landauer-Biittiker formalism,in which the electronic density of states(DOS),transmission probability,and current-voltage characteristics of the system are calculated,numerically.It is shown that the geometry of the ZsSiNR structure can play an important role to control the electron transport through the system.It is observed that the intensity of electron localization at the edges of the ZsSiNR decreases with the increase of the spin-orbit interaction(SOI) strength.Also,the semiconductor to metallic transition occurs by increasing the SOI strength.The present theoretical results may be useful to design silicene-based devices in nanoelectronics.展开更多
The atomistic Green’s function method is improved to compute the polarization resolved phonon transport in a multiterminal system. Based on the recent developments in literature, the algorithm is simplified. The comp...The atomistic Green’s function method is improved to compute the polarization resolved phonon transport in a multiterminal system. Based on the recent developments in literature, the algorithm is simplified. The complex phonon band structure of a semi-infinite periodic terminal is obtained by the generalized eigenvalue equation. Then both the surface Green’s function and phonon group velocity in the terminal are determined from the wave modes propagating away from the scattering region along the terminal. With these key ingredients, the individual phonon mode transmittance between the terminals can be calculated. The feasibility and validity of the method are demonstrated by the chain example compared with the wave packet method, and an example of graphene nanojunction with three terminals.展开更多
Using density functional theory and quantum transport calculations based on nonequilibum Green's function formalism, we investigate the charge transport properties of endohedral M@C20(M = Na and K) metallofullerene...Using density functional theory and quantum transport calculations based on nonequilibum Green's function formalism, we investigate the charge transport properties of endohedral M@C20(M = Na and K) metallofullerenes. Our results show that the conductance of C20 fullerene can be obviously improved by insertion of alkali atom at its centre. Both linear and nonlinear sections are found on the Ⅰ-Ⅴ curves of the Au-M@C20-Au two-probe systems. The novel negative differential resistance behaviour is also observed in Na@C20 molecule but not in K@C20.展开更多
We investigate theoretically the electron transport for a two-level quantum channel (wire) with Rashba spinorbit coupling under the irradiation of a longitudinally-polarized external laser field at low temperatures....We investigate theoretically the electron transport for a two-level quantum channel (wire) with Rashba spinorbit coupling under the irradiation of a longitudinally-polarized external laser field at low temperatures. Using the method of equation of motion for Keldysh nonequilibrium Green function, we examine the time-averaged spin polarized conductance for the system with photon polarization parallel to the wire direction. By analytical analysis and a few numerical examples, the interplay effects of the external laser field and the Rashba spin-orbit coupling on the spinpolarized conductance for the system are demonstrated and discussed. It is found that the longitudinally-polarized laser field can adjust the spin polarization rate and produce some photon sideband resonances of the conductance for the system.展开更多
文摘Strategy of development trends in this moment and at this stage of the traffic comes from understanding the possibilities of the implementation of measures to raise the quality of movement and life in the city. It also includes planning and implementation of targeted interventions in the transport network or facilities. Mobility is a complex process in the area, starting from the departure from the apartment, using various means of transportation, a number of activities in different goals until to return to the location of the apartment. It thus requires extensive transport infrastructure in the form of walkways, bicycle paths, street and railway network. At the same time, reshaping of public transport facilities is needed in which the pedestrian, biker and green concept shall be the main elements of the new spatial conditions. Pedestrian zones development in the city means to create pedestrian areas and green islands in all the places in the city where possible. This process is essential for the transformation of public spaces, in particular, transport corridors. To accomplish the concept of the green transport plan, the need for change in the parking policy is emphasized. This should be an integral part of the city planning and should go hand in hand with the traffic policy.
文摘Urban traffic and urban environmental pollution are important issues that must be taken into account in the process of urbanization,especially in China.Modernization has enabled many developed countries in the west to carry out rational city traffic planning.At the same time,the concept of green transportation has also emerged,integrating low-energy consumption,low pollution,comfort,and safety into urban traffic to effectively solve issues pertaining to traffic and pollution.The concept of green transportation has been widely adopted in China and made popular in many cities,thereby promoting the sustainable development of cities.
文摘Launching the evaluation research of green transportation can grasp the green transportation implementation accurately and diagnose the existing problems. From the perspective of green transportation, this research chose Dongguan “motorcycle ban” policy as the research object, and constructed secondary evaluation index system in transportation and environmental harmony, transportation and future harmony, transportation and society harmony, transportation and resource harmony, four dimensions. Then it used fuzzy comprehensive evaluation model to do the evaluation and found that the policy’s positive effect on the Dongguan green transportation development was average. Finally, based on the evaluation results, measures and advices were proposed.
文摘Taking the planning practice of green transportation in Sino-Singapore Tianjin Eco-city as an example,the key factors and design strategies for its healthy development were summarized from the aspects of the coordination of land use and traffic development,the development of the public transport plus slow traffic model,and the development of reasonable and humanized traffic management measures,through analyzing the connotation and scale of green cluster.In addition,the design strategies of the green transportation concept suitable for the development of urban clusters represented by Guangming New District in Shenzhen were proposed,so as to provide a reference for promoting better the coordinated development of green traffic and cities,and maximizing the economic,social and environmental benefits of green transportation development.
文摘With the development of the city and the increase of the population, the de<span style="font-family:Verdana;">mand for transportation is increasing. The increases in transportation ways </span><span style="font-family:Verdana;">and demand have also brought certain energy and environmental problems t</span><span style="font-family:Verdana;">o transportati</span><span style="font-family:Verdana;">on construction. A good transportation environment and green travel experience have an important role in promoting the happiness of urban lif</span><span style="font-family:Verdana;">e and the sustainable development of society. Based on this, the follo</span><span style="font-family:Verdana;">wing solutions are proposed for the construction and development of urban green </span><span style="font-family:Verdana;">transportation. First, as a guiding role, the government should formulate active transportation and green transportation policies to promote the reform of multiple p</span><span style="font-family:Verdana;">ublic transportation methods. Second, as a leading role, the market can support a variety of the construction of green travel modes, which could encourage the development of shared bicycles and new energy vehicles. Third, </span><span style="font-family:Verdana;">as the main role of city, the citizens would like to choose green travel tools wi</span><span style="font-family:Verdana;">th the guid</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ance</span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> in the conscious level. If we built green behavior into a fashionable business card of the city, green behavior will lead the city’s transportation construction and development.</span></span></span></span></span>
文摘Since the 21 st century, the transportation industry in China has achieved rapid growth with a significant increase in the transport capacity; however the development has also greatly impacted the energy saving & environmental conservation. This paper takes into account non-commercial vehicles such as private cars in the statistics of energy consumption and pollution of Chinese transportation system. This method extends on previous methods which solely include commercial vehicles in these statistics. Based on more comprehensive quantitative data, it reviews the progress in the energy saving and environmental conservation efforts by the Chinese transportation industry and points out that the rapid increase of energy consumption and pollution emission and the deterioration of traffic congestion are prominent problems in the development of the Chinese transport industry. The main reasons for theses problems include the unbalanced development of different transport modes, the irrational layout of integrated transport hubs, the inadequate law, regulations and standards, and the use of suboptimal technology. Based on these findings, this paper proposes several goals for the construction of a green transportation system in China including the establishment of a transportation management system, the improvement of transportation energy efficiency, the control of environmental pollution and the alleviating of urban traffic congestion. Additionally, it points out that in order to build a green transportation system in China, multiple aspects should be enhanced, i.e., the formulation of traffic planning, the optimization of transport structure, the development of urban public transport, improvement of integrated hubs, administration of energy saving and environmental conservation, development of intelligent transportation systems, technical innovations, etc..
文摘Despite the significant number of boundary element method (BEM) solutions of time-dependent problems, certain concerns still need to be addressed. Foremost among these is the impact of different time discretization schemes on the accuracy of BEM modeling. Although very accurate for steady-state problems, the boundary element methods more often than not are computationally challenged when applied to transient problems. For the work reported herein, we investigate the level of accuracy achieved with different time-discretization schemes for the Green element method (GEM) solution of the unsteady convective transport equation. The Green element method (a modified BEM formulation) solves the boundary integral theory (A Fredholm integral equation of the second kind) on a generic element of the problem domain in a way that is typical of the finite element method (FEM). In this integration process a new system of discrete equations is produced which is banded and hence amenable to matrix manipulations. This is subsequently deployed to investigate the proper resolution in both space and time for the chosen transient 1D transport problems especially those involving shock wave propagation and different types of boundary conditions. It is found that for three out of the four numerical models developed in this study, the new system of discrete element equations generated for both space and temporal domains exhibits accurate characteristics even for cases involving advection-dominant transport. And for all the cases considered, the overall performance relies heavily on the temporal discretization scheme adopted.
基金Project supported by the National Natural Science Foundation of China (Grant No 10774176)the National Basic Research Program of China (Grant Nos 2006CB806202 and 2006CB921305)the Shanghai Supercomputing Center,Chinese Academyof Sciences
文摘We investigate atomic and electronic structures of boron nanotubes (BNTs) by using the density functional theory (DFT). The transport properties of BNTs with different diameters and chiralities are studied by the Keldysh nonequilibrium Green function (NEGF) method. It is found that the cohesive energies and conductances of BNTs decrease as their diameters decrease. It is more difficult to form (N, 0) tubes than (M, M) tubes when the diameters of the two kinds of tubes are comparable. However, the (N, 0) tubes have a higher conductance than the (M, M) tubes. When the BNTs are connected to gold electrodes, the coupling between the BNTs and the electrodes will affect the transport properties of tubes significantly.
文摘The RNA transcripted in vitro was used as the standard quantitative template to make the standard curve and establish the fluorescence quantitative RT-PCR (FQ-PCR) method. By means of FQ-PCR, the transcription changes of HSP70 and HSP90 mRNA in the livers and hearts of transport stressed pigs were studied. The level of HSP70 mRNA transcription increased continuously from the beginning of transportation. The inductions of HSP70 mRNA transcription in the livers and hearts of 10 h transport stressed pigs were 2.5 and 4.1 times higher than that of the un-transport stressed pigs (P〈0.01). However, the transcription levels of HSP90 mRNA in the livers and hearts decreased with the transport stress.
基金Project supported by the Chinese Defence Advance Research Program of Science and Technology,China (GrantNo. 9140A08060407DZ0103)
文摘The structure of a heterojunction made up of an (8, 0) carbon nanotube and an (8, 0) boron nitride nanotube is achieved through geometry optimization implemented in the CASTEP package. Based on the optimized geometry, the model of the heterojunction is established. Its transport properties are investigated by combining the nonequilibrium Green's function with density functional theory. Results show that both the lowest unoccupied molecular orbital and the highest occupied molecular orbital mainly locate on the carbon nanotube section. In the current-voltage characteristic of the heterojunction, a rectification feature is revealed.
文摘As the specialty of the product and the dim conscio us ness of environmental protection, the status of dirty, chaos and difference is l ong-term existed in the machine process factory. It seriously affects workers’ work and living environment, and restricts the total level of the environment p rotection in our country. The project is the fatal scientific research task of H enan province in 2001. As the members’ endeavor of task group, we have finished the total plan of green project system and some other key equipment to the mach ine process factory, such as the design of conveyer of chip, hydraulic former of chip, rough conveyer and dirt collector. And the green project system is made i nto model that the manufacturer can select. This item is a fire-new work. We ho pe that the expert of machine, environment protection and government official ca n put forward some advices by lodging this article. We contribute for our countr y’ environment protection and make it attain a new level.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11447132 and 11504042)the Natural Science Foundation of Heilongjiang,China(Grant No.A201405)+2 种基金111 Project to Harbin Engineering University,China(Grant No.B13015)Chongqing Science and Technology Commission Project,China(Grant Nos.cstc2014jcyj A00032 and cstc2016jcyj A1158)Scientific Research Project for Advanced Talents of Yangtze Normal University,China(Grant No.2017KYQD09)
文摘We investigate the time-modulated electronic and spin transport properties through two T-shaped three-quantum-dot molecules embedded in an Aharonov-Bohm(A-B) interferometer. By using the Keldysh non-equilibrium Green's function technique, the photon-assisted spin-dependent average current is analyzed. The T-shaped three-quantum-dot molecule A-B interferometer exhibits excellent controllability in the average current resonance spectra by adjusting the interdot coupling strength, Rashba spin-orbit coupling strength, magnetic flux, and amplitude of the time-dependent external field.Efficient spin filtering and multiple electron-photon pump functions are exploited in the multi-quantum-dot molecule A-B interferometer by a time-modulated external field.
基金Project supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China(Grant No.708068)the Specialized Research Fund for the Doctoral Program of Higher Education,Ministry of Education of China(Grant No.200805301001)the Open Fund based on Innovation Platform of Hunan Colleges and Universities,China (Grant No.09K034)
文摘The transport properties of hexagonal boron-nitride nanoribbons under the uniaxial strain are investigated by the Green's function method. We find that the transport properties of armchair boron-nitride nanoribbon strongly depend on the strain. In particular, the features of the conductance steps such as position and width are significantly changed by strain. As a strong tensile strain is exerted on the nanoribbon, the highest conductance step disappears and subsequently a dip emerges instead. The energy band structure and the local current density of armchair boron nitride nanoribbon under strain are calculated and analysed in detail to explain these characteristics. In addition, the effect of strain on the conductance of zigzag boron-nitride nanoribbon is weaker than that of armchair boron nitride nanoribbon.
基金Project supported by the Sari Branch,Islamic Azad University,Iran Grant No.1-24850
文摘In this work,the electronic transport properties of Z-shaped silicene nanoribbon(ZsSiNR) structure are investigated.The calculations are based on the tight-binding model and Green's function method in Landauer-Biittiker formalism,in which the electronic density of states(DOS),transmission probability,and current-voltage characteristics of the system are calculated,numerically.It is shown that the geometry of the ZsSiNR structure can play an important role to control the electron transport through the system.It is observed that the intensity of electron localization at the edges of the ZsSiNR decreases with the increase of the spin-orbit interaction(SOI) strength.Also,the semiconductor to metallic transition occurs by increasing the SOI strength.The present theoretical results may be useful to design silicene-based devices in nanoelectronics.
基金Project supported by the National Natural Science Foundation of China(Grant No.51376094)Jiangsu Overseas Visiting Scholar Program for University Prominent Young&Middle-aged Teachers and Presidents,China
文摘The atomistic Green’s function method is improved to compute the polarization resolved phonon transport in a multiterminal system. Based on the recent developments in literature, the algorithm is simplified. The complex phonon band structure of a semi-infinite periodic terminal is obtained by the generalized eigenvalue equation. Then both the surface Green’s function and phonon group velocity in the terminal are determined from the wave modes propagating away from the scattering region along the terminal. With these key ingredients, the individual phonon mode transmittance between the terminals can be calculated. The feasibility and validity of the method are demonstrated by the chain example compared with the wave packet method, and an example of graphene nanojunction with three terminals.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10674114 and 10974078)
文摘Using density functional theory and quantum transport calculations based on nonequilibum Green's function formalism, we investigate the charge transport properties of endohedral M@C20(M = Na and K) metallofullerenes. Our results show that the conductance of C20 fullerene can be obviously improved by insertion of alkali atom at its centre. Both linear and nonlinear sections are found on the Ⅰ-Ⅴ curves of the Au-M@C20-Au two-probe systems. The novel negative differential resistance behaviour is also observed in Na@C20 molecule but not in K@C20.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574042), and the Hunan Provincial Natural Science Foundation of China (Grant No 06JJ2097).
文摘We investigate theoretically the electron transport for a two-level quantum channel (wire) with Rashba spinorbit coupling under the irradiation of a longitudinally-polarized external laser field at low temperatures. Using the method of equation of motion for Keldysh nonequilibrium Green function, we examine the time-averaged spin polarized conductance for the system with photon polarization parallel to the wire direction. By analytical analysis and a few numerical examples, the interplay effects of the external laser field and the Rashba spin-orbit coupling on the spinpolarized conductance for the system are demonstrated and discussed. It is found that the longitudinally-polarized laser field can adjust the spin polarization rate and produce some photon sideband resonances of the conductance for the system.