Semidwarf breeding has boosted crop production and is a well-known outcome from the first Green Revolution. The Green Revolution gene Semidwarf 1(SD1), which modulates gibberellic acid(GA) biosynthesis, plays a princi...Semidwarf breeding has boosted crop production and is a well-known outcome from the first Green Revolution. The Green Revolution gene Semidwarf 1(SD1), which modulates gibberellic acid(GA) biosynthesis, plays a principal role in determining rice plant height. Mutations in SD1 reduce rice plant height and promote lodging resistance and fertilizer tolerance to increase grain production. The plant height mediated by SD1 also favors grain yield under certain conditions. However, it is not yet known whether the function of SD1 in upland rice promotes adaptation and grain production. In this study, the plant height and grain yield of irrigated and upland rice were comparatively analyzed under paddy and dryland conditions. In response to dryland environments, rice requires a reduction in plant height to cope with water deficits. Upland rice accessions had greater plant heights than their irrigated counterparts under both paddy and dryland conditions, and appropriately reducing plant height could improve adaptability to dryland environments and maintain high grain yield formation. Moreover, upland rice cultivars with thicker stem diameters had stronger lodging resistance, which addresses the lodging problem. Knockout of SD1 in the upland rice cultivar IRAT104 reduced the plant height and grain yield, demonstrating that the adjustment of plant height mediated by SD1 could increase grain production in dryland fields. In addition, an SD1 genetic diversity analysis verified that haplotype variation causes phenotypic variation in plant height. During the breeding history of rice, SD1 allelic mutations were selected from landraces to improve the grain yield of irrigated rice cultivars, and this selection was accompanied by a reduction in plant height. Thus, five known mutant alleles were analyzed to verify that functional SD1 is required for upland rice production. All these results suggest that SD1 might have undergone artificial positive selection in upland rice, which provides further insights concerning greater plant height in upland rice breeding.展开更多
Using early indica rice Zhongzao 39 and japonica rice Xiushui 134 as the experimental materials, the effects of 4 temperature levels after transplantation on turning green, leaf growth, tillering, dry matter accumulat...Using early indica rice Zhongzao 39 and japonica rice Xiushui 134 as the experimental materials, the effects of 4 temperature levels after transplantation on turning green, leaf growth, tillering, dry matter accumulation and nutrition absorption were studied using a greenhouse and an artificial climate chest. We found that (1) tillering did not occur and growth of one new leaf took over 15 days at 16℃. New leaf growth took over 10 days and tillering occurred after 15 days of transplanta- tion at 19 ℃. Tillering appeared 10 days after planting and new leaf growth took 5 days between 22 and 25 ℃. This showed that low temperature impeded the turn- ing green of rice seedlings and the temperature must reach above 19 ℃ to ensure timely appearance of new leaf, tillering and turning green in rice seedlings. (2) When the temperature was 10 increased, both 100-seedling dry weight and nitrogen absorption increased. At temperatures lower 11 than 19 ℃, both dry weight incre- ment and nitrogen absorption were low. Nitrogen absorption of all organs increased obviously between 19 and 22 ℃. Thus, 19 ℃ was found to be an minimum tem- perature for plant organs to absorb nutrients. (3)Tiller of seedling cultivated on dry- land soil and substrate grew quickly and tillering occurred about 7 days after trans- planting. After that, the growth rate was about 0.18 tiller per day. For seedlings cultivated in slurry, tillering occurred 10 days after transplanting and the tillers grew at a rate of 0.16 tiller per day. However, substrate choice during the seedling rais- ing stage had no significant influence on leaf age. (4) Japonica rice exhibited stronger resistance to low temperature than indica rice. Tillering began at about the same time after transplanting in both rice varieties, but japonica rice exhibited higher tillering speed than early indica rice. The speed of leaf growth was higher in japoni- ca rice before transplantation but higher in indica rice after transplantation.展开更多
Three big field projects, independent irrigation and drainage facilities, and a blocking net, which are auxiliary projects of a green planting and breeding pattern composed of rice and red swamp crawfish (Procambarus...Three big field projects, independent irrigation and drainage facilities, and a blocking net, which are auxiliary projects of a green planting and breeding pattern composed of rice and red swamp crawfish (Procambarus clarkii), spatial and temporal coupling technology of "planting rice in one season and breeding red swamp crawfish in three seasons", green fertilization technology, green prevention and control technology, control technology of water level, and throwing technology of bait in Lixiahe region of Jiangsu Province were introduced successively, which can provide technical support for the development of ecological planting and breeding patterns and realization of green production in paddy fields.展开更多
This study aimed to comprehensive evaluation of different winter green manure on characterization of nitrogen uptake and utilization, to provide the basis for N fertilizer reasonable operation and characteristics impr...This study aimed to comprehensive evaluation of different winter green manure on characterization of nitrogen uptake and utilization, to provide the basis for N fertilizer reasonable operation and characteristics improvement of nitrogen nutrition in rice high-yield cultivation. This experiment was set to compare milk vetch, rapeseed,ryegrass and mixed of green manure on rice yield, rice growth dynamics and nitrogen uptake and utilization in rice. The results showed that among 4 different winter green manure, the treatment of MV-R-R(milk vetch-rice-rice) for the early rice yield was the most than others treatments. Compared with RG-R-R(ryegrass-rice-rice), RPR-R(rapeseed-rice-rice), MS-R-R(mixed green manure-rice-rice), the treatment of MVR-R inceased by 6.61%, 3.29%, 0.78%, respectively. The treatment of MV-R-R in N content in plant of rice was maximized in the tillering, booting, heading and maturity periods, respectively higher than the average of other treatments 9.68%, 19.72%,6.23% and 8.66%. At tillering, booting, heading and maturity, the treatment of MV-R-R were the highest in N uptake, RP-R-R minimum. The N periodic accumulation for MV-R-R were higher than other treatments in the tillering to booting, booting to heading and heading to maturity periods. The rates respectively were 21.81%, 68.73% and286.5%. In addition, N periodic accumulation and its ratio to total in the heading to maturity was minimum, maximum before tillering under green manure rotation system.So the cropping system of milk vetch-rice-rice could increase nitrogen use efficiency and improve N cycling.展开更多
A thermo-insensitive pale green leaf mutant (pgl2) was isolated from T-DNA inserted transgenic lines of rice (Oryza sativa L. subsp, japonica cv. Nipponbare). Genetic analysis indicated that the phenotype was caus...A thermo-insensitive pale green leaf mutant (pgl2) was isolated from T-DNA inserted transgenic lines of rice (Oryza sativa L. subsp, japonica cv. Nipponbare). Genetic analysis indicated that the phenotype was caused by a recessive mutation in a single nuclear-encoded gene. To map the PGL2gene, an F2 population was constructed by crossing the mutant with Longtefu (Oryza sativa L. subsp, indica). The PGL2 locus was roughly linked to SSR marker RM331 on chromosome 8. To finely map the gene, 14 new InDel markers were developed around the marker, and PGL2 was further mapped to a 2.37 Mb centromeric region. Analysis on chlorophyll contents of leaves showed that there was no obvious difference between the mutant and the wild type in total chlorophyll (Chl) content, while the ratio of Chl a / Chl b in the mutant was only about 1, which was distinctly lower than that in the wild type, suggesting that the PGL2 gene was related to the conversion between Chl a and Chl b. Moreover, the method of primer design around the centromeric region was discussed, which would provide insight into fine mapping of the functional genes in plant centromeres.展开更多
On the basis of a long-term(30 years) field experiment that involved four rotation systems, rice-rice-winter fallow(RRF), rice-rice-ryegrass(RRG), rice-rice-rape(RRP), and rice-rice-milk vetch(RRV), this stu...On the basis of a long-term(30 years) field experiment that involved four rotation systems, rice-rice-winter fallow(RRF), rice-rice-ryegrass(RRG), rice-rice-rape(RRP), and rice-rice-milk vetch(RRV), this study described the effects of green manure on the microbial communities in the red paddy soils using 454 pyrosequencing for the 16 S r RNA gene. The Chao1 richness and non-parametric Shannon's index increased in all soil samples that received green manure treatments. The communities' structures with the green manure applications were significantly dissimilar from that under the winter fallow. Using Metastats tests, many genera in the RRG, RRP and RRV soils were significantly different from those in the RRF soil, including a number of genera that functioned in the nitrogen and sulfur cycles. Analyses of the genera with these functions revealed the shifts in microbial ecosystem functions after long-term green manuring. Changes in the microbial communities increased the ammonium supply and decreased the soil acidification in green-manure-amended soils. Together, these data suggested powerful effects of green manure on both the microbial communities and the biogeochemical cycle driven by the shifts in bacterial functional groups.展开更多
The development of green super rice varieties with improved nutrient use efficiency(NuUE)is a vital target area to increase yield and make it more stable under rainfed conditions.In the present study, we followed an e...The development of green super rice varieties with improved nutrient use efficiency(NuUE)is a vital target area to increase yield and make it more stable under rainfed conditions.In the present study, we followed an early backcross(BC) breeding approach by using a highyielding and widely adapted Xian variety, Weed Tolerant Rice 1(WTR-1), as a recipient and a Geng variety, Hao-An-Nong(HAN), as a donor.Starting from the BC1F2 generation, the BC population went through one generation of selection under irrigated, low-input, and rainfed conditions, followed by four consecutive generations of screening and selection for high grain yield(GY) under six different nutrient conditions(NPK, 75 N,-N,-P,-NP, and-NPK), leading to the development of 230 BC1F6 introgression lines(ILs).These 230 ILs were evaluated under the same six nutrient conditions for 13 agro-morphological and grain yield component traits in comparison to four checks and parents.Significant trait variations were observed between the treatments and ILs.Positive correlations were identified for GY with biomass, panicle length, flag-leaf area, flag-leaf width, filled grain number per panicle,1000-grain weight, and tiller number under-N,-P,-NP, and-NPK conditions.Out of 230 ILs,12 were identified as promising under two or more nutrient deficiency conditions.The results demonstrated an efficient inter-subspecific BC breeding procedure with a first round of selection under rainfed-drought conditions, followed by four generations of progeny testing for yield performance under six nutrient conditions.The promising ILs can be useful resources for molecular genetic dissection and understanding the physiological mechanisms of NuUE.展开更多
The development and dissemination of sawah rice eco-technology in Nigeria and Ghana as prerequisites for the actualization of green revolution in West Africa were described. It showed that the neglect of the eco-techn...The development and dissemination of sawah rice eco-technology in Nigeria and Ghana as prerequisites for the actualization of green revolution in West Africa were described. It showed that the neglect of the eco-technology and the overemphasis of the biotechnology have rendered the ineffective transferability of the green revolution process from Asia to Africa. The sawah eco-technology increases yield up to 5 t/hm2 through bunding and the use of inlet and outlet connecting irrigation and drainage, which enhances effective water control and management, improves the efficiency of fertilizer, improves nitrogen fixation by soil microbes and algae, increases the use of wetlands, improves soil organic matter accumulation, suppresses weed growth, and enhances immune mechanism of rice through nutrient supply. The current experience has therefore established that the technology overcomes the constraints that have limited the realization of green revolution in West Africa.展开更多
P/TGMS (photo-thermo sensitive genie male sterility) lines with pale-green leaf color have been developed in japonica rice. The marker trait is used as an assistant selection in the production of the two-lines system ...P/TGMS (photo-thermo sensitive genie male sterility) lines with pale-green leaf color have been developed in japonica rice. The marker trait is used as an assistant selection in the production of the two-lines system hybrid rice for the improvement of F, seed purity. A joint inheritance study of both leaf color and male sterility is presented for P/TGMS line with pale-green leaf color. The segregation ratios for leaf color in the F2 populations of the three crosses showed 13 : 3 and 15 : 1 at early and late sowing stages (April 26 and June 23) respectively, implying that the leaf color is controlled by two genes with fertility gene as dominant. Sterility level is higher in the early sowing stage than that in the late sowing. The inducement of male sterility is closely related to longer day-length and higher temperature at the developmental stages of young panicle. The genes to govern the leaf color and male fertility are inherited independently.展开更多
The green rice leafhopper (GRH;Nephotettix cincticeps Uhler) is one of the most devastating insect pests of cultivated rice (Oryza sativa L.) in temperate regions in Asia. Using the rice germplasms with biotic stress ...The green rice leafhopper (GRH;Nephotettix cincticeps Uhler) is one of the most devastating insect pests of cultivated rice (Oryza sativa L.) in temperate regions in Asia. Using the rice germplasms with biotic stress resistance is the most effective and environmentally-friendly way to control the insect pests in the paddy. Sixty accessions from a core set of worldwide collection of rice were characterized for resistance to the GRH by antibiosis test both at the seedling and at the booting stages. The positive correlations of average nymph mortality (ANM) were observed between at the seedling stage and at the booting stage on 3 days after infestation (DAI) (r = 0.684**), 5DAI (r = 0.680**), and 7DAI (r = 0.652**), respectively. This result will give us the opportunity to screen resistance to the GRH with the cost-efficient way using rice seedlings in a growth chamber. To classify the 60 accessions evaluated, the ANM of the GRH of each accession was compared to the respective ANM of resistant and susceptible controls with the least significant difference (LSD) value. Based on the statistical difference or similarity of the ANMs to the resistant and the susceptible controls, we proposed the four groups of resistance to the GRH, (I) high level of resistance, (II) considerable level of resistance, (III) moderate level of resistance, and (IV) susceptibility. At the seedling stage, a total of 26 accessions were highly resistant in addition to other 6 for considerable level of resistance and other 10 for moderate level of resistance. At the booting stage, on the other hand, a total of 18 accessions were highly resistant in addition to other 3 for considerable level of resistance and other 5 for moderate level of resistance. A total of 42 accessions with high to moderate level of resistance were distributed across 16 countries in Asia in addition to each one for Madagascar and USA. The classification of landraces based on the present protocol for screening resistance to the insect provided fundamental information for genetics and breeding on resistance to the GRH in rice.展开更多
A study was done to evaluate the removal of a cationic dye from simulated waste water onto rice husks (RH). Spectroscopic methods such as FTIR and SEM/EDX were used for adsorbent characterization. Experimental depende...A study was done to evaluate the removal of a cationic dye from simulated waste water onto rice husks (RH). Spectroscopic methods such as FTIR and SEM/EDX were used for adsorbent characterization. Experimental dependency on solution pH, initial dye concentration, agitation speed, adsorbentparticle size, temperature of the solution and contact time was evaluated. The adsorption data was tested using both Langmuir and Freundlich isotherms. The data fitted well into Langmuir isotherm model with a monolayer adsorption capacity of 6.5 mg/g. Further, the separation factor (RL) value was less than unity indicating a favorable adsorption process. Adsorption kinetics was determined using pseudo-first-order, pseudo-second-order and intra-particle diffusion models. The results showed that the adsorption of malachite green onto rice husks followed pseudo-second-order model with a determination coefficient of 0.986. This work has revealed that rice husks have a great potential to sequester cationic dyes from aqueous solutions and therefore it can be utilized to clean contaminated effluents.展开更多
Rice is a grass seed from Oryza glaberrima species also known as the African rice.In Kenya,rice is mostly grown in Central(Mwea)and Nyanza(Ahero,West Kano,Migori and Kuria)areas.Milling rice produces rice husks as by-...Rice is a grass seed from Oryza glaberrima species also known as the African rice.In Kenya,rice is mostly grown in Central(Mwea)and Nyanza(Ahero,West Kano,Migori and Kuria)areas.Milling rice produces rice husks as by-products which can be sources of valuable chemical products(silica gel,sodium silicate).In trials to produce silica gel from rice husks,rice husks were charred in a combustion chamber(30 min)then ashed in a Muffle furnace(Advantec KL-420)at different temperatures.The ashes were then leached with distilled water/acids to remove metal oxides.Sixty grams(60 g)of the leached RHA(Rice Husk Ash)was mixed with 300 mL of 3 M NaOH solution in a Pyrex 500 mL beaker and boiled at 100℃(1 h).The silica gel samples were characterized using several methods.Elemental analysis was done using TXRF(Total X-Ray Fluorescence),while FTIR(Fourier-Transform Infrared Spectroscopy)was used to obtain an infrared spectrum of absorption of the silica sample.Results of the analysis conform to local and international quality standards.The rice husks had an average moisture content of 7.07%and 1.00-2.00 mm diameter.And 1.74%of the rice husk had pore sizes of about 0.710 mm.The average ash content was 22.65%.At 600℃,leaching with water yielded 98.2%silica compared with 99.1%(H2SO4)and 96.9%(HCl).At 500℃,leaching with HCl/H2SO4 causes a decrease.At 500℃,the availability of SiO2 is more for water leached samples.At 400℃,water leaching gave 98.49%silica while HCl leaching was 97.85%silica and H2SO4 was 99.41%.Silica is a precursor of silica gel.Statistical analyses imply water leaching RHA instead of acid leaching at 500℃ will produce a significant amount of silica gel.The open burn samples produced equal or better SiO2(silica gel precursor)yields compared with the incineration samples.FTIR analysis of the silica gel sample compared well with adsorption peaks of silica gel in literature.XRD(X-Ray Diffraction)analysis produced a pattern consistent with other XRD patterns of silica gel published by other researchers.展开更多
Adding green tea extract to rice bran oil was expected to improve its oxidative stability,so this study was conducted to investigate oxidative stability of green tea extract-enriched rice bran oil(RBOG) during storage...Adding green tea extract to rice bran oil was expected to improve its oxidative stability,so this study was conducted to investigate oxidative stability of green tea extract-enriched rice bran oil(RBOG) during storage at 60℃ for 15 days compared to rice bran oil(RBO),olive(OL),canola(CN),and grape-seed oil(GS).Acid values did not increase during storage,and the highest value was found for OL.The peroxide values of RBOG,RBO,CN,OL,and GS increased for up to 15 days.The highest average rate constant for the change in peroxide value was found for RBO(0.282).TBARS increased continually during storage of RBOG,RBO,CN,and OL;however,the value increased for up to 9 days and then decreased for GS.The highest average rate constant of change in TBARS was found for CN.Overall,the results suggest that green tea extract improves oxidative stability of rice bran oil.展开更多
Wild rice is an important resource of usefulgenes to rice breeders. However, low regener-ation frequency is an obstacle to use the valu-able genes. We used desiccation to improve theregeneration frequency and studied ...Wild rice is an important resource of usefulgenes to rice breeders. However, low regener-ation frequency is an obstacle to use the valu-able genes. We used desiccation to improve theregeneration frequency and studied the bio-chemical changes of calli of wild rice after des-iccation.Materials used in this experiment werewild species O. rufipogon, O. meyeriana, O.alta, and O. brachyantha. Young panicles(0.1-0. 5 cm in length of the inflorescence)展开更多
We studied the effect of agar concentration inmedia on callus induction rate and green plant-let regeneration frequency in rice.Materialswere Fgeneration of indica/indica or indica/japonica,which were 96E76(Hei’e/Zha...We studied the effect of agar concentration inmedia on callus induction rate and green plant-let regeneration frequency in rice.Materialswere Fgeneration of indica/indica or indica/japonica,which were 96E76(Hei’e/Zhaiye- qing 8),96E80[(IR 24/Guanglu'ai 4//Zhongnan’ai)/Yifengzao],96E86(Zhong- munong 9/Zhaiyeqing 8).The induction mediaused was M8+2mg/L 2,4-D,and agar con-centrations were 0.6%,0.8%,and 1.0%,respectively.Regeneration media was MS+2mg/L KT+0.5mg/L IAA+0.5mg/LNAA,and agar concentrations were 0.6% and1.0%.Results indicated that the calli induc-展开更多
为了建立转基因产品新型检测技术,采用SYBR Green Ⅰ实时PCR技术和三对特异引物,检测抗虫转基因水稻外源基因(CaMV35S,NOS,Cry1Ab/c)。结果表明,利用SYBR Green Ⅰ染料能结合双链DNA的特点,应用实时PCR技术可检测到转Cry1Ab/c基因...为了建立转基因产品新型检测技术,采用SYBR Green Ⅰ实时PCR技术和三对特异引物,检测抗虫转基因水稻外源基因(CaMV35S,NOS,Cry1Ab/c)。结果表明,利用SYBR Green Ⅰ染料能结合双链DNA的特点,应用实时PCR技术可检测到转Cry1Ab/c基因抗虫水稻外源基因(CaMV35S,NOS,Cry1Ab/c)扩增所产生的荧光信号,通过扩增产物的熔解曲线能有效地区分特异性产物、非特异性产物以及引物二聚体。SYBR Green Ⅰ实时PCR技术是转基因成分检测的一种新方法。展开更多
In 1996, a mega project that aimed to develop rice varieties with super-high yield potential (super rice) was launched by the Ministry of Agriculture (MOA) in China using a combination of the ideotype approach and...In 1996, a mega project that aimed to develop rice varieties with super-high yield potential (super rice) was launched by the Ministry of Agriculture (MOA) in China using a combination of the ideotype approach and intersubspecific heterosis. Significant progress has been made in the last two decades, with a large number of super rice varieties being approved by the MOA and the national average grain yield being increased from 6.21 t ha^-1 in 1996 to 6.89 t ha^-1 in 2015. The increase in yield potential of super rice was mainly due to the larger sink size which resulted from larger panicles. Moreover, higher photosynthetic capacity and improved root physiological traits before heading contributed to the increase in sink size. However, the poor grain filling of the later-flowering inferior spikelets and the quickly decreased root activity of super rice during grain filling period restrict the achievement of high yield potential of super rice. Furthermore, it is widely accepted that the high yield potential of super rice requires a large amount of N fertilizer input, which has resulted in an increase in N consumption and a decrease in nitrogen use efficiency (NUE), although it remains unclear whether super rice per se is responsible for the latter. In the present paper, we review the history and success of China's Super Rice Breeding Pro- gram, summarize the advances in agronomic and physiological mechanisms underlying the high yield potential of super rice, and examine NUE differences between super rice and ordinary rice varieties. We also provide a brief introduction to the Green Super Rice Project, which aims to diversify breeding targets beyond yield improvement alone to address global concerns around resource use and environmental change. It is hoped that this review will facilitate further improvement of rice production into the future.展开更多
基金supported by grants from the National Natural Science Foundation of China(32272079 and 32060474)the Yunnan Provincial Science and Technology Department,China(202101AS070001 and 202201BF070001-011)。
文摘Semidwarf breeding has boosted crop production and is a well-known outcome from the first Green Revolution. The Green Revolution gene Semidwarf 1(SD1), which modulates gibberellic acid(GA) biosynthesis, plays a principal role in determining rice plant height. Mutations in SD1 reduce rice plant height and promote lodging resistance and fertilizer tolerance to increase grain production. The plant height mediated by SD1 also favors grain yield under certain conditions. However, it is not yet known whether the function of SD1 in upland rice promotes adaptation and grain production. In this study, the plant height and grain yield of irrigated and upland rice were comparatively analyzed under paddy and dryland conditions. In response to dryland environments, rice requires a reduction in plant height to cope with water deficits. Upland rice accessions had greater plant heights than their irrigated counterparts under both paddy and dryland conditions, and appropriately reducing plant height could improve adaptability to dryland environments and maintain high grain yield formation. Moreover, upland rice cultivars with thicker stem diameters had stronger lodging resistance, which addresses the lodging problem. Knockout of SD1 in the upland rice cultivar IRAT104 reduced the plant height and grain yield, demonstrating that the adjustment of plant height mediated by SD1 could increase grain production in dryland fields. In addition, an SD1 genetic diversity analysis verified that haplotype variation causes phenotypic variation in plant height. During the breeding history of rice, SD1 allelic mutations were selected from landraces to improve the grain yield of irrigated rice cultivars, and this selection was accompanied by a reduction in plant height. Thus, five known mutant alleles were analyzed to verify that functional SD1 is required for upland rice production. All these results suggest that SD1 might have undergone artificial positive selection in upland rice, which provides further insights concerning greater plant height in upland rice breeding.
基金Supported by Special Scientific Research Funds for Commonweal Section(Agriculture)(201203029,201003016)China Rice Industry System Project(2011-2015)Special Funding for Basic Scientific Research and Zhejiang Provincial Natural Science Foundation(LY13C130004)~~
文摘Using early indica rice Zhongzao 39 and japonica rice Xiushui 134 as the experimental materials, the effects of 4 temperature levels after transplantation on turning green, leaf growth, tillering, dry matter accumulation and nutrition absorption were studied using a greenhouse and an artificial climate chest. We found that (1) tillering did not occur and growth of one new leaf took over 15 days at 16℃. New leaf growth took over 10 days and tillering occurred after 15 days of transplanta- tion at 19 ℃. Tillering appeared 10 days after planting and new leaf growth took 5 days between 22 and 25 ℃. This showed that low temperature impeded the turn- ing green of rice seedlings and the temperature must reach above 19 ℃ to ensure timely appearance of new leaf, tillering and turning green in rice seedlings. (2) When the temperature was 10 increased, both 100-seedling dry weight and nitrogen absorption increased. At temperatures lower 11 than 19 ℃, both dry weight incre- ment and nitrogen absorption were low. Nitrogen absorption of all organs increased obviously between 19 and 22 ℃. Thus, 19 ℃ was found to be an minimum tem- perature for plant organs to absorb nutrients. (3)Tiller of seedling cultivated on dry- land soil and substrate grew quickly and tillering occurred about 7 days after trans- planting. After that, the growth rate was about 0.18 tiller per day. For seedlings cultivated in slurry, tillering occurred 10 days after transplanting and the tillers grew at a rate of 0.16 tiller per day. However, substrate choice during the seedling rais- ing stage had no significant influence on leaf age. (4) Japonica rice exhibited stronger resistance to low temperature than indica rice. Tillering began at about the same time after transplanting in both rice varieties, but japonica rice exhibited higher tillering speed than early indica rice. The speed of leaf growth was higher in japoni- ca rice before transplantation but higher in indica rice after transplantation.
基金Supported by Gaoyou Demonstration and Extension Base of Modern Agricultural(Rice and Wheat)Industrial Technology System in Jiangsu(SXGC[2017]168)Funds for Independent Innovation of Jiangsu Province(CX17(2007),KF(17)1022)+1 种基金Key Research and Development Plan Project(BE2017332)Agricultural Standardization Pilot Project of Jiangsu Province([2017]46)~~
文摘Three big field projects, independent irrigation and drainage facilities, and a blocking net, which are auxiliary projects of a green planting and breeding pattern composed of rice and red swamp crawfish (Procambarus clarkii), spatial and temporal coupling technology of "planting rice in one season and breeding red swamp crawfish in three seasons", green fertilization technology, green prevention and control technology, control technology of water level, and throwing technology of bait in Lixiahe region of Jiangsu Province were introduced successively, which can provide technical support for the development of ecological planting and breeding patterns and realization of green production in paddy fields.
基金Supported by Jiangxi Agricultural University Students’Platform for Innovation and Entrepreneurship Training Program(DC201305)Key Projects in the National Science&Technology Pillar Program(2012BAD14B14-01)~~
文摘This study aimed to comprehensive evaluation of different winter green manure on characterization of nitrogen uptake and utilization, to provide the basis for N fertilizer reasonable operation and characteristics improvement of nitrogen nutrition in rice high-yield cultivation. This experiment was set to compare milk vetch, rapeseed,ryegrass and mixed of green manure on rice yield, rice growth dynamics and nitrogen uptake and utilization in rice. The results showed that among 4 different winter green manure, the treatment of MV-R-R(milk vetch-rice-rice) for the early rice yield was the most than others treatments. Compared with RG-R-R(ryegrass-rice-rice), RPR-R(rapeseed-rice-rice), MS-R-R(mixed green manure-rice-rice), the treatment of MVR-R inceased by 6.61%, 3.29%, 0.78%, respectively. The treatment of MV-R-R in N content in plant of rice was maximized in the tillering, booting, heading and maturity periods, respectively higher than the average of other treatments 9.68%, 19.72%,6.23% and 8.66%. At tillering, booting, heading and maturity, the treatment of MV-R-R were the highest in N uptake, RP-R-R minimum. The N periodic accumulation for MV-R-R were higher than other treatments in the tillering to booting, booting to heading and heading to maturity periods. The rates respectively were 21.81%, 68.73% and286.5%. In addition, N periodic accumulation and its ratio to total in the heading to maturity was minimum, maximum before tillering under green manure rotation system.So the cropping system of milk vetch-rice-rice could increase nitrogen use efficiency and improve N cycling.
文摘A thermo-insensitive pale green leaf mutant (pgl2) was isolated from T-DNA inserted transgenic lines of rice (Oryza sativa L. subsp, japonica cv. Nipponbare). Genetic analysis indicated that the phenotype was caused by a recessive mutation in a single nuclear-encoded gene. To map the PGL2gene, an F2 population was constructed by crossing the mutant with Longtefu (Oryza sativa L. subsp, indica). The PGL2 locus was roughly linked to SSR marker RM331 on chromosome 8. To finely map the gene, 14 new InDel markers were developed around the marker, and PGL2 was further mapped to a 2.37 Mb centromeric region. Analysis on chlorophyll contents of leaves showed that there was no obvious difference between the mutant and the wild type in total chlorophyll (Chl) content, while the ratio of Chl a / Chl b in the mutant was only about 1, which was distinctly lower than that in the wild type, suggesting that the PGL2 gene was related to the conversion between Chl a and Chl b. Moreover, the method of primer design around the centromeric region was discussed, which would provide insight into fine mapping of the functional genes in plant centromeres.
基金supported by the Special Fund for Agro-scientific Research in the Public Interest of China(201103005)the Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(2013–2017)
文摘On the basis of a long-term(30 years) field experiment that involved four rotation systems, rice-rice-winter fallow(RRF), rice-rice-ryegrass(RRG), rice-rice-rape(RRP), and rice-rice-milk vetch(RRV), this study described the effects of green manure on the microbial communities in the red paddy soils using 454 pyrosequencing for the 16 S r RNA gene. The Chao1 richness and non-parametric Shannon's index increased in all soil samples that received green manure treatments. The communities' structures with the green manure applications were significantly dissimilar from that under the winter fallow. Using Metastats tests, many genera in the RRG, RRP and RRV soils were significantly different from those in the RRF soil, including a number of genera that functioned in the nitrogen and sulfur cycles. Analyses of the genera with these functions revealed the shifts in microbial ecosystem functions after long-term green manuring. Changes in the microbial communities increased the ammonium supply and decreased the soil acidification in green-manure-amended soils. Together, these data suggested powerful effects of green manure on both the microbial communities and the biogeochemical cycle driven by the shifts in bacterial functional groups.
基金the Bill & Melinda Gates Foundation (BMGF) for providing a research grant to Z.L.for the Green Super Rice project under ID OPP1130530the Department of Agriculture of the Philippines for providing funds to J.A.under the Next-Gen project.
文摘The development of green super rice varieties with improved nutrient use efficiency(NuUE)is a vital target area to increase yield and make it more stable under rainfed conditions.In the present study, we followed an early backcross(BC) breeding approach by using a highyielding and widely adapted Xian variety, Weed Tolerant Rice 1(WTR-1), as a recipient and a Geng variety, Hao-An-Nong(HAN), as a donor.Starting from the BC1F2 generation, the BC population went through one generation of selection under irrigated, low-input, and rainfed conditions, followed by four consecutive generations of screening and selection for high grain yield(GY) under six different nutrient conditions(NPK, 75 N,-N,-P,-NP, and-NPK), leading to the development of 230 BC1F6 introgression lines(ILs).These 230 ILs were evaluated under the same six nutrient conditions for 13 agro-morphological and grain yield component traits in comparison to four checks and parents.Significant trait variations were observed between the treatments and ILs.Positive correlations were identified for GY with biomass, panicle length, flag-leaf area, flag-leaf width, filled grain number per panicle,1000-grain weight, and tiller number under-N,-P,-NP, and-NPK conditions.Out of 230 ILs,12 were identified as promising under two or more nutrient deficiency conditions.The results demonstrated an efficient inter-subspecific BC breeding procedure with a first round of selection under rainfed-drought conditions, followed by four generations of progeny testing for yield performance under six nutrient conditions.The promising ILs can be useful resources for molecular genetic dissection and understanding the physiological mechanisms of NuUE.
文摘The development and dissemination of sawah rice eco-technology in Nigeria and Ghana as prerequisites for the actualization of green revolution in West Africa were described. It showed that the neglect of the eco-technology and the overemphasis of the biotechnology have rendered the ineffective transferability of the green revolution process from Asia to Africa. The sawah eco-technology increases yield up to 5 t/hm2 through bunding and the use of inlet and outlet connecting irrigation and drainage, which enhances effective water control and management, improves the efficiency of fertilizer, improves nitrogen fixation by soil microbes and algae, increases the use of wetlands, improves soil organic matter accumulation, suppresses weed growth, and enhances immune mechanism of rice through nutrient supply. The current experience has therefore established that the technology overcomes the constraints that have limited the realization of green revolution in West Africa.
基金This research was supported by a grant from China Nationl“863"High Tchnology Proramn,a key grant(2003C22007)“8812”Program from Zhejiang Province,China.
文摘P/TGMS (photo-thermo sensitive genie male sterility) lines with pale-green leaf color have been developed in japonica rice. The marker trait is used as an assistant selection in the production of the two-lines system hybrid rice for the improvement of F, seed purity. A joint inheritance study of both leaf color and male sterility is presented for P/TGMS line with pale-green leaf color. The segregation ratios for leaf color in the F2 populations of the three crosses showed 13 : 3 and 15 : 1 at early and late sowing stages (April 26 and June 23) respectively, implying that the leaf color is controlled by two genes with fertility gene as dominant. Sterility level is higher in the early sowing stage than that in the late sowing. The inducement of male sterility is closely related to longer day-length and higher temperature at the developmental stages of young panicle. The genes to govern the leaf color and male fertility are inherited independently.
文摘The green rice leafhopper (GRH;Nephotettix cincticeps Uhler) is one of the most devastating insect pests of cultivated rice (Oryza sativa L.) in temperate regions in Asia. Using the rice germplasms with biotic stress resistance is the most effective and environmentally-friendly way to control the insect pests in the paddy. Sixty accessions from a core set of worldwide collection of rice were characterized for resistance to the GRH by antibiosis test both at the seedling and at the booting stages. The positive correlations of average nymph mortality (ANM) were observed between at the seedling stage and at the booting stage on 3 days after infestation (DAI) (r = 0.684**), 5DAI (r = 0.680**), and 7DAI (r = 0.652**), respectively. This result will give us the opportunity to screen resistance to the GRH with the cost-efficient way using rice seedlings in a growth chamber. To classify the 60 accessions evaluated, the ANM of the GRH of each accession was compared to the respective ANM of resistant and susceptible controls with the least significant difference (LSD) value. Based on the statistical difference or similarity of the ANMs to the resistant and the susceptible controls, we proposed the four groups of resistance to the GRH, (I) high level of resistance, (II) considerable level of resistance, (III) moderate level of resistance, and (IV) susceptibility. At the seedling stage, a total of 26 accessions were highly resistant in addition to other 6 for considerable level of resistance and other 10 for moderate level of resistance. At the booting stage, on the other hand, a total of 18 accessions were highly resistant in addition to other 3 for considerable level of resistance and other 5 for moderate level of resistance. A total of 42 accessions with high to moderate level of resistance were distributed across 16 countries in Asia in addition to each one for Madagascar and USA. The classification of landraces based on the present protocol for screening resistance to the insect provided fundamental information for genetics and breeding on resistance to the GRH in rice.
文摘A study was done to evaluate the removal of a cationic dye from simulated waste water onto rice husks (RH). Spectroscopic methods such as FTIR and SEM/EDX were used for adsorbent characterization. Experimental dependency on solution pH, initial dye concentration, agitation speed, adsorbentparticle size, temperature of the solution and contact time was evaluated. The adsorption data was tested using both Langmuir and Freundlich isotherms. The data fitted well into Langmuir isotherm model with a monolayer adsorption capacity of 6.5 mg/g. Further, the separation factor (RL) value was less than unity indicating a favorable adsorption process. Adsorption kinetics was determined using pseudo-first-order, pseudo-second-order and intra-particle diffusion models. The results showed that the adsorption of malachite green onto rice husks followed pseudo-second-order model with a determination coefficient of 0.986. This work has revealed that rice husks have a great potential to sequester cationic dyes from aqueous solutions and therefore it can be utilized to clean contaminated effluents.
文摘Rice is a grass seed from Oryza glaberrima species also known as the African rice.In Kenya,rice is mostly grown in Central(Mwea)and Nyanza(Ahero,West Kano,Migori and Kuria)areas.Milling rice produces rice husks as by-products which can be sources of valuable chemical products(silica gel,sodium silicate).In trials to produce silica gel from rice husks,rice husks were charred in a combustion chamber(30 min)then ashed in a Muffle furnace(Advantec KL-420)at different temperatures.The ashes were then leached with distilled water/acids to remove metal oxides.Sixty grams(60 g)of the leached RHA(Rice Husk Ash)was mixed with 300 mL of 3 M NaOH solution in a Pyrex 500 mL beaker and boiled at 100℃(1 h).The silica gel samples were characterized using several methods.Elemental analysis was done using TXRF(Total X-Ray Fluorescence),while FTIR(Fourier-Transform Infrared Spectroscopy)was used to obtain an infrared spectrum of absorption of the silica sample.Results of the analysis conform to local and international quality standards.The rice husks had an average moisture content of 7.07%and 1.00-2.00 mm diameter.And 1.74%of the rice husk had pore sizes of about 0.710 mm.The average ash content was 22.65%.At 600℃,leaching with water yielded 98.2%silica compared with 99.1%(H2SO4)and 96.9%(HCl).At 500℃,leaching with HCl/H2SO4 causes a decrease.At 500℃,the availability of SiO2 is more for water leached samples.At 400℃,water leaching gave 98.49%silica while HCl leaching was 97.85%silica and H2SO4 was 99.41%.Silica is a precursor of silica gel.Statistical analyses imply water leaching RHA instead of acid leaching at 500℃ will produce a significant amount of silica gel.The open burn samples produced equal or better SiO2(silica gel precursor)yields compared with the incineration samples.FTIR analysis of the silica gel sample compared well with adsorption peaks of silica gel in literature.XRD(X-Ray Diffraction)analysis produced a pattern consistent with other XRD patterns of silica gel published by other researchers.
文摘Adding green tea extract to rice bran oil was expected to improve its oxidative stability,so this study was conducted to investigate oxidative stability of green tea extract-enriched rice bran oil(RBOG) during storage at 60℃ for 15 days compared to rice bran oil(RBO),olive(OL),canola(CN),and grape-seed oil(GS).Acid values did not increase during storage,and the highest value was found for OL.The peroxide values of RBOG,RBO,CN,OL,and GS increased for up to 15 days.The highest average rate constant for the change in peroxide value was found for RBO(0.282).TBARS increased continually during storage of RBOG,RBO,CN,and OL;however,the value increased for up to 9 days and then decreased for GS.The highest average rate constant of change in TBARS was found for CN.Overall,the results suggest that green tea extract improves oxidative stability of rice bran oil.
文摘Wild rice is an important resource of usefulgenes to rice breeders. However, low regener-ation frequency is an obstacle to use the valu-able genes. We used desiccation to improve theregeneration frequency and studied the bio-chemical changes of calli of wild rice after des-iccation.Materials used in this experiment werewild species O. rufipogon, O. meyeriana, O.alta, and O. brachyantha. Young panicles(0.1-0. 5 cm in length of the inflorescence)
文摘We studied the effect of agar concentration inmedia on callus induction rate and green plant-let regeneration frequency in rice.Materialswere Fgeneration of indica/indica or indica/japonica,which were 96E76(Hei’e/Zhaiye- qing 8),96E80[(IR 24/Guanglu'ai 4//Zhongnan’ai)/Yifengzao],96E86(Zhong- munong 9/Zhaiyeqing 8).The induction mediaused was M8+2mg/L 2,4-D,and agar con-centrations were 0.6%,0.8%,and 1.0%,respectively.Regeneration media was MS+2mg/L KT+0.5mg/L IAA+0.5mg/LNAA,and agar concentrations were 0.6% and1.0%.Results indicated that the calli induc-
文摘为了建立转基因产品新型检测技术,采用SYBR Green Ⅰ实时PCR技术和三对特异引物,检测抗虫转基因水稻外源基因(CaMV35S,NOS,Cry1Ab/c)。结果表明,利用SYBR Green Ⅰ染料能结合双链DNA的特点,应用实时PCR技术可检测到转Cry1Ab/c基因抗虫水稻外源基因(CaMV35S,NOS,Cry1Ab/c)扩增所产生的荧光信号,通过扩增产物的熔解曲线能有效地区分特异性产物、非特异性产物以及引物二聚体。SYBR Green Ⅰ实时PCR技术是转基因成分检测的一种新方法。
基金financially supported by the grants from the National High-Tech R&D Program of China(863 Program,2014AA10A605)the Fundamental Research Funds for the Central Universities,China(2015BQ002)
文摘In 1996, a mega project that aimed to develop rice varieties with super-high yield potential (super rice) was launched by the Ministry of Agriculture (MOA) in China using a combination of the ideotype approach and intersubspecific heterosis. Significant progress has been made in the last two decades, with a large number of super rice varieties being approved by the MOA and the national average grain yield being increased from 6.21 t ha^-1 in 1996 to 6.89 t ha^-1 in 2015. The increase in yield potential of super rice was mainly due to the larger sink size which resulted from larger panicles. Moreover, higher photosynthetic capacity and improved root physiological traits before heading contributed to the increase in sink size. However, the poor grain filling of the later-flowering inferior spikelets and the quickly decreased root activity of super rice during grain filling period restrict the achievement of high yield potential of super rice. Furthermore, it is widely accepted that the high yield potential of super rice requires a large amount of N fertilizer input, which has resulted in an increase in N consumption and a decrease in nitrogen use efficiency (NUE), although it remains unclear whether super rice per se is responsible for the latter. In the present paper, we review the history and success of China's Super Rice Breeding Pro- gram, summarize the advances in agronomic and physiological mechanisms underlying the high yield potential of super rice, and examine NUE differences between super rice and ordinary rice varieties. We also provide a brief introduction to the Green Super Rice Project, which aims to diversify breeding targets beyond yield improvement alone to address global concerns around resource use and environmental change. It is hoped that this review will facilitate further improvement of rice production into the future.