Objective To construct green fluorescent protein (GFP)-labeled pSELECT-GFP zeohBMP2 eukaryotic expression vector.Methods The encoding fragment of hBMP2 gene was obtained from a recombinant plasmid pcDNA3.1/CT-hBMP2 by...Objective To construct green fluorescent protein (GFP)-labeled pSELECT-GFP zeohBMP2 eukaryotic expression vector.Methods The encoding fragment of hBMP2 gene was obtained from a recombinant plasmid pcDNA3.1/CT-hBMP2 by using polymerase展开更多
Objective:To study the role of bone marrow mesenchymal stem cells(BMSCs)in construction of vascularized engineered tissue.Methods:hVEGF165 was amplified via RT-PCR before recombinant with pShuttle-green fluorescence p...Objective:To study the role of bone marrow mesenchymal stem cells(BMSCs)in construction of vascularized engineered tissue.Methods:hVEGF165 was amplified via RT-PCR before recombinant with pShuttle-green fluorescence protein;green fluorescent protein(GFP)-CMV.Then the recombinant shuttle plasmid was transfected into BMSCs with Lipofectamine^(TM)2000 for packaging and amplifying.hVTGF165 mRNA expression in BMSCs cells was tested.Results:The sequence of hVEGFI65 in pShutlle-GFP-hVFGF165 plasmid was confirimed by double-enzyme cleavage method and sequencing.hVECF165 was highly expressed in BMSCs.Conclusions:The GFP/hVECF165 recombinant plasmid vector was constructed successfully and expressed effectively in host cells,which may be helpful for discussing the possibility of the application of VEGF165-BMSCs in tissue engineering and ischemic disease cure.展开更多
Objective: To construct green fluorescent protein(GFP) retroviral vector(pLgXSN), and to investigate the expression of GFP in primary rat myoblast. Methods: GFP cDNA was subcloned into the plasmid pLgXSN, and th...Objective: To construct green fluorescent protein(GFP) retroviral vector(pLgXSN), and to investigate the expression of GFP in primary rat myoblast. Methods: GFP cDNA was subcloned into the plasmid pLgXSN, and the recombinant vector was transfected into packaging cell PT67. G418 was used to select positive colony. Myoblasts were infected by a high-titer viral supernatant. The recombinant retroviral plasmid vector was identified by restriction endonuclease analysis and DNA sequence analysis. Confocal microscopy and flow cytometry were used to detect the expression of GFP. Results: The GFP cDNA sequence was identical to that of GenBank. Recombinant retroviral plasmid vector pLgGFPSN was constructed successfully. The titer of the packaged recombinant retrovirus was 1×10^6 cfu/ml. Bright green fluorescence of the transfected cells was observed under confocal microscope 48 h after transfection. The transfection rate was 33%. The effective expression of GFP in myoblast infected by recombinant retrovirus lasted for 6 weeks. Conclusion: GFP gene could be effectively and stably expressed in myoblast, which suggests that GFP could act as a marker for studies on myoblast.展开更多
Grass carp reovirus(GCRV),a disaster agent to aquatic animals,belongs to Genus Aquareovirus of family Reoviridea.Sequence analysis revealed GCRV genome segment 8(s8) was 1 296 bp nucleotides in length encoding an inne...Grass carp reovirus(GCRV),a disaster agent to aquatic animals,belongs to Genus Aquareovirus of family Reoviridea.Sequence analysis revealed GCRV genome segment 8(s8) was 1 296 bp nucleotides in length encoding an inner capsid protein VP6 of about 43kDa.To obtain in vitro non-fusion expression of a GCRV VP6 protein containing a molecular of fluorescence reporter,the recombinant baculovirus,which contained the GCRVs8 and eGFP(enhanced green fluorescence protein) genes,was constructed by using the Bac-to-Bac insect expression system.In this study,the whole GCRVs8 and eGFP genes,amplified by PCR,were constructed into a pFastBacDual vector under polyhedron(PH) and p10 promoters,respectively.The constructed dual recombinant plasmid(pFbDGCRVs8/eGFP) was transformed into DH10Bac cells to obtain recombinant Bacmid(AcGCRVs8/eGFP) by transposition.Finally,the recombinant bacluovirus(vAcGCRVs8/eGFP) was obtained from transfected Sf9 insect cells.The green fluorescence that was expressed by transfected Sf9 cells was initially observed 3 days post transfection,and gradually enhanced and extended around 5 days culture in P1(Passage1) stock.The stable high level expression of recombinant protein was observed in P2 and subsequent passage budding virus(BV) stock.Additionally,PCR amplification from P1 and amplified P2 BV stock further confirmed the validity of the dual-recombinant baculovirus.Our results provide a foundation for expression and assembly of the GCRV structural protein in vitro.展开更多
Green fluorescent protein (GFP) fused to the F-actin binding domain of mouse talin labels the actin cytoskeleton in the living generative and sperm cells of a third generation transgenic rice (Oryza sativa L.) plant, ...Green fluorescent protein (GFP) fused to the F-actin binding domain of mouse talin labels the actin cytoskeleton in the living generative and sperm cells of a third generation transgenic rice (Oryza sativa L.) plant, A005-G-T-1-2. Observations were made on pollen at four major developmental stages, viz. I. uni-nucleate microspore stage; II. early bi-cellular pollen stage; III. late bi-cellular pollen stage; and IV. tri-cellular pollen stage. At each of these developmental stages vegetative nucleus, generative nucleus/ cell, and sperm cells were seen undergoing continuous and coordinated motion and migration. These movements seemed to be influenced by associated microfilament networks existing in the pollen. Based on these observations we propose that it is the interaction between the microfilament networks (usually one existing in the central cytoplasm and another in the cortex) that controls the dynamic movement of the vegetative nucleus, generative nucleus/cell and sperm cells. Furthermore, we have also observed that there is an array of microfilaments (oriented mostly parallel to the long axis of the cell) existing in the generative and sperm cells. As far as we are aware, this is the first report showing the existence of microfilaments in living generative and sperm cells of rice pollen. The implication and significance of the existence of microfilaments in generative and sperm cells in rendering self-propelled motion of these cells in relation to their passage and movement in the pollen tube and embryo sac for fertilization were discussed.展开更多
Green fluorescent protein (GFP) fused to the F_actin binding domain of mouse talin labels the actin cytoskeleton in the immature pollen of stable transformed rice (Oryza sativa L.) plants. Actin microfilaments could b...Green fluorescent protein (GFP) fused to the F_actin binding domain of mouse talin labels the actin cytoskeleton in the immature pollen of stable transformed rice (Oryza sativa L.) plants. Actin microfilaments could be visualized only in the late_developmental stage of the immature pollen. During this developmental stage, microfilaments, initially composed of very short fibrils, develop into a very complex and novel network that sometimes totally and sometimes partially encloses the vegetative nucleus and the spherical shaped generative cell in the central cytoplasm of the immature pollen. The behavior of the actin microfilamentous structure throughout the late_developmental stage of the immature pollen is extremely dynamic, and the likelihood of this structure in generating forces for vegetative nucleus and generative cell movement in the immature pollen has been discussed. No actin filaments were visualized in the spherical generative cells.展开更多
To establish a rapid quantification method for heparinase I during its production in recombinant Escherichia coli, a translational fusion vector was constructed by fusing the N terminus of heparinase I to the C termin...To establish a rapid quantification method for heparinase I during its production in recombinant Escherichia coli, a translational fusion vector was constructed by fusing the N terminus of heparinase I to the C terminus of a green fluorescent protein mutant (GFPmutl). As a result, not only was the functional recombinant expression of heparinase I in E. coli accomplished, but also a linear correlation was obtained between the GFP fluorescence intensity and heparinase I activity, allowing enzyme activity to be quantified rapidly during the fermentation.展开更多
The methanol inducible alcohol oxidase 1 promoter and the Saccharomyces cerevisiae alpha-factor prepro secretion signal were used to drive expression and secretion of a mucin-type fusion protein by Pichia pastoris in ...The methanol inducible alcohol oxidase 1 promoter and the Saccharomyces cerevisiae alpha-factor prepro secretion signal were used to drive expression and secretion of a mucin-type fusion protein by Pichia pastoris in 1 L scale bioreactors. The aim of the study was to understand how varying expression rates influenced the secretion dynamics of the fusion protein in terms of intracellular- and extracellular concentrations. Endoplasmic reticulum (ER) folding stress was assessed by the relative expression of the unfolded protein response controlled KAR2 gene. Three predefined methanol feeding models were applied to control the fusion protein synthesis rate. To track the fusion protein synthesis in a non-invasive manner and to follow its intracellular distribution, its C-terminal was linked to the green fluorescent protein. Under all conditions the fusion protein was found to partially accumulate intracellularly, where the major fraction was an insoluble, fluorescent full-sized protein. The high degree of glycosylation of the insoluble fusion protein indicated a secretory bottle-neck in the Golgi-system. This result was consistent with low ER folding stress as quantified by the relative expression of the KAR2 gene. Reduction of recombinant protein synthesis rate, by using lower feed rates of methanol, enhanced extracellular concentrations from 8 to 18 mg·L–1 and reduced the rate of intracellular accumulation. This clearly demonstrates the importance of tuning the synthesis rate with secretory bottle-necks to maintain secretion.展开更多
To achieve a visible inverse Bin-amphiphysin-Rvs (I-BAR)domain recombinant of missing in metastasis (MIM) protein,the green fluorescent protein (GFP)encoding gene was cloned at the terminal of MIM-I-BAR as a pro...To achieve a visible inverse Bin-amphiphysin-Rvs (I-BAR)domain recombinant of missing in metastasis (MIM) protein,the green fluorescent protein (GFP)encoding gene was cloned at the terminal of MIM-I-BAR as a probe.The DNA was successfully constructed on a 6xHis-tagged prokaryotic expression plasmid.The non-GFP labeled MIM-I-BAR encoding plasmid was also constructed as a control. Being successfully transformed into BL21 (DE3 )cells,the GFP-conjugated MIM-I-BAR (MIM-I-BAR-GFP ) exhibits strong visible fluorescence,and the expression product can be easily detected by visual inspection, a fluorescence microscope, Western blot or ultraviolet and visible spectrophotometer. Moreover, examination of expression efficiency under various culture conditions revealed that the MIM-I-BAR-GFP gene has a high protein yield at 10 ℃,but not at the culture temperature of 37 ℃.This property is much different from that of the non-fluorescent MIM-I-BAR gene. This optimal expression condition is also proved to be feasible for protein production in midi-scale. The fluorescent recombinant MIM-I-BAR-GFP protein can serve as a useful tool in scientific research, biomedical application and pharmaceutical development.展开更多
To screen for effective small interference RNA(siRNA),a simple and visualized method was developed using the green fluorescence protein(GFP)as a reporter.Candidate siRNAs targeting macrophage migration inhibition fact...To screen for effective small interference RNA(siRNA),a simple and visualized method was developed using the green fluorescence protein(GFP)as a reporter.Candidate siRNAs targeting macrophage migration inhibition factor genes(MIF)were identified.By using the pEGFP-N3 vector,the MIF-GFP expression plasmid,pEGFP-MIF,was constructed with the same Kozak consensus translation initiation site and start code ATG for the MIF-EGFP coding sequence.Based on the siRNA expression vector pSilencer-4.1,3 candidate MIF siRNA expression plasmids were constructed and co-transfected with the pEGFP-MIF into the HEK293 cells,respectively.The GFP expression in HEK293 cells could be viewed by fluorescence microscopy and the MIF mRNA expressions were determined by real-time quantitative PCR.The 3 candidate MIF siRNA expression plasmids were also co-transfected with the MIF expression plasmid into the HEK293 cells,respectively,and the MIF mRNA expressions were determined by real-time quantitative PCR.The results show that the down-regulated expression of the MIF mRNA was consistent with the GFP expression and the same effective MIF siRNAs were screened by using the pEGFP-MIF or MIF expression plasmid with the candidate MIF siRNAs expression plasmids.Therefore,by using the GFP as a reporter,a useful method was provided to screen for effective siRNAs targeting specific genes co-expressed with the GFP.This may be a good strategy for screening for effective siRNAs targeting different genes.展开更多
The green-fluorescent protein (gfp) gene was evaluated as a screening marker during cotton (Gossypium hirsutum L.) transforming and plant regeneration. High expression of GFP (green-fluorescent protein) was obse...The green-fluorescent protein (gfp) gene was evaluated as a screening marker during cotton (Gossypium hirsutum L.) transforming and plant regeneration. High expression of GFP (green-fluorescent protein) was observed in transgenic cells as early as 42 h after co-culture with Agrobacterium. Most of the stable transformation events were detected in the cells of primary vascular tissue. GFP transient expression could be detected on all the explants after co-culturing for 4 d, however, the highest GFP stable expression was recorded when the explants were co-cultured for 3 d. We believe the transient and stable expression of a foreign gene in genetic transformation were two relative but different events, because high transient expression did not surely lead to high stable transformation. Under the same conditions of in vitro culture, transgenic and non-transgenic calli exhibited different morphological characters on different stages of development. High concentration of plant growth regulators (PGRs) was efficient for somatic embryogenesis of the transgenic calli, which means that the transgenic calli need relatively higher dose of hormone for further growth and somatic embryogenesis than non-transgenic ones. Strong GFP-expression was observed in leaf, stem, petioles, floral tissues, and seedlings of T~ progeny. Segregation ratios of eight transgenic lines were scored for expression of GFP in the T~ progeny that providing further evidence of stable transformation. These results proved that GFP is a powerful reporter gene for protocol optimization, selection, and monitioring in whole transformation events.展开更多
Total RNA was isolated from the hybridoma cell line (LC- 1 ), which secretes anti-lung adenocarcinoma monoclonal antibody, and was transferred into cDNA. Based on the FRl (framework region l) and FR4 conserved reg...Total RNA was isolated from the hybridoma cell line (LC- 1 ), which secretes anti-lung adenocarcinoma monoclonal antibody, and was transferred into cDNA. Based on the FRl (framework region l) and FR4 conserved regions of LC-1 gene, the variable regions of heavy chain (Vh) and light chain (Vl) were amplified, and the Vh and modified Vl were connected to single chain Fv (ScFv) by SOE-PCR (splice overlap extension PCR). The modified ScFv was fused with green fluorescent protein (GFP) and introduced into E. coli JM109. The fusion protein induced by lPTG (Isopropylthiogalactoside) was about 57000 on a 10% SDS-PAGE gel (10% Sds Polyacrylamide Gel Electrophoresis), and primarily manifested as inclusion bodies. The renatured protein purified by Ni-NTA Superflow resins showed ability to bind to antigen on SPC-A-l lung adenocarcinoma. In addition, the induced host cells fluoresced bright green under 395 nm wavelength, which indicated that the expected protein with dual activity was expressed in the prokaryotic system. The ScFv with GFP tag used in this research can be applied as a new reagent to detect immunological dye, and provide a feasible way to detect adenocarcinoma in a clinical setting.展开更多
Objective:To investigate the effect of fusion proteins expressed by the fused gene of porcineα1,3 galactosyltransierase(α1,3 GT) and enhanced green fluorescent protein(EGFP) on the green fluorescence intensity of EG...Objective:To investigate the effect of fusion proteins expressed by the fused gene of porcineα1,3 galactosyltransierase(α1,3 GT) and enhanced green fluorescent protein(EGFP) on the green fluorescence intensity of EGFP.Methods:The fragment containingα1.3GT was firstly recovered after the pcDNA3.1-α1.3GT recombinant vector were digested with BamHl and EcoRI,and then,the resultant fragment was ligated to the pEGFP-N1 vector which was also digested with the same enzymes.The new recombinant eukaryotic expression pEGFP/a 1,3GT vector was obtained and sequenced.The pEGFP/α1,3GT was used to transfect human lung carcinoma cells A549 and HEKC 293FT,and the expression of EGFP was quantitatively analyzed by fluorescent microscope and flow cytometry.Results:The positive percentage of A549 was 80.5%,and that of 293 FT was 86.5%48 hours after the two cell lines both were transfected by pEGFP-N1.The positive percentage of A549 was 75.8%,and that of 293 FT was 81.2%48 hours after the two cell lines were transfected by pEGFP/α1.3GT.The mean fluorescence intensities of A549 transfected with pEGFP-N1 and pEGFP/α1.3GT were 1.21 and 0.956,respectively when compared with that of A549 without transfection.Meanwhile,the those of the 293FT that were transfected with pEGFP-N1 and pEGFP/αl,3GT were 7.66 and 1.00.respectively when compared with that of 293FT cells without transfection.Conclusions:These results suggested that the expression of EGFP gene fused with porcineα1,3GT gene was partly inhibited.展开更多
Chrornophore structures inspired by natural green fluorescent protein (GFP) play an im- portant role in the field of bio-irnaging. In this work, photochemical properties of a new class of GFP-like chromophores are i...Chrornophore structures inspired by natural green fluorescent protein (GFP) play an im- portant role in the field of bio-irnaging. In this work, photochemical properties of a new class of GFP-like chromophores are investigated using computational approaches. Thermo- dynamically stable isomers are identified in vacuum and in solvent. Spectral Stokes shifts are computed and compared to experiments. An inverted solvatochromic shift between absorption and emission emerging in this new class of GFP-like chromophores is observed, and attributed to the stabilized charge transfer and inhibited rotational structural reorganization in solvent.展开更多
Cronobacter sakazakii is an emerging pathogen that can cause diseases for several infant groups. These bacteria were contaminated in foods, clinical utensils, and environments. In Indonesia, C. sakazakii has been isol...Cronobacter sakazakii is an emerging pathogen that can cause diseases for several infant groups. These bacteria were contaminated in foods, clinical utensils, and environments. In Indonesia, C. sakazakii has been isolated from powdered infant formulas, weaning foods, and other dried foods such as cornstarch. The objective of this research is to trace survival of C. sakazakii during cornstarch production step using its mutant. Mutant was constructed by inserting Green Fluorescent Protein plasmid inside to the bacterial cell that appeared green fluorescent colonies under UV observation. The presence of C. sakazakii during processing was conducted by artificial contamination. This research consists of three steps, i.e. determination of the suitable enumeration method of C. sakazakii’s mutant, cornstarch production from yellow corn, and survival analysis of C. sakazakii during endosperm soaking and cornstarch drying. The suitable enumeration method was surface plating method on TSA-ampicillin medium combining with UV light application because of ineffectiveness of ampicillin inhibition for growth of yeasts and molds. The cornstarch produced in laboratory has the same properties with commercial cornstarch in parameters of moisture content, density, and starch granule structure. The yield of cornstarch final product was 48.90% (dry whole kernel-based). C. sakazakii cannot survive in 48 hours soaking process at 52?C and 24 hours drying process at 50?C that is applied during cornstarch production.展开更多
To improve the expression efficiency of exogenous genes in Chlamydomonas reinhardtii, a high efficient expression vector was constructed. Green fluorescent protein (GFP) was expressed in C. reinhardtii under the con...To improve the expression efficiency of exogenous genes in Chlamydomonas reinhardtii, a high efficient expression vector was constructed. Green fluorescent protein (GFP) was expressed in C. reinhardtii under the control of promoters: RBCS2 and HSP70A-RBCS2. Efficiency of transformation and expression were compared between two transgenic algae: RBCS2 mediated strain Tran-Ⅰ and HSP70A-RBCS2 mediated strain Tran-Ⅱ. Results show that HSP70A-RBCS2 could improve greatly the transformation efficiency by approximately eightfold of RBCS2, and the expression efficiency of GFP in Tran-Ⅱ was at least double of that in Tran-Ⅰ. In addition, a threefold increase of GFP in Tran-Ⅱ was induced by heat shock at 40℃. All of the results demonstrated that HSP70A-RBCS2 was more efficient than RBCS2 in expressing exogenous gene in C. reinhardtii.展开更多
Sargassum horneri is a macroalga widespread in North Asia-Pacific region, and these years its bloom has caused huge damage to the environment and the economic in China. To make up the blank on genetic engineering rese...Sargassum horneri is a macroalga widespread in North Asia-Pacific region, and these years its bloom has caused huge damage to the environment and the economic in China. To make up the blank on genetic engineering research, a transient transformation system for the multicellular marine brown alga S . horneri was established in this research. The algae used in this research were collected from the Yellow Sea of China and verified as a same species S . horneri with analysis of molecular markers. The S . horneri parietal leaves were transformed with the enhanced green fluorescent gene as the reporter by micro-particle bombardment. The results show that green fluorescent protein (GFP) is an eff ective transgene reporter for S . horneri and that particle bombardment is a suitable method for transformation of S . horneri . Through selection of four diff erent promoters for EGFP and six groups’ bombardment characters, the highest transformation efficiency approximately 1.31% was got with the vector pEGFP-N1 at bombardment characters 900 spi and 6 cm distance. This research paves a way for the further research and application of S . horneri .展开更多
Recently, a novel green fluorescent protein eYGFPuv has been identified in the marine organism Chiridius poppei which displays high fluorescence intensity and can be visible by eyes in dark. Although strong green fluo...Recently, a novel green fluorescent protein eYGFPuv has been identified in the marine organism Chiridius poppei which displays high fluorescence intensity and can be visible by eyes in dark. Although strong green fluorescence was achieved in transgenic petunia, 3 expression cassettes (about 8 kb) complicate its application. In this study, to confirm whether 1 expression cassette could be used as a transgenic marker in prokaryotes and eukaryotes, eYGFPuv was cloned into prokaryotic expression vector pET28α-eYGFPuv- His and plant binary expression vector 35S::eYGFPuv. Compared to EGFP, eYGFPuv protein exhibited stronger dazzling green fluorescence in E. coli under excited light at 365 nm and maintains steadily over a long period of time without degradation. When transiently expressed in tobacco leaves, eYGFPuv protein displayed strong green fluorescence. Moreover, the fluorescence of eYGFPuv protein also could be directly observed in living plant, and thus can be used easily as a marker to screen transformed lines in transgenic research. Overall, compared to previous studies on eYGFPuv tandem repeats, our data confirmed that single eYGFPuv sequence still possesses high fluorescence intensity and quenching resistance. Furthermore, because of small size of expression cassette,it is suitable for efficient transformation in both prokaryotic and eukaryotic organisms.展开更多
The plasmid pGPDGFP under the control ofpgpdA promotor was used together with vector pAN7-1 containing the hygromycin resistance cassette to co-transform protoplasts of HG1, Fusarium graminearum from Hubei Province, C...The plasmid pGPDGFP under the control ofpgpdA promotor was used together with vector pAN7-1 containing the hygromycin resistance cassette to co-transform protoplasts of HG1, Fusarium graminearum from Hubei Province, China. Twelve out of 14 hygromycin-resistant transformants showed green signal under the UV light and contained one or several copies ofgfp, as indicated by Southern analysis of genomic DNA digested with different restriction enzymes and hybridized to the gfp probe. A single gfp copy transformant (HG1C5) was selected for further evaluation of 80 Chinese wheat cultivars or advanced lines. The results showed different resistance type to F. graminearum were observed. GFP signals observed in the rachis and adjacent spikes of 70 Chinese wheat lines such as Chuanchongzu 104 indicated both type I (host resistance to the initial infection by the fungus) and type II (resistance to the spread of FHB symptoms within an infected spike) were not observed. While other 10 lines showed type II resistance to F. graminearum with GFP signals only in inoculated spikelets. Development of the mycelium can be intuitively observed and the resistance of wheat to F. graminearum can be identified at 7 days post inoculation (dpi) in this way. The results showed no differences were evaluated between the transformed HG1C5 and the non-transgene artificial inoculation by SAS paired chi-square test and McNernar's test (P=-0.0625).展开更多
The persistence and performance (growth promoting potential) of green fluorescent protein (gfp) marked Azotobacter chroococcum strain ABR 4G were studied in sterilized and unsterilized wheat rhizospheric soil. The gfp...The persistence and performance (growth promoting potential) of green fluorescent protein (gfp) marked Azotobacter chroococcum strain ABR 4G were studied in sterilized and unsterilized wheat rhizospheric soil. The gfp was integrated via Tn 5 transposition into A. chroococcum chromosome and the resultant gfp marked colonies were identified by green fluorescent emission under UV light. The gfp was stably maintained in A. chroococcum and the gfp insertion had no apparent adverse effect on the growth promoting properties of the marked soil isolate ABR 4G. The growth promoting properties (nitrogen fixation, ammonia excretion, phosphate solubilization and IAA production) of the parent soil isolate and the gfp marked strain were found to be almost the same. All the quantitative wheat plant traits were significantly influenced by inoculation of A. chroococcum ABR 4G strain in sterilized and unsterilized soil. Inoculated bacterial counts increased gradually in wheat rhizosphere, reached maximum on 60 th d and declined on 80 th d. Fertility levels also affected survival of marked strain and the survival was comparable in sterilized and unsterilized soil. The growth promoting properties were also determined from the marked strain reisolated from wheat rhizosphere in both types of soil. Fig 1, Tab 2, Ref展开更多
文摘Objective To construct green fluorescent protein (GFP)-labeled pSELECT-GFP zeohBMP2 eukaryotic expression vector.Methods The encoding fragment of hBMP2 gene was obtained from a recombinant plasmid pcDNA3.1/CT-hBMP2 by using polymerase
基金supported by grants from the National Natural Science Foundation of Hainan Province(30635)Foundation of Health Department of Hainan Province(2008-40)
文摘Objective:To study the role of bone marrow mesenchymal stem cells(BMSCs)in construction of vascularized engineered tissue.Methods:hVEGF165 was amplified via RT-PCR before recombinant with pShuttle-green fluorescence protein;green fluorescent protein(GFP)-CMV.Then the recombinant shuttle plasmid was transfected into BMSCs with Lipofectamine^(TM)2000 for packaging and amplifying.hVTGF165 mRNA expression in BMSCs cells was tested.Results:The sequence of hVEGFI65 in pShutlle-GFP-hVFGF165 plasmid was confirimed by double-enzyme cleavage method and sequencing.hVECF165 was highly expressed in BMSCs.Conclusions:The GFP/hVECF165 recombinant plasmid vector was constructed successfully and expressed effectively in host cells,which may be helpful for discussing the possibility of the application of VEGF165-BMSCs in tissue engineering and ischemic disease cure.
文摘Objective: To construct green fluorescent protein(GFP) retroviral vector(pLgXSN), and to investigate the expression of GFP in primary rat myoblast. Methods: GFP cDNA was subcloned into the plasmid pLgXSN, and the recombinant vector was transfected into packaging cell PT67. G418 was used to select positive colony. Myoblasts were infected by a high-titer viral supernatant. The recombinant retroviral plasmid vector was identified by restriction endonuclease analysis and DNA sequence analysis. Confocal microscopy and flow cytometry were used to detect the expression of GFP. Results: The GFP cDNA sequence was identical to that of GenBank. Recombinant retroviral plasmid vector pLgGFPSN was constructed successfully. The titer of the packaged recombinant retrovirus was 1×10^6 cfu/ml. Bright green fluorescence of the transfected cells was observed under confocal microscope 48 h after transfection. The transfection rate was 33%. The effective expression of GFP in myoblast infected by recombinant retrovirus lasted for 6 weeks. Conclusion: GFP gene could be effectively and stably expressed in myoblast, which suggests that GFP could act as a marker for studies on myoblast.
基金National Natural Science Foundation of China (Grant Nos 30470074,30671615)Innovation Project of the Chinese Academy of Sciences (KSCX2-YW-N-021).
文摘Grass carp reovirus(GCRV),a disaster agent to aquatic animals,belongs to Genus Aquareovirus of family Reoviridea.Sequence analysis revealed GCRV genome segment 8(s8) was 1 296 bp nucleotides in length encoding an inner capsid protein VP6 of about 43kDa.To obtain in vitro non-fusion expression of a GCRV VP6 protein containing a molecular of fluorescence reporter,the recombinant baculovirus,which contained the GCRVs8 and eGFP(enhanced green fluorescence protein) genes,was constructed by using the Bac-to-Bac insect expression system.In this study,the whole GCRVs8 and eGFP genes,amplified by PCR,were constructed into a pFastBacDual vector under polyhedron(PH) and p10 promoters,respectively.The constructed dual recombinant plasmid(pFbDGCRVs8/eGFP) was transformed into DH10Bac cells to obtain recombinant Bacmid(AcGCRVs8/eGFP) by transposition.Finally,the recombinant bacluovirus(vAcGCRVs8/eGFP) was obtained from transfected Sf9 insect cells.The green fluorescence that was expressed by transfected Sf9 cells was initially observed 3 days post transfection,and gradually enhanced and extended around 5 days culture in P1(Passage1) stock.The stable high level expression of recombinant protein was observed in P2 and subsequent passage budding virus(BV) stock.Additionally,PCR amplification from P1 and amplified P2 BV stock further confirmed the validity of the dual-recombinant baculovirus.Our results provide a foundation for expression and assembly of the GCRV structural protein in vitro.
文摘Green fluorescent protein (GFP) fused to the F-actin binding domain of mouse talin labels the actin cytoskeleton in the living generative and sperm cells of a third generation transgenic rice (Oryza sativa L.) plant, A005-G-T-1-2. Observations were made on pollen at four major developmental stages, viz. I. uni-nucleate microspore stage; II. early bi-cellular pollen stage; III. late bi-cellular pollen stage; and IV. tri-cellular pollen stage. At each of these developmental stages vegetative nucleus, generative nucleus/ cell, and sperm cells were seen undergoing continuous and coordinated motion and migration. These movements seemed to be influenced by associated microfilament networks existing in the pollen. Based on these observations we propose that it is the interaction between the microfilament networks (usually one existing in the central cytoplasm and another in the cortex) that controls the dynamic movement of the vegetative nucleus, generative nucleus/cell and sperm cells. Furthermore, we have also observed that there is an array of microfilaments (oriented mostly parallel to the long axis of the cell) existing in the generative and sperm cells. As far as we are aware, this is the first report showing the existence of microfilaments in living generative and sperm cells of rice pollen. The implication and significance of the existence of microfilaments in generative and sperm cells in rendering self-propelled motion of these cells in relation to their passage and movement in the pollen tube and embryo sac for fertilization were discussed.
文摘Green fluorescent protein (GFP) fused to the F_actin binding domain of mouse talin labels the actin cytoskeleton in the immature pollen of stable transformed rice (Oryza sativa L.) plants. Actin microfilaments could be visualized only in the late_developmental stage of the immature pollen. During this developmental stage, microfilaments, initially composed of very short fibrils, develop into a very complex and novel network that sometimes totally and sometimes partially encloses the vegetative nucleus and the spherical shaped generative cell in the central cytoplasm of the immature pollen. The behavior of the actin microfilamentous structure throughout the late_developmental stage of the immature pollen is extremely dynamic, and the likelihood of this structure in generating forces for vegetative nucleus and generative cell movement in the immature pollen has been discussed. No actin filaments were visualized in the spherical generative cells.
基金Supported by the National Natural Science Foundation of China (No.20336010 and No.20176025).
文摘To establish a rapid quantification method for heparinase I during its production in recombinant Escherichia coli, a translational fusion vector was constructed by fusing the N terminus of heparinase I to the C terminus of a green fluorescent protein mutant (GFPmutl). As a result, not only was the functional recombinant expression of heparinase I in E. coli accomplished, but also a linear correlation was obtained between the GFP fluorescence intensity and heparinase I activity, allowing enzyme activity to be quantified rapidly during the fermentation.
基金This work was supported by the Research Council of NorrbottenIn-novationsbron and Langmanska foretagarfonden.J.H.was supported by the Swedish Research Council(No.K2011-65X-3031-01-6)the County Council of Vastra Gotaland(ALF).
文摘The methanol inducible alcohol oxidase 1 promoter and the Saccharomyces cerevisiae alpha-factor prepro secretion signal were used to drive expression and secretion of a mucin-type fusion protein by Pichia pastoris in 1 L scale bioreactors. The aim of the study was to understand how varying expression rates influenced the secretion dynamics of the fusion protein in terms of intracellular- and extracellular concentrations. Endoplasmic reticulum (ER) folding stress was assessed by the relative expression of the unfolded protein response controlled KAR2 gene. Three predefined methanol feeding models were applied to control the fusion protein synthesis rate. To track the fusion protein synthesis in a non-invasive manner and to follow its intracellular distribution, its C-terminal was linked to the green fluorescent protein. Under all conditions the fusion protein was found to partially accumulate intracellularly, where the major fraction was an insoluble, fluorescent full-sized protein. The high degree of glycosylation of the insoluble fusion protein indicated a secretory bottle-neck in the Golgi-system. This result was consistent with low ER folding stress as quantified by the relative expression of the KAR2 gene. Reduction of recombinant protein synthesis rate, by using lower feed rates of methanol, enhanced extracellular concentrations from 8 to 18 mg·L–1 and reduced the rate of intracellular accumulation. This clearly demonstrates the importance of tuning the synthesis rate with secretory bottle-necks to maintain secretion.
基金The National Basic Research Program of China(973Program)(No.2011CB933503)the National Natural Science Foundation of China for Key Project of International Cooperation(No.61420106012)China Postdoctoral Science Foundation(No.2013M541592)
文摘To achieve a visible inverse Bin-amphiphysin-Rvs (I-BAR)domain recombinant of missing in metastasis (MIM) protein,the green fluorescent protein (GFP)encoding gene was cloned at the terminal of MIM-I-BAR as a probe.The DNA was successfully constructed on a 6xHis-tagged prokaryotic expression plasmid.The non-GFP labeled MIM-I-BAR encoding plasmid was also constructed as a control. Being successfully transformed into BL21 (DE3 )cells,the GFP-conjugated MIM-I-BAR (MIM-I-BAR-GFP ) exhibits strong visible fluorescence,and the expression product can be easily detected by visual inspection, a fluorescence microscope, Western blot or ultraviolet and visible spectrophotometer. Moreover, examination of expression efficiency under various culture conditions revealed that the MIM-I-BAR-GFP gene has a high protein yield at 10 ℃,but not at the culture temperature of 37 ℃.This property is much different from that of the non-fluorescent MIM-I-BAR gene. This optimal expression condition is also proved to be feasible for protein production in midi-scale. The fluorescent recombinant MIM-I-BAR-GFP protein can serve as a useful tool in scientific research, biomedical application and pharmaceutical development.
基金The project was supported by the National Natural Science Foundation of China(Grant Nos.30300421,30672077,and 30772142).
文摘To screen for effective small interference RNA(siRNA),a simple and visualized method was developed using the green fluorescence protein(GFP)as a reporter.Candidate siRNAs targeting macrophage migration inhibition factor genes(MIF)were identified.By using the pEGFP-N3 vector,the MIF-GFP expression plasmid,pEGFP-MIF,was constructed with the same Kozak consensus translation initiation site and start code ATG for the MIF-EGFP coding sequence.Based on the siRNA expression vector pSilencer-4.1,3 candidate MIF siRNA expression plasmids were constructed and co-transfected with the pEGFP-MIF into the HEK293 cells,respectively.The GFP expression in HEK293 cells could be viewed by fluorescence microscopy and the MIF mRNA expressions were determined by real-time quantitative PCR.The 3 candidate MIF siRNA expression plasmids were also co-transfected with the MIF expression plasmid into the HEK293 cells,respectively,and the MIF mRNA expressions were determined by real-time quantitative PCR.The results show that the down-regulated expression of the MIF mRNA was consistent with the GFP expression and the same effective MIF siRNAs were screened by using the pEGFP-MIF or MIF expression plasmid with the candidate MIF siRNAs expression plasmids.Therefore,by using the GFP as a reporter,a useful method was provided to screen for effective siRNAs targeting specific genes co-expressed with the GFP.This may be a good strategy for screening for effective siRNAs targeting different genes.
基金supported by the Key Project for International Cooperation and Exchanges,National Natural Science Foundation of China (30810103911)the National Natural Science Foundation of China(30771368)the Doctoral Fund of Ministry of Education for Young Scholar,China (20070504087)
文摘The green-fluorescent protein (gfp) gene was evaluated as a screening marker during cotton (Gossypium hirsutum L.) transforming and plant regeneration. High expression of GFP (green-fluorescent protein) was observed in transgenic cells as early as 42 h after co-culture with Agrobacterium. Most of the stable transformation events were detected in the cells of primary vascular tissue. GFP transient expression could be detected on all the explants after co-culturing for 4 d, however, the highest GFP stable expression was recorded when the explants were co-cultured for 3 d. We believe the transient and stable expression of a foreign gene in genetic transformation were two relative but different events, because high transient expression did not surely lead to high stable transformation. Under the same conditions of in vitro culture, transgenic and non-transgenic calli exhibited different morphological characters on different stages of development. High concentration of plant growth regulators (PGRs) was efficient for somatic embryogenesis of the transgenic calli, which means that the transgenic calli need relatively higher dose of hormone for further growth and somatic embryogenesis than non-transgenic ones. Strong GFP-expression was observed in leaf, stem, petioles, floral tissues, and seedlings of T~ progeny. Segregation ratios of eight transgenic lines were scored for expression of GFP in the T~ progeny that providing further evidence of stable transformation. These results proved that GFP is a powerful reporter gene for protocol optimization, selection, and monitioring in whole transformation events.
基金Project (No. 396007) supported by the National Natural ScienceFoundation of China
文摘Total RNA was isolated from the hybridoma cell line (LC- 1 ), which secretes anti-lung adenocarcinoma monoclonal antibody, and was transferred into cDNA. Based on the FRl (framework region l) and FR4 conserved regions of LC-1 gene, the variable regions of heavy chain (Vh) and light chain (Vl) were amplified, and the Vh and modified Vl were connected to single chain Fv (ScFv) by SOE-PCR (splice overlap extension PCR). The modified ScFv was fused with green fluorescent protein (GFP) and introduced into E. coli JM109. The fusion protein induced by lPTG (Isopropylthiogalactoside) was about 57000 on a 10% SDS-PAGE gel (10% Sds Polyacrylamide Gel Electrophoresis), and primarily manifested as inclusion bodies. The renatured protein purified by Ni-NTA Superflow resins showed ability to bind to antigen on SPC-A-l lung adenocarcinoma. In addition, the induced host cells fluoresced bright green under 395 nm wavelength, which indicated that the expected protein with dual activity was expressed in the prokaryotic system. The ScFv with GFP tag used in this research can be applied as a new reagent to detect immunological dye, and provide a feasible way to detect adenocarcinoma in a clinical setting.
基金supported in part by National Natural Scientific Foundation of China(8l072148,30760248,30660185,30000203)Program for New Century Excellent Talents in University of China(NCET-06-0761)+6 种基金International Cooperation Project of The Ministry of Science and Technology of the People's Republic of China(2008DFA31380)Project of Scentific Activity of Ministry of Personnel for Returnee (2007-170)Program of Science and Technology of Hunan Province(06SK4060)Program of Science and Technology of Hainan Province(070210)Program of Science and Technology of Fujian Province(2008-59-08)Project of Medical Innovation of Fujian Province(2007CX18)Program of Science and Technology of Xiamen (3502Z20084012)
文摘Objective:To investigate the effect of fusion proteins expressed by the fused gene of porcineα1,3 galactosyltransierase(α1,3 GT) and enhanced green fluorescent protein(EGFP) on the green fluorescence intensity of EGFP.Methods:The fragment containingα1.3GT was firstly recovered after the pcDNA3.1-α1.3GT recombinant vector were digested with BamHl and EcoRI,and then,the resultant fragment was ligated to the pEGFP-N1 vector which was also digested with the same enzymes.The new recombinant eukaryotic expression pEGFP/a 1,3GT vector was obtained and sequenced.The pEGFP/α1,3GT was used to transfect human lung carcinoma cells A549 and HEKC 293FT,and the expression of EGFP was quantitatively analyzed by fluorescent microscope and flow cytometry.Results:The positive percentage of A549 was 80.5%,and that of 293 FT was 86.5%48 hours after the two cell lines both were transfected by pEGFP-N1.The positive percentage of A549 was 75.8%,and that of 293 FT was 81.2%48 hours after the two cell lines were transfected by pEGFP/α1.3GT.The mean fluorescence intensities of A549 transfected with pEGFP-N1 and pEGFP/α1.3GT were 1.21 and 0.956,respectively when compared with that of A549 without transfection.Meanwhile,the those of the 293FT that were transfected with pEGFP-N1 and pEGFP/αl,3GT were 7.66 and 1.00.respectively when compared with that of 293FT cells without transfection.Conclusions:These results suggested that the expression of EGFP gene fused with porcineα1,3GT gene was partly inhibited.
基金supported by US National Science Foundation(CHE-1565520) to X. Lifunded by the STF at the University of Washingtonthe National Science Foundation (MRI-1624430).
文摘Chrornophore structures inspired by natural green fluorescent protein (GFP) play an im- portant role in the field of bio-irnaging. In this work, photochemical properties of a new class of GFP-like chromophores are investigated using computational approaches. Thermo- dynamically stable isomers are identified in vacuum and in solvent. Spectral Stokes shifts are computed and compared to experiments. An inverted solvatochromic shift between absorption and emission emerging in this new class of GFP-like chromophores is observed, and attributed to the stabilized charge transfer and inhibited rotational structural reorganization in solvent.
文摘Cronobacter sakazakii is an emerging pathogen that can cause diseases for several infant groups. These bacteria were contaminated in foods, clinical utensils, and environments. In Indonesia, C. sakazakii has been isolated from powdered infant formulas, weaning foods, and other dried foods such as cornstarch. The objective of this research is to trace survival of C. sakazakii during cornstarch production step using its mutant. Mutant was constructed by inserting Green Fluorescent Protein plasmid inside to the bacterial cell that appeared green fluorescent colonies under UV observation. The presence of C. sakazakii during processing was conducted by artificial contamination. This research consists of three steps, i.e. determination of the suitable enumeration method of C. sakazakii’s mutant, cornstarch production from yellow corn, and survival analysis of C. sakazakii during endosperm soaking and cornstarch drying. The suitable enumeration method was surface plating method on TSA-ampicillin medium combining with UV light application because of ineffectiveness of ampicillin inhibition for growth of yeasts and molds. The cornstarch produced in laboratory has the same properties with commercial cornstarch in parameters of moisture content, density, and starch granule structure. The yield of cornstarch final product was 48.90% (dry whole kernel-based). C. sakazakii cannot survive in 48 hours soaking process at 52?C and 24 hours drying process at 50?C that is applied during cornstarch production.
基金Supported by the High Technology Research and Development Program of China (863 Program) (No. 2005AA601010-05)the Natural Science Foundation of Guangdong Province (No.5010492)the Technology Project of Shenzhen City
文摘To improve the expression efficiency of exogenous genes in Chlamydomonas reinhardtii, a high efficient expression vector was constructed. Green fluorescent protein (GFP) was expressed in C. reinhardtii under the control of promoters: RBCS2 and HSP70A-RBCS2. Efficiency of transformation and expression were compared between two transgenic algae: RBCS2 mediated strain Tran-Ⅰ and HSP70A-RBCS2 mediated strain Tran-Ⅱ. Results show that HSP70A-RBCS2 could improve greatly the transformation efficiency by approximately eightfold of RBCS2, and the expression efficiency of GFP in Tran-Ⅱ was at least double of that in Tran-Ⅰ. In addition, a threefold increase of GFP in Tran-Ⅱ was induced by heat shock at 40℃. All of the results demonstrated that HSP70A-RBCS2 was more efficient than RBCS2 in expressing exogenous gene in C. reinhardtii.
基金Supported by the National Key Research and Development Program of China(No.2016YFC1402106)the Project of Innovation&Development of Marine Economy(HHCL201803)+1 种基金the National Natural Science Foundation of China(Nos.41406192,41376139)the Science and Technology Service Network Initiative of Chinese Academy of Sciences(No.KFJ-STS-ZDTP-023)
文摘Sargassum horneri is a macroalga widespread in North Asia-Pacific region, and these years its bloom has caused huge damage to the environment and the economic in China. To make up the blank on genetic engineering research, a transient transformation system for the multicellular marine brown alga S . horneri was established in this research. The algae used in this research were collected from the Yellow Sea of China and verified as a same species S . horneri with analysis of molecular markers. The S . horneri parietal leaves were transformed with the enhanced green fluorescent gene as the reporter by micro-particle bombardment. The results show that green fluorescent protein (GFP) is an eff ective transgene reporter for S . horneri and that particle bombardment is a suitable method for transformation of S . horneri . Through selection of four diff erent promoters for EGFP and six groups’ bombardment characters, the highest transformation efficiency approximately 1.31% was got with the vector pEGFP-N1 at bombardment characters 900 spi and 6 cm distance. This research paves a way for the further research and application of S . horneri .
基金supported by the National Natural Science Foundation of China (31500237)
文摘Recently, a novel green fluorescent protein eYGFPuv has been identified in the marine organism Chiridius poppei which displays high fluorescence intensity and can be visible by eyes in dark. Although strong green fluorescence was achieved in transgenic petunia, 3 expression cassettes (about 8 kb) complicate its application. In this study, to confirm whether 1 expression cassette could be used as a transgenic marker in prokaryotes and eukaryotes, eYGFPuv was cloned into prokaryotic expression vector pET28α-eYGFPuv- His and plant binary expression vector 35S::eYGFPuv. Compared to EGFP, eYGFPuv protein exhibited stronger dazzling green fluorescence in E. coli under excited light at 365 nm and maintains steadily over a long period of time without degradation. When transiently expressed in tobacco leaves, eYGFPuv protein displayed strong green fluorescence. Moreover, the fluorescence of eYGFPuv protein also could be directly observed in living plant, and thus can be used easily as a marker to screen transformed lines in transgenic research. Overall, compared to previous studies on eYGFPuv tandem repeats, our data confirmed that single eYGFPuv sequence still possesses high fluorescence intensity and quenching resistance. Furthermore, because of small size of expression cassette,it is suitable for efficient transformation in both prokaryotic and eukaryotic organisms.
基金supported in part by the Special Fund for Agro-scientific Research in the Public Interest(201303016)the China Agriculture Research System(CARS-03)from the Ministry of Agriculture of China+3 种基金by the Project of International Scientific and Technical Cooperation(2013DFG31930)the National Key Technologies Research and Development Program of China(2012BAD19B04)the Breeding and Cultivation of Novel GM Varieties(2013ZX08002001)863 Program(2012AA101501)from the Ministry of Science and Technology of China
文摘The plasmid pGPDGFP under the control ofpgpdA promotor was used together with vector pAN7-1 containing the hygromycin resistance cassette to co-transform protoplasts of HG1, Fusarium graminearum from Hubei Province, China. Twelve out of 14 hygromycin-resistant transformants showed green signal under the UV light and contained one or several copies ofgfp, as indicated by Southern analysis of genomic DNA digested with different restriction enzymes and hybridized to the gfp probe. A single gfp copy transformant (HG1C5) was selected for further evaluation of 80 Chinese wheat cultivars or advanced lines. The results showed different resistance type to F. graminearum were observed. GFP signals observed in the rachis and adjacent spikes of 70 Chinese wheat lines such as Chuanchongzu 104 indicated both type I (host resistance to the initial infection by the fungus) and type II (resistance to the spread of FHB symptoms within an infected spike) were not observed. While other 10 lines showed type II resistance to F. graminearum with GFP signals only in inoculated spikelets. Development of the mycelium can be intuitively observed and the resistance of wheat to F. graminearum can be identified at 7 days post inoculation (dpi) in this way. The results showed no differences were evaluated between the transformed HG1C5 and the non-transgene artificial inoculation by SAS paired chi-square test and McNernar's test (P=-0.0625).
文摘The persistence and performance (growth promoting potential) of green fluorescent protein (gfp) marked Azotobacter chroococcum strain ABR 4G were studied in sterilized and unsterilized wheat rhizospheric soil. The gfp was integrated via Tn 5 transposition into A. chroococcum chromosome and the resultant gfp marked colonies were identified by green fluorescent emission under UV light. The gfp was stably maintained in A. chroococcum and the gfp insertion had no apparent adverse effect on the growth promoting properties of the marked soil isolate ABR 4G. The growth promoting properties (nitrogen fixation, ammonia excretion, phosphate solubilization and IAA production) of the parent soil isolate and the gfp marked strain were found to be almost the same. All the quantitative wheat plant traits were significantly influenced by inoculation of A. chroococcum ABR 4G strain in sterilized and unsterilized soil. Inoculated bacterial counts increased gradually in wheat rhizosphere, reached maximum on 60 th d and declined on 80 th d. Fertility levels also affected survival of marked strain and the survival was comparable in sterilized and unsterilized soil. The growth promoting properties were also determined from the marked strain reisolated from wheat rhizosphere in both types of soil. Fig 1, Tab 2, Ref