The report from the 20th National Congress of China emphasizes the importance of focusing on the clean,low-carbon,and efficient use of energy,increasing financial support,and promoting green upgrading within the indus...The report from the 20th National Congress of China emphasizes the importance of focusing on the clean,low-carbon,and efficient use of energy,increasing financial support,and promoting green upgrading within the industrial sector.This paper,based on annual data,employs the entropy weight method to construct a comprehensive index reflecting the impact of green upgrading in industrial sectors.To delve deeper,it utilizes the DEA model to measure energy efficiency and its subdivision BCC model to break down energy efficiency into technical and scale efficiency.The financial support landscape is examined from the vantage points of both direct and indirect financing.Using a multivariate time series model,this paper thoroughly investigates the influence of energy efficiency and financial support on the green upgrading of the industrial sector.The findings reveal a significant positive impact of both energy efficiency and financial support on green upgrading in industrial industries.Notably,scale efficiency emerges as the primary driver of energy efficiency.Moreover,indirect financing proves to be more effective in promoting financial support than direct financing.The empirical results retain their robustness even after substituting explanatory variables.The study concludes by contextualizing the research findings within the current real-world scenario,offering practical insights,and proposing specific recommendations.展开更多
Blue, green and red up-conversion luminescence at around 490, 545 and 650 nm, which result from the Ho^3+5F3→5I8, (5F4,5S2)→3. 5I8 and 5F5→ 5I8 transitions, respectively, were observed in Nd3+-Ho3. co-doped oxy...Blue, green and red up-conversion luminescence at around 490, 545 and 650 nm, which result from the Ho^3+5F3→5I8, (5F4,5S2)→3. 5I8 and 5F5→ 5I8 transitions, respectively, were observed in Nd3+-Ho3. co-doped oxyfiuorotellurite glasses under 800 nm excitation. Among these up-conversion luminescence, the green emission was extremely strong and the blue and red emission intensities were very weak. Selectively strong green up-conversion luminescence of these glasses indicate a high possibility for realizing a green upconversion laser. Up-conversion processes for the blue, green and red emissions are two-photon processes assisted by Nd3^+→Ho^3+ energy transfer. It is proposed that the up-conversion mechanism for the blue and green emissions is different from that for the red emission. The respective mechanisms are discussed.展开更多
While reliance on renewable energy resources has become a reality, there is still a need to deploy greener and more sustainable methods in order to achieve sustainable development goals. Indeed, green hydrogen is curr...While reliance on renewable energy resources has become a reality, there is still a need to deploy greener and more sustainable methods in order to achieve sustainable development goals. Indeed, green hydrogen is currently believed to be a reliable solution for global warming and the pollution challenges arising from fossil fuels, making it the resilient fuel of the future. However, the sustainability of green hydrogen technologies is yet to be achieved. In this context, generation of green hydrogen with the aid of deep eutectic solvents(DESs) as green mixtures has been demonstrated as a promising research area. This systematic review article covers green hydrogen generation through water splitting and biomass fermentation when DESs are utilized within the generation process. It also discusses the incorporation of DESs in fuel cell technologies. DESs can play a variety of roles such as solvent, electrolyte, or precursor;colloidal suspension and reaction medium;galvanic replacement, shape-controlling, decoration, or extractive agent;finally oxidant. These roles are relevant to several methods of green hydrogen generation, including electrocatalysis, photocatalysis, and fermentation. As such, it is of utmost importance to screen potential DES formulations and determine how they can function in and contribute throughout the green hydrogen mobility stages. The realization of super green hydrogen generation stands out as a pivotal milestone in our journey towards achieving a more sustainable form of development;DESs have great potential in making this milestone achievable. Overall, incorporating DESs in hydrogen generation constitutes a promising research area and offers potential scalability for green hydrogen production, storage,transport, and utilization.展开更多
Semidwarf breeding has boosted crop production and is a well-known outcome from the first Green Revolution. The Green Revolution gene Semidwarf 1(SD1), which modulates gibberellic acid(GA) biosynthesis, plays a princi...Semidwarf breeding has boosted crop production and is a well-known outcome from the first Green Revolution. The Green Revolution gene Semidwarf 1(SD1), which modulates gibberellic acid(GA) biosynthesis, plays a principal role in determining rice plant height. Mutations in SD1 reduce rice plant height and promote lodging resistance and fertilizer tolerance to increase grain production. The plant height mediated by SD1 also favors grain yield under certain conditions. However, it is not yet known whether the function of SD1 in upland rice promotes adaptation and grain production. In this study, the plant height and grain yield of irrigated and upland rice were comparatively analyzed under paddy and dryland conditions. In response to dryland environments, rice requires a reduction in plant height to cope with water deficits. Upland rice accessions had greater plant heights than their irrigated counterparts under both paddy and dryland conditions, and appropriately reducing plant height could improve adaptability to dryland environments and maintain high grain yield formation. Moreover, upland rice cultivars with thicker stem diameters had stronger lodging resistance, which addresses the lodging problem. Knockout of SD1 in the upland rice cultivar IRAT104 reduced the plant height and grain yield, demonstrating that the adjustment of plant height mediated by SD1 could increase grain production in dryland fields. In addition, an SD1 genetic diversity analysis verified that haplotype variation causes phenotypic variation in plant height. During the breeding history of rice, SD1 allelic mutations were selected from landraces to improve the grain yield of irrigated rice cultivars, and this selection was accompanied by a reduction in plant height. Thus, five known mutant alleles were analyzed to verify that functional SD1 is required for upland rice production. All these results suggest that SD1 might have undergone artificial positive selection in upland rice, which provides further insights concerning greater plant height in upland rice breeding.展开更多
Achieving the green development of agriculture requires the reduction of chemical nitrogen(N)fertilizer input.Previous studies have confirmed that returning green manure to the field is an effective measure to improve...Achieving the green development of agriculture requires the reduction of chemical nitrogen(N)fertilizer input.Previous studies have confirmed that returning green manure to the field is an effective measure to improve crop yields while substituting partial chemical N fertilizer.However,it remains unclear how to further intensify the substituting function of green manure and elucidate its underlying agronomic mechanism.In a split-plot field experiment in spring wheat,different green manures returned to the field under reduced chemical N supply was established in an oasis area since 2018,in order to investigate the effect of green manure and reduced N on grain yield,N uptake,N use efficiency(NUE),N nutrition index,soil organic matter,and soil N of wheat in 2020-2022.Our results showed that mixed sown common vetch and hairy vetch can substitute 40%of chemical N fertilizer without reducing grain yield or N accumulation.Noteworthily,mixed sown common vetch and hairy vetch under reduced N by 20%showed the highest N agronomy efficiency and recovery efficiency,which were 92.0%and 46.0%higher than fallow after wheat harvest and conventional N application rate,respectively.The increase in NUE of wheat was mainly attributed to mixed sown common vetch and hairy vetch,which increased N transportation quantity and transportation rate at pre-anthesis,enhanced N harvest index,optimized N nutrition index,and increased activities of nitrate reductase and glutamine synthetase of leaf,respectively.Meanwhile,mixed sown common vetch and hairy vetch under reduced N by 20%improved soil organic matter and N contents.Therefore,mixed sown common vetch and hairy vetch can substitute 40%of chemical N fertilizer while maintaining grain yield and N accumulation,and it combined with reduced chemical N by 20%or 40%improved NUE of wheat via enhancing N supply and uptake.展开更多
Sustainable growth is a prerequisite for high-quality development,and inclusive green growth is regarded as an important way to realize sustainable growth.This paper constructs a tourism inclusive green growth index(I...Sustainable growth is a prerequisite for high-quality development,and inclusive green growth is regarded as an important way to realize sustainable growth.This paper constructs a tourism inclusive green growth index(IGGI)system based on the 2018 Asian Development Bank IGGI.Using Shandong Province from 2017 to 2019,the entropy weight method is utilized to explore the degree of coupling and coordination among the subsystems of tourism inclusive green growth.The study shows that:(1)the tourism IGGI continues to grow;(2)in the tourism inclusive green growth system,the social equity subsystem shows a trend of steady improvement;and(3)in the system,there is a slight discordance between the economic growth subsystem and the environmental sustainability subsystem.The study aims to provide the scientific basis for the high-quality development of tourism and theoretical support for the field of tourism and environmental sustainability.展开更多
Background:Green tea,mulberry leaf and corn silk are traditional herbs used in the prevention and treatment of diabetes in China for a long time,but their synergistic hypoglycemic effects and mechanisms remain unclear...Background:Green tea,mulberry leaf and corn silk are traditional herbs used in the prevention and treatment of diabetes in China for a long time,but their synergistic hypoglycemic effects and mechanisms remain unclear.Methods:The effective components of green tea,mulberry leaf and corn silk were extracted and enriched.Mixture design of experiments was used to study the influences of different combinations on the cell viability and glucose uptake level of L6 myoblasts,so as to determine the optimal synergistic hypoglycemic combination.The possible hypoglycemic mechanism of the optimal synergistic combination was explored by cytotoxicity assay,glucose uptake assay,and western blot.Results:Three polyphenol enrichment fractions of the herbs,30%ethanol elution fraction of green tea(GT),50%ethanol elution fraction of mulberry leaf(ML)and 60%ethanol elution fraction of corn silk(CS)were obtained.The antioxidant activities of GT-30%,ML-50%and CS-60%were superior to those of crude extracts,and showed strong potential inα-amylase andα-glucosidase inhibition activities.The optimal synergistic combination of crude extracts G7(crude extract of green tea:crude extract of mulberry leaf:crude extract of corn silk=1:5:3),polyphenol enrichment fractions R3(GT-30%:ML-50%:CS-60%=1:7:1)and monomers X2(epigallocatechin gallate:morusin:formononetin=3:1:2)were selected,respectively.G7,R3,and X2 showed promoting effects on the cell viability and glucose uptake of L6 myoblasts within the detected concentration range.In addition,G7,R3,and X2 could increase the expression levels of p-PI3K/PI3K and p-Akt/Akt in L6 myoblasts,and promote the translocation of Glut4,but G7 and R3 showed more significant effects.Conclusion:The synergistic hypoglycemic effects of green tea,mulberry leaf and corn silk had the characteristics of multiple-components and multiple-targets with p-PI3K/PI3K,p-Akt/Akt and the translocation of Glut4 signal pathways involved.The three traditional herbs might have the potential to be combined used for the prevention and treatment of diabetes based on the synergistic hypoglycemic effects.展开更多
The movement of the Iron&Steelmaking(I&S)industry towards Net-Zero emissions and digitalized processes through disruptive,breakthrough technologies will be achieved through the use of Hydrogen.The biggest chal...The movement of the Iron&Steelmaking(I&S)industry towards Net-Zero emissions and digitalized processes through disruptive,breakthrough technologies will be achieved through the use of Hydrogen.The biggest challenge for the refractory industry is to continue to meet the performance expectations while,at the same time,moving to a more sustainable production direction.The complexity and urgency of these technological changes,highlighted by the European Green Deal,requires ambitious,international,interdisciplinary and intersectoral projects,bringing together institutes from across the global value chain,to carry out cutting edge research.The European Union,through its flagship doctoral training program,MSCA,has,and continues to support research and development as well as the promotion of the refractory industry in Europe.An introduction to two MSCA projects and some of the results achieved are highlighted within this article.展开更多
With the increasingly severe global climate change problem,the“dual carbon”goals(peak carbon emissions and carbon neutrality)have become a common focus of international attention.The report of the 20th National Cong...With the increasingly severe global climate change problem,the“dual carbon”goals(peak carbon emissions and carbon neutrality)have become a common focus of international attention.The report of the 20th National Congress of the Communist Party of China clearly emphasizes the need to accelerate the green transformation of development models,implement comprehensive strategies for frugal development,support the growth of green and low-carbon industries,and promote the concept of green consumption.At the same time,“Made in China 2025”also elaborates on the strategic concept of innovation-driven and green development centered,and strives for breakthroughs in key industries such as new energy vehicles.In such a macro environment,adopting green innovation measures by enterprises not only contributes to ecological protection but also has an undeniable impact on their economic performance and overall value.This article takes BYD Group as a case study to explore in detail the positive effects of green innovation on its economic performance.We first systematically organized and analyzed BYD’s specific practices in green innovation;Then,by examining three key financial indicators,BYD’s current financial situation was analyzed in depth;On this basis,combined with research data,the positive impact of green innovation on BYD’s financial performance was revealed;Finally,based on the analysis results,relevant suggestions are proposed to provide reference for the sustainable development of enterprises in the context of“dual carbon.”展开更多
为了建立水禽细小病毒(WPV)快速检测方法,根据序列比对结果在水禽细小病毒NS基因SF3保守区域内设计特异性引物,建立SYBR Green Ⅰ荧光定量PCR通用检测方法。该方法的扩增效率(E)为90.0%,相关系数(R~2)=0.99,标准曲线方程为y=-3.607x+38....为了建立水禽细小病毒(WPV)快速检测方法,根据序列比对结果在水禽细小病毒NS基因SF3保守区域内设计特异性引物,建立SYBR Green Ⅰ荧光定量PCR通用检测方法。该方法的扩增效率(E)为90.0%,相关系数(R~2)=0.99,标准曲线方程为y=-3.607x+38.77;除WPV出现S形扩增曲线外,新城疫病毒(NDV)、H9亚型禽流感病毒(H9 AIV)、鸭坦布苏病毒(DTMUV)、鸭肝炎病毒(DHAV)、鸭肠炎病毒(DEV)、鸭呼肠孤病毒(DRV)样品均未出现S形阳性扩增曲线;批内变异系数(CV)为0.15%~0.23%,批间变异系数为0.09%~0.28%。结果表明,SYBR Green Ⅰ荧光定量PCR检测方法重复性好、灵敏度高和特异性强。临床样品检测结果表明,SYBR Green Ⅰ荧光定量PCR与普通PCR的符合率达98.4%,灵敏度是普通PCR的1 000倍。SYBR Green Ⅰ荧光定量PCR检测方法不仅能定性检测WPV,还可以进行定量检测,可用于种鸭场、种鹅场的WPV净化检测,也可用于WPV临床大量样品的快速检测。展开更多
为了建立高效、灵敏的猪流行性腹泻病毒(PEDV)检测方法,本研究从GenBank数据库中获取PEDV N基因序列,扩增出PEDV N基因标准质粒,并在N基因的保守区域内设计了一对特异性荧光定量引物,成功建立了SYBR Green I实时荧光定量PCR检测方法。...为了建立高效、灵敏的猪流行性腹泻病毒(PEDV)检测方法,本研究从GenBank数据库中获取PEDV N基因序列,扩增出PEDV N基因标准质粒,并在N基因的保守区域内设计了一对特异性荧光定量引物,成功建立了SYBR Green I实时荧光定量PCR检测方法。经过一系列试验表明,该检测方法线性关系良好,R^(2)值为0.99;特异性强,敏感性高,最低可检测至2.23 copies/μL,比普通PCR灵敏约100倍;重复性好,组内变异系数为0.25%~0.43%,组间变异系数为0.67%~0.97%;对于各地区96份临床样品检测出PEDV阳性率为25%。本研究建立的实时荧光定量PCR检测方法为PEDV的临床诊断、流行病学调查以及定量研究提供了有效的检测工具。展开更多
Since 2015, green tides have been blooming in offshore waters of Qinhuangdao, with serious impacts on the local ecological environment and tourism. Ulva australis, Bryopsis plumosa, and U. prolifera are the dominant s...Since 2015, green tides have been blooming in offshore waters of Qinhuangdao, with serious impacts on the local ecological environment and tourism. Ulva australis, Bryopsis plumosa, and U. prolifera are the dominant species of Qinhuangdao green tides, following a sequential succession pattern. Ulva prolifera is the dominant species,with the highest biomass and the greatest influence on the local ecological environment. To study the reason of green tide dominant species succession and U. profilera became the dominant species with the largest biomass,we compared and analyzed the growth and nutrient uptake capacity of the three algae. The results showed that temperature significantly affects the growth of the three species. Within the temperature range of the experimental setup, the optimum temperature for the growth of U. australis, B. plumosa and U. profilera is10℃, 15℃, and 20–25℃, respectively. Combined with the temperature variation trend during green tide bloom development, we believe that temperature is the key environmental factor for the succession of the dominant species. Ulva prolifera has a higher growth rate than U. australis and B. plumosa under the same nitrate,ammonium, and phosphate levels. Significant differences in the maximum absorption rate(R_(max)) and R_(max)/Ks(the relationship between uptake rate and substrate concentration) values indicated that U. prolifera had an apparent competitive advantage over U. australis and B. plumosa regarding nutrient uptake. Therefore, the strong growth and nutrient uptake capacities of U. prolifera might be the main reason for becoming the dominant species with the largest biomass in Qinhuangdao green tides.展开更多
Objective:Laparoscopic pelvic lymph node dissection(LPND),which is an effective therapy for endometrial cancer,is challenging because of the complexity of the procedure and the occurrence of postoperative complication...Objective:Laparoscopic pelvic lymph node dissection(LPND),which is an effective therapy for endometrial cancer,is challenging because of the complexity of the procedure and the occurrence of postoperative complications.This study aimed to explore whether indocyanine green(ICG)-enhanced nearinfrared(NIR)fluorescence-guided LPND is superior to LPND in the context of early-stage endometrial carcinoma.Methods:In this retrospective study,we included the medical records of 190 patients with early-stage endometrioid adenocarcinoma who underwent LPND at the Department of Obstetrics and Gynecology,Sir Run Run Shaw Hospital,Zhejiang University School of Medicine between January 2019 and January 2021.Depending on whether ICG-enhanced NIR fluorescence guidance was used,the patients were assigned to the ICG group or non-ICG group.Patients were followed-up for one year after surgery.Data on demographic characteristics,pathological results,operative outcomes,and complications were collected and analyzed.Results:The baseline characteristics were comparable between the ICG group and non-ICG group,including age,BMI,pregnancy history,and preoperative hemoglobin.For surgical outcomes,the patients in ICG group had significantly lower intraoperative blood loss(50 mL vs.120 mL,p<0.001),less postoperative pelvic drainage time(4.14±1.44 d vs.5.70±1.89 d,p¼0.001),shorter duration of hospital stay(5.26±1.41 d vs.7.37±1.85 d,p¼0.003),higher number of positive pelvic lymph nodes(PLNs)(1 vs.0,p¼0.003),and more PLN-positive cases(16.0%vs.3.6%,p¼0.003)than the patients in non-ICG group.However,no significant differences were noted in blood transfusion requirement,operative time,hemoglobin level decreases,number of PLNs harvested,or the presence of lymphocysts between the two groups.Conclusion:Our study showed that ICG-enhanced NIR fluorescence-guided operation may improve the accuracy and safety of LPND.展开更多
The green development of Chongqing municipality is crucial in establishing a major ecological shield in the upper reaches of the Yangtze River.By developing a Super-SBM model and using the Malmquist index to analyze a...The green development of Chongqing municipality is crucial in establishing a major ecological shield in the upper reaches of the Yangtze River.By developing a Super-SBM model and using the Malmquist index to analyze and calculate the green development efficiency and its influencing factors in Chongqing from 2011 to 2021,this study reveals an accelerating trend in the overall green development efficiency in Chongqing.The significant enhancement of green development efficiency in Chongqing is primarily attributed to changes in returns to scale.Pure technical efficiency and technological advancements have a considerable potential impact on improving green development efficiency in Chongqing.Furthermore,there are discernible disparities in green development efficiency among districts and counties in Chongqing,with different factors influencing these variations.Chongqing is suggested to promote clean and efficient energy utilization,bolster the application and commercialization of scientific and technological advancements,consistently advance ecological restoration and management,and elevate the quality of green development to a higher level.展开更多
In this study,a green and pollution-free multifunctional superhydrophobic paper-based material was prepared using a simple and efficient dipping method.The superhydrophobic paper with a water contact angle(WCA)of 160&...In this study,a green and pollution-free multifunctional superhydrophobic paper-based material was prepared using a simple and efficient dipping method.The superhydrophobic paper with a water contact angle(WCA)of 160°was prepared by attaching micro-and nanocomposite particles,made of stearic acid-modified chitosan and two kinds of titanium dioxide(TiO_(2))nanoparticles of different sizes,to a paper substrate.The surface morphology,elemental composition,and wetting properties of the coatings were examined using scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),Fourier transform infrared spectroscopy(FT-IR),and contact angle measurements.Additionally,superhydrophobic coatings exhibited good self-cleaning properties,liquid repellency,ease of repair,and antifouling properties in organic solutions.展开更多
基金General Research Fund of Philosophy and Social Sciences in Colleges and Universities of Jiangsu Province in 2020(Grant No.2020SJA1008)Fundamental Research Funds for the Central Universities(Grant No.2023SK04)。
文摘The report from the 20th National Congress of China emphasizes the importance of focusing on the clean,low-carbon,and efficient use of energy,increasing financial support,and promoting green upgrading within the industrial sector.This paper,based on annual data,employs the entropy weight method to construct a comprehensive index reflecting the impact of green upgrading in industrial sectors.To delve deeper,it utilizes the DEA model to measure energy efficiency and its subdivision BCC model to break down energy efficiency into technical and scale efficiency.The financial support landscape is examined from the vantage points of both direct and indirect financing.Using a multivariate time series model,this paper thoroughly investigates the influence of energy efficiency and financial support on the green upgrading of the industrial sector.The findings reveal a significant positive impact of both energy efficiency and financial support on green upgrading in industrial industries.Notably,scale efficiency emerges as the primary driver of energy efficiency.Moreover,indirect financing proves to be more effective in promoting financial support than direct financing.The empirical results retain their robustness even after substituting explanatory variables.The study concludes by contextualizing the research findings within the current real-world scenario,offering practical insights,and proposing specific recommendations.
基金Supported by the National Natural Science Foundation of China (No.50772045)
文摘Blue, green and red up-conversion luminescence at around 490, 545 and 650 nm, which result from the Ho^3+5F3→5I8, (5F4,5S2)→3. 5I8 and 5F5→ 5I8 transitions, respectively, were observed in Nd3+-Ho3. co-doped oxyfiuorotellurite glasses under 800 nm excitation. Among these up-conversion luminescence, the green emission was extremely strong and the blue and red emission intensities were very weak. Selectively strong green up-conversion luminescence of these glasses indicate a high possibility for realizing a green upconversion laser. Up-conversion processes for the blue, green and red emissions are two-photon processes assisted by Nd3^+→Ho^3+ energy transfer. It is proposed that the up-conversion mechanism for the blue and green emissions is different from that for the red emission. The respective mechanisms are discussed.
基金the Ministry of Higher Education,Research and Innovation(MoHERI)Oman for their support of this research through TRC block funding Grant no.:BFP/RGP/EBR/22/378。
文摘While reliance on renewable energy resources has become a reality, there is still a need to deploy greener and more sustainable methods in order to achieve sustainable development goals. Indeed, green hydrogen is currently believed to be a reliable solution for global warming and the pollution challenges arising from fossil fuels, making it the resilient fuel of the future. However, the sustainability of green hydrogen technologies is yet to be achieved. In this context, generation of green hydrogen with the aid of deep eutectic solvents(DESs) as green mixtures has been demonstrated as a promising research area. This systematic review article covers green hydrogen generation through water splitting and biomass fermentation when DESs are utilized within the generation process. It also discusses the incorporation of DESs in fuel cell technologies. DESs can play a variety of roles such as solvent, electrolyte, or precursor;colloidal suspension and reaction medium;galvanic replacement, shape-controlling, decoration, or extractive agent;finally oxidant. These roles are relevant to several methods of green hydrogen generation, including electrocatalysis, photocatalysis, and fermentation. As such, it is of utmost importance to screen potential DES formulations and determine how they can function in and contribute throughout the green hydrogen mobility stages. The realization of super green hydrogen generation stands out as a pivotal milestone in our journey towards achieving a more sustainable form of development;DESs have great potential in making this milestone achievable. Overall, incorporating DESs in hydrogen generation constitutes a promising research area and offers potential scalability for green hydrogen production, storage,transport, and utilization.
基金supported by grants from the National Natural Science Foundation of China(32272079 and 32060474)the Yunnan Provincial Science and Technology Department,China(202101AS070001 and 202201BF070001-011)。
文摘Semidwarf breeding has boosted crop production and is a well-known outcome from the first Green Revolution. The Green Revolution gene Semidwarf 1(SD1), which modulates gibberellic acid(GA) biosynthesis, plays a principal role in determining rice plant height. Mutations in SD1 reduce rice plant height and promote lodging resistance and fertilizer tolerance to increase grain production. The plant height mediated by SD1 also favors grain yield under certain conditions. However, it is not yet known whether the function of SD1 in upland rice promotes adaptation and grain production. In this study, the plant height and grain yield of irrigated and upland rice were comparatively analyzed under paddy and dryland conditions. In response to dryland environments, rice requires a reduction in plant height to cope with water deficits. Upland rice accessions had greater plant heights than their irrigated counterparts under both paddy and dryland conditions, and appropriately reducing plant height could improve adaptability to dryland environments and maintain high grain yield formation. Moreover, upland rice cultivars with thicker stem diameters had stronger lodging resistance, which addresses the lodging problem. Knockout of SD1 in the upland rice cultivar IRAT104 reduced the plant height and grain yield, demonstrating that the adjustment of plant height mediated by SD1 could increase grain production in dryland fields. In addition, an SD1 genetic diversity analysis verified that haplotype variation causes phenotypic variation in plant height. During the breeding history of rice, SD1 allelic mutations were selected from landraces to improve the grain yield of irrigated rice cultivars, and this selection was accompanied by a reduction in plant height. Thus, five known mutant alleles were analyzed to verify that functional SD1 is required for upland rice production. All these results suggest that SD1 might have undergone artificial positive selection in upland rice, which provides further insights concerning greater plant height in upland rice breeding.
基金support of the Natural Science Foundation of China(U21A20218)the National Key Research and Development Program(2021YFD1700202-02)+1 种基金the Agricultural Research System of China(CARS-22-G-12)the Fostering Foundation for the Excellent Ph.D.Dissertation of Gansu Agricultural University(YB2024002).
文摘Achieving the green development of agriculture requires the reduction of chemical nitrogen(N)fertilizer input.Previous studies have confirmed that returning green manure to the field is an effective measure to improve crop yields while substituting partial chemical N fertilizer.However,it remains unclear how to further intensify the substituting function of green manure and elucidate its underlying agronomic mechanism.In a split-plot field experiment in spring wheat,different green manures returned to the field under reduced chemical N supply was established in an oasis area since 2018,in order to investigate the effect of green manure and reduced N on grain yield,N uptake,N use efficiency(NUE),N nutrition index,soil organic matter,and soil N of wheat in 2020-2022.Our results showed that mixed sown common vetch and hairy vetch can substitute 40%of chemical N fertilizer without reducing grain yield or N accumulation.Noteworthily,mixed sown common vetch and hairy vetch under reduced N by 20%showed the highest N agronomy efficiency and recovery efficiency,which were 92.0%and 46.0%higher than fallow after wheat harvest and conventional N application rate,respectively.The increase in NUE of wheat was mainly attributed to mixed sown common vetch and hairy vetch,which increased N transportation quantity and transportation rate at pre-anthesis,enhanced N harvest index,optimized N nutrition index,and increased activities of nitrate reductase and glutamine synthetase of leaf,respectively.Meanwhile,mixed sown common vetch and hairy vetch under reduced N by 20%improved soil organic matter and N contents.Therefore,mixed sown common vetch and hairy vetch can substitute 40%of chemical N fertilizer while maintaining grain yield and N accumulation,and it combined with reduced chemical N by 20%or 40%improved NUE of wheat via enhancing N supply and uptake.
基金supported by the S&T Program of Hebei(soft science research project)of China[Grant No.21557603D].
文摘Sustainable growth is a prerequisite for high-quality development,and inclusive green growth is regarded as an important way to realize sustainable growth.This paper constructs a tourism inclusive green growth index(IGGI)system based on the 2018 Asian Development Bank IGGI.Using Shandong Province from 2017 to 2019,the entropy weight method is utilized to explore the degree of coupling and coordination among the subsystems of tourism inclusive green growth.The study shows that:(1)the tourism IGGI continues to grow;(2)in the tourism inclusive green growth system,the social equity subsystem shows a trend of steady improvement;and(3)in the system,there is a slight discordance between the economic growth subsystem and the environmental sustainability subsystem.The study aims to provide the scientific basis for the high-quality development of tourism and theoretical support for the field of tourism and environmental sustainability.
基金the grant from National Key Research and Development Program of China(Grant No.2021YFE0110000)the grant from Tianjin Municipal Science and Technology Foundation(Grant No.22JCYBJC00160).
文摘Background:Green tea,mulberry leaf and corn silk are traditional herbs used in the prevention and treatment of diabetes in China for a long time,but their synergistic hypoglycemic effects and mechanisms remain unclear.Methods:The effective components of green tea,mulberry leaf and corn silk were extracted and enriched.Mixture design of experiments was used to study the influences of different combinations on the cell viability and glucose uptake level of L6 myoblasts,so as to determine the optimal synergistic hypoglycemic combination.The possible hypoglycemic mechanism of the optimal synergistic combination was explored by cytotoxicity assay,glucose uptake assay,and western blot.Results:Three polyphenol enrichment fractions of the herbs,30%ethanol elution fraction of green tea(GT),50%ethanol elution fraction of mulberry leaf(ML)and 60%ethanol elution fraction of corn silk(CS)were obtained.The antioxidant activities of GT-30%,ML-50%and CS-60%were superior to those of crude extracts,and showed strong potential inα-amylase andα-glucosidase inhibition activities.The optimal synergistic combination of crude extracts G7(crude extract of green tea:crude extract of mulberry leaf:crude extract of corn silk=1:5:3),polyphenol enrichment fractions R3(GT-30%:ML-50%:CS-60%=1:7:1)and monomers X2(epigallocatechin gallate:morusin:formononetin=3:1:2)were selected,respectively.G7,R3,and X2 showed promoting effects on the cell viability and glucose uptake of L6 myoblasts within the detected concentration range.In addition,G7,R3,and X2 could increase the expression levels of p-PI3K/PI3K and p-Akt/Akt in L6 myoblasts,and promote the translocation of Glut4,but G7 and R3 showed more significant effects.Conclusion:The synergistic hypoglycemic effects of green tea,mulberry leaf and corn silk had the characteristics of multiple-components and multiple-targets with p-PI3K/PI3K,p-Akt/Akt and the translocation of Glut4 signal pathways involved.The three traditional herbs might have the potential to be combined used for the prevention and treatment of diabetes based on the synergistic hypoglycemic effects.
基金the European Union's Horizon 2020 research and innovation program under grant agreement No.764987.The CESAREF project has received funding from the European Union's Horizon Europe research and innovation programunder grant agreement No.101072625.
文摘The movement of the Iron&Steelmaking(I&S)industry towards Net-Zero emissions and digitalized processes through disruptive,breakthrough technologies will be achieved through the use of Hydrogen.The biggest challenge for the refractory industry is to continue to meet the performance expectations while,at the same time,moving to a more sustainable production direction.The complexity and urgency of these technological changes,highlighted by the European Green Deal,requires ambitious,international,interdisciplinary and intersectoral projects,bringing together institutes from across the global value chain,to carry out cutting edge research.The European Union,through its flagship doctoral training program,MSCA,has,and continues to support research and development as well as the promotion of the refractory industry in Europe.An introduction to two MSCA projects and some of the results achieved are highlighted within this article.
基金Interim Achievements of the 2023 Internationalization Special Projects 2023ZX13 and 2023ZX14 of Zhejiang Financial College。
文摘With the increasingly severe global climate change problem,the“dual carbon”goals(peak carbon emissions and carbon neutrality)have become a common focus of international attention.The report of the 20th National Congress of the Communist Party of China clearly emphasizes the need to accelerate the green transformation of development models,implement comprehensive strategies for frugal development,support the growth of green and low-carbon industries,and promote the concept of green consumption.At the same time,“Made in China 2025”also elaborates on the strategic concept of innovation-driven and green development centered,and strives for breakthroughs in key industries such as new energy vehicles.In such a macro environment,adopting green innovation measures by enterprises not only contributes to ecological protection but also has an undeniable impact on their economic performance and overall value.This article takes BYD Group as a case study to explore in detail the positive effects of green innovation on its economic performance.We first systematically organized and analyzed BYD’s specific practices in green innovation;Then,by examining three key financial indicators,BYD’s current financial situation was analyzed in depth;On this basis,combined with research data,the positive impact of green innovation on BYD’s financial performance was revealed;Finally,based on the analysis results,relevant suggestions are proposed to provide reference for the sustainable development of enterprises in the context of“dual carbon.”
文摘为了建立水禽细小病毒(WPV)快速检测方法,根据序列比对结果在水禽细小病毒NS基因SF3保守区域内设计特异性引物,建立SYBR Green Ⅰ荧光定量PCR通用检测方法。该方法的扩增效率(E)为90.0%,相关系数(R~2)=0.99,标准曲线方程为y=-3.607x+38.77;除WPV出现S形扩增曲线外,新城疫病毒(NDV)、H9亚型禽流感病毒(H9 AIV)、鸭坦布苏病毒(DTMUV)、鸭肝炎病毒(DHAV)、鸭肠炎病毒(DEV)、鸭呼肠孤病毒(DRV)样品均未出现S形阳性扩增曲线;批内变异系数(CV)为0.15%~0.23%,批间变异系数为0.09%~0.28%。结果表明,SYBR Green Ⅰ荧光定量PCR检测方法重复性好、灵敏度高和特异性强。临床样品检测结果表明,SYBR Green Ⅰ荧光定量PCR与普通PCR的符合率达98.4%,灵敏度是普通PCR的1 000倍。SYBR Green Ⅰ荧光定量PCR检测方法不仅能定性检测WPV,还可以进行定量检测,可用于种鸭场、种鹅场的WPV净化检测,也可用于WPV临床大量样品的快速检测。
基金The Fund of Key Laboratory of Ecological Prewarning,Protection and Restoration of Bohai Sea,Ministry of Natural Resources under contract No.2022107the Qingdao Postdoctoral Applied Research Project under contract No.QDBSH202001。
文摘Since 2015, green tides have been blooming in offshore waters of Qinhuangdao, with serious impacts on the local ecological environment and tourism. Ulva australis, Bryopsis plumosa, and U. prolifera are the dominant species of Qinhuangdao green tides, following a sequential succession pattern. Ulva prolifera is the dominant species,with the highest biomass and the greatest influence on the local ecological environment. To study the reason of green tide dominant species succession and U. profilera became the dominant species with the largest biomass,we compared and analyzed the growth and nutrient uptake capacity of the three algae. The results showed that temperature significantly affects the growth of the three species. Within the temperature range of the experimental setup, the optimum temperature for the growth of U. australis, B. plumosa and U. profilera is10℃, 15℃, and 20–25℃, respectively. Combined with the temperature variation trend during green tide bloom development, we believe that temperature is the key environmental factor for the succession of the dominant species. Ulva prolifera has a higher growth rate than U. australis and B. plumosa under the same nitrate,ammonium, and phosphate levels. Significant differences in the maximum absorption rate(R_(max)) and R_(max)/Ks(the relationship between uptake rate and substrate concentration) values indicated that U. prolifera had an apparent competitive advantage over U. australis and B. plumosa regarding nutrient uptake. Therefore, the strong growth and nutrient uptake capacities of U. prolifera might be the main reason for becoming the dominant species with the largest biomass in Qinhuangdao green tides.
基金supported by the Medical and Health Research Project of Zhejiang Province(2018RC008,2018KY113,and WKJ-ZJ-2125)Zhejiang Provincial Natural Science Foundation(LQ20H040011).
文摘Objective:Laparoscopic pelvic lymph node dissection(LPND),which is an effective therapy for endometrial cancer,is challenging because of the complexity of the procedure and the occurrence of postoperative complications.This study aimed to explore whether indocyanine green(ICG)-enhanced nearinfrared(NIR)fluorescence-guided LPND is superior to LPND in the context of early-stage endometrial carcinoma.Methods:In this retrospective study,we included the medical records of 190 patients with early-stage endometrioid adenocarcinoma who underwent LPND at the Department of Obstetrics and Gynecology,Sir Run Run Shaw Hospital,Zhejiang University School of Medicine between January 2019 and January 2021.Depending on whether ICG-enhanced NIR fluorescence guidance was used,the patients were assigned to the ICG group or non-ICG group.Patients were followed-up for one year after surgery.Data on demographic characteristics,pathological results,operative outcomes,and complications were collected and analyzed.Results:The baseline characteristics were comparable between the ICG group and non-ICG group,including age,BMI,pregnancy history,and preoperative hemoglobin.For surgical outcomes,the patients in ICG group had significantly lower intraoperative blood loss(50 mL vs.120 mL,p<0.001),less postoperative pelvic drainage time(4.14±1.44 d vs.5.70±1.89 d,p¼0.001),shorter duration of hospital stay(5.26±1.41 d vs.7.37±1.85 d,p¼0.003),higher number of positive pelvic lymph nodes(PLNs)(1 vs.0,p¼0.003),and more PLN-positive cases(16.0%vs.3.6%,p¼0.003)than the patients in non-ICG group.However,no significant differences were noted in blood transfusion requirement,operative time,hemoglobin level decreases,number of PLNs harvested,or the presence of lymphocysts between the two groups.Conclusion:Our study showed that ICG-enhanced NIR fluorescence-guided operation may improve the accuracy and safety of LPND.
文摘The green development of Chongqing municipality is crucial in establishing a major ecological shield in the upper reaches of the Yangtze River.By developing a Super-SBM model and using the Malmquist index to analyze and calculate the green development efficiency and its influencing factors in Chongqing from 2011 to 2021,this study reveals an accelerating trend in the overall green development efficiency in Chongqing.The significant enhancement of green development efficiency in Chongqing is primarily attributed to changes in returns to scale.Pure technical efficiency and technological advancements have a considerable potential impact on improving green development efficiency in Chongqing.Furthermore,there are discernible disparities in green development efficiency among districts and counties in Chongqing,with different factors influencing these variations.Chongqing is suggested to promote clean and efficient energy utilization,bolster the application and commercialization of scientific and technological advancements,consistently advance ecological restoration and management,and elevate the quality of green development to a higher level.
基金the financial support from the Key Research and Development Project of Shandong Province (2019GHY112040)National Natural Science Foundation of China (22078167)+4 种基金Youth Innovative Team Development Plan of Colleges and Universities in Shandong Province (2019KJC008)Shandong Province Major Innovation Project (2018CXGC1001)Foundation (No. XWZR201901) of the State Key Laboratory of Bio-based Material and Green Papermaking, Qilu University of TechnologyMajor Innovation Project of Qingdao West Coast (2019-27)Shandong Province Key Supporting Areas for Introducing Urgently Needed and Shortage of Talents Project-Key Technology Research and Development and Industrialization of Highly Water-Resistant Biomass-Based Materials。
文摘In this study,a green and pollution-free multifunctional superhydrophobic paper-based material was prepared using a simple and efficient dipping method.The superhydrophobic paper with a water contact angle(WCA)of 160°was prepared by attaching micro-and nanocomposite particles,made of stearic acid-modified chitosan and two kinds of titanium dioxide(TiO_(2))nanoparticles of different sizes,to a paper substrate.The surface morphology,elemental composition,and wetting properties of the coatings were examined using scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),Fourier transform infrared spectroscopy(FT-IR),and contact angle measurements.Additionally,superhydrophobic coatings exhibited good self-cleaning properties,liquid repellency,ease of repair,and antifouling properties in organic solutions.