The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, ...The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, the integrated Green’s function method has been adopted to solve the 3D Poisson equation subject to open boundary conditions. In this paper, we report on the efficient implementation of this method, which can save more than a factor of 50 computing time compared with the direct brute force implementation and its improvement under certain extreme conditions.展开更多
The singularities, oscillatory performances and the contributing factors to the 3-'D translating-pulsating source Green function of deep-water Havelock form which consists of a local disturbance part and a far-field ...The singularities, oscillatory performances and the contributing factors to the 3-'D translating-pulsating source Green function of deep-water Havelock form which consists of a local disturbance part and a far-field wave-like part, are analyzed systematically. Relative numerical integral methods about the two parts are presented in this paper. An improved method based on LOBATTO rule is used to eliminate singularities caused respectively by infinite discontinuity and jump discontinuous node from the local disturbance part function, which makes the improvement of calculation efficiency and accuracy possible. And variable substitution is applied to remove the singularity existing at the end of the integral interval of the far-field wave-like part function. Two auxiliary techniques such as valid interval calculation and local refinement of integral steps technique in narrow zones near false singularities are applied so as to avoid unnecessary integration of invalid interval and improve integral accordance. Numerical test results have proved the efficiency and accuracy in these integral methods that thus can be applied to calculate hydrodynamic performance of floating structures moving in waves.展开更多
This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones a...This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.展开更多
The possible exotic nuclear properties in the neutron-rich Ca,Ni,Zr,and Sn isotopes are examined with the continuum Skyrme Hartree-Fock-Bogoliubov theory in the framework of the Green’s function method.The pairing co...The possible exotic nuclear properties in the neutron-rich Ca,Ni,Zr,and Sn isotopes are examined with the continuum Skyrme Hartree-Fock-Bogoliubov theory in the framework of the Green’s function method.The pairing correlation,the couplings with the continuum,and the blocking effects for the unpaired nucleon in odd-A nuclei are properly treated.The Skyrme interaction SLy4 is adopted for the ph channel and the density-dependentinteraction is adopted for the pp chan-nel,which well reproduce the experimental two-neutron separation energies S_(2n)and one-neutron separation energies Sn.It is found that the criterion S_(n)>0 predicts a neutron drip line with neutron numbers much smaller than those for S_(2n)>0.Owing to the unpaired odd neutron,the neutron pairing energies−E_(pair)in odd-A nuclei are much lower than those in the neighbor-ing even-even nuclei.By investigating the single-particle structures,the possible halo structures in the neutron-rich Ca,Ni,and Sn isotopes are predicted,where sharp increases in the root-mean-square(rms)radii with significant deviations from the traditional rA^(1∕3)rule and diffuse spatial density distributions are observed.Analyzing the contributions of various partial waves to the total neutron densityρlj(r)∕ρ(r)reveals that the orbitals located around the Fermi surface-particularly those with small angular momenta-significantly affect the extended nuclear density and large rms radii.The number of neutrons Nλ(N_(0))occupying above the Fermi surfacen(continuum threshold)is discussed,whose evolution as a function of the mass number A in each isotope is consistent with that of the pairing energy,supporting the key role of the pairing correlation in halo phenomena.展开更多
Single-particle resonances in the continuum are crucial for studies of exotic nuclei.In this study,the Green’s function approach is employed to search for single-particle resonances based on the relativistic-mean-fie...Single-particle resonances in the continuum are crucial for studies of exotic nuclei.In this study,the Green’s function approach is employed to search for single-particle resonances based on the relativistic-mean-field model.Taking^(120)Sn as an example,we identify singleparticle resonances and determine the energies and widths directly by probing the extrema of the Green’s functions.In contrast to the results found by exploring for the extremum of the density of states proposed in our recent study[Chin.Phys.C,44:084105(2020)],which has proven to be very successful,the same resonances as well as very close energies and widths are obtained.By comparing the Green’s functions plotted in different coordinate space sizes,we also found that the results very slightly depend on the space size.These findings demonstrate that the approach by exploring for the extremum of the Green’s function is also very reliable and effective for identifying resonant states,regardless of whether they are wide or narrow.展开更多
In this paper, the Adomian decomposition method with Green’s function (Standard Adomian and Modified Technique) is applied to solve linear and nonlinear tenth-order boundary value problems with boundary conditions de...In this paper, the Adomian decomposition method with Green’s function (Standard Adomian and Modified Technique) is applied to solve linear and nonlinear tenth-order boundary value problems with boundary conditions defined at any order derivatives. The numerical results obtained with a small amount of computation are compared with the exact solutions to show the efficiency of the method. The results show that the decomposition method is of high accuracy, more convenient and efficient for solving high-order boundary value problems.展开更多
By using the fundamental equations of axisymmetric shallow shells of revolution, the nonlinear bending of a shallow corrugated shell with taper under arbitrary load has been investigated. The nonlinear boundary value ...By using the fundamental equations of axisymmetric shallow shells of revolution, the nonlinear bending of a shallow corrugated shell with taper under arbitrary load has been investigated. The nonlinear boundary value problem of the corrugated shell was reduced to the nonlinear integral equations by using the method of Green's function. To solve the integral equations, expansion method was used to obtain Green's function. Then the integral equations were reduced to the form with degenerate core by expanding Green's function as series of characteristic function. Therefore, the integral equations become nonlinear algebraic equations. Newton' s iterative method was utilized to solve the nonlinear algebraic equations. To guarantee the convergence of the iterative method, deflection at center was taken as control parameter. Corresponding loads were obtained by increasing deflection one by one. As a numerical example,elastic characteristic of shallow corrugated shells with spherical taper was studied.Calculation results show that characteristic of corrugated shells changes remarkably. The snapping instability which is analogous to shallow spherical shells occurs with increasing load if the taper is relatively large. The solution is close to the experimental results.展开更多
A new method for solving electromagnetic field boundary value problem is given.Byusing this method,the boundary value problem of the vector wave equation can be transformedinto the independent boundary value problem o...A new method for solving electromagnetic field boundary value problem is given.Byusing this method,the boundary value problem of the vector wave equation can be transformedinto the independent boundary value problem of scalar wave equations and the two additionalvector differential operations.All the dyadic Green’s functions got by eigenfunction expansionof the dyadic Green’s function can be got by this method easily and some of the dyadic Green’sfunctions for complex systems which are very difficult to get by the ordinary method have beengot by this new method.The dyadic Green’s function for a dielectric loaded cavity is one of thegiven examples.展开更多
The quasi-Green's function method is used to solve the free vibration problem of clamped thin plates on the Winkler foundation. Quasi-Green's function is established by the fundamental solution and the boundary equa...The quasi-Green's function method is used to solve the free vibration problem of clamped thin plates on the Winkler foundation. Quasi-Green's function is established by the fundamental solution and the boundary equation of the problem. The function satisfies the homogeneous boundary condition of tile problem. The mode-shape differential equation of the free vibration problem of clamped thin plates on the Winkler foundation is reduced to the Fredholm integral equation of the second kind by Green's formula. The irregularity of the kernel of the integral equation is overcome by choosing a suitable form of the normalized boundary equation. The numerical results show the high accuracy of the proposed method.展开更多
The concept of "numerical Green’s functions" (NGF or Green’s function database) is developed. The basic idea is: a large seismic fault is divided into subfaults of appropriate size, for which synthetic Green’s...The concept of "numerical Green’s functions" (NGF or Green’s function database) is developed. The basic idea is: a large seismic fault is divided into subfaults of appropriate size, for which synthetic Green’s functions at the surface (NGF) are calculated and stored. Consequently, ground motions from arbitrary kinematic sources can be simulated, rapidly, for the whole fault or parts of it by superposition. The target fault is a simplified, vertical model of the Newport-Inglewood fault in the Los Angeles basin. This approach and its functionality are illustrated by investigating the variations of ground motions (e.g. peak ground velocity and synthetic seismograms) due to the source complexity. The source complexities are considered with two respects: hypocenter location and slip history. The results show a complex behavior, with dependence of absolute peak ground velocity and their variation on source process directionality, hypocenter location, local structure, and static slip asperity location. We concluded that combining effect due to 3-D structure and finite-source is necessary to quan- tify ground motion characteristics and their variations. Our results will facilitate the earthquake hazard assessment projects.展开更多
We present a method to unify the calculation of Green's functions for an electromagnetic(EM) transmitting source embedded in a homogeneous stratified medium.A virtual interface parallel to layer interfaces is intro...We present a method to unify the calculation of Green's functions for an electromagnetic(EM) transmitting source embedded in a homogeneous stratified medium.A virtual interface parallel to layer interfaces is introduced through the source location.The potentials for Green's function are derived by decomposing the partial wave solutions to Helmholtz's equations into upward and downward within boundaries.The amplitudes of the potentials in each stratum are obtained recursively from the initial amplitudes at the source level.The initial amplitudes are derived by coupling with the transmitting sources and following the discontinuity of the tangential electric and magnetic fields at the source interface.Only the initial terms are related to the transmitting sources and thus need to be modified for different transmitters,whereas the kernel connected with the stratified media stays unchanged.Hence,the present method can be easily applied to EM transmitting sources with little modification.The application of the proposed method to the marine controlled-source electromagnetic method(MCSEM) demonstrates its simplicity and flexibility.展开更多
By using integral transform methods, the Green(s functions of horizontal harmonic force applied at the interior of the saturated half-space soil are obtained in the paper. The general solutions of the Biot dynamic equ...By using integral transform methods, the Green(s functions of horizontal harmonic force applied at the interior of the saturated half-space soil are obtained in the paper. The general solutions of the Biot dynamic equations in frequency domain are established through the use of Hankel integral transforms technique. Utilizing the above- mentioned general solutions, and the boundary conditions of the surface of the half-space and the continuous conditions at the plane of the horizontal force, the solutions of the boundary value problem can be determined. By the numerical inverse Hankel transforms method, the Green(s functions of the harmonic horizontal force are obtainable. The degenerate case of the results deduced from this paper agrees well with the known results. Two numerical examples are given in the paper.展开更多
Based on one type of practical Biot's equation and the dynamic-stiffness matrices ofa poroelastic soil layer and half-space, Green's functions were derived for unitformly distributed loads acting on an inclined line...Based on one type of practical Biot's equation and the dynamic-stiffness matrices ofa poroelastic soil layer and half-space, Green's functions were derived for unitformly distributed loads acting on an inclined line in a poroelastie layered site. This analysis overcomes significant problems in wave scattering due to local soil conditions and dynamic soil-structure interaction. The Green's functions can be reduced to the case of an elastic layered site developed by Wolf in 1985. Parametric studies are then carried out through two example problems.展开更多
The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green’s functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic(TI)half-s...The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green’s functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic(TI)half-space.The loaded layer is fixed to obtain solutions restricted in it and the corresponding reactions forces,which are then applied to the total system with the opposite sign.By adding solutions restricted in the loaded layer to solutions from the reaction forces,the global solutions in the wavenumber domain are obtained,and the dynamic Green’s functions in the space domain are recovered by the inverse Fourier transform.The presented formulations can be reduced to the isotropic case developed by Wolf(1985),and are further verified by comparisons with existing solutions in a uniform isotropic as well as a layered TI halfspace subjected to horizontally distributed loads which are special cases of the more general problem addressed.The deduced Green’s functions,in conjunction with boundary element methods,will lead to significant advances in the investigation of a variety of wave scattering,wave radiation and soil-structure interaction problems in a layered TI site.Selected numerical results are given to investigate the influence of material anisotropy,frequency of excitation,inclination angle and layered on the responses of displacement and stress,and some conclusions are drawn.展开更多
This study proposes a Green's function, an essential representation of water-saturated ground under moving excitation, to simulate ground borne vibration from trains. First, general solutions to the governing equatio...This study proposes a Green's function, an essential representation of water-saturated ground under moving excitation, to simulate ground borne vibration from trains. First, general solutions to the governing equations of poroelastic medium are derived by means of integral transform. Secondly, the transmission and reflection matrix approach is used to formulate the relationship between displacement and stress of the stratified ground, which results in the matrix of the Green's function. Then the Green's function is combined into a train-track-ground model, and is verified by typical examples and a field test. Additional simulations show that the computed ground vibration attenuates faster in the immediate vicinity of the track than in the surrounding area. The wavelength of wheel-rail unevenness has a notable effect on computed displacement and pore pressure. The variation of vibration intensity with the depth of ground is significantly influenced by the layering of the strata soil. When the train speed is equal to the velocity of the Rayleigh wave, the Mach cone appears in the simulated wave field. The proposed Green's function is an appropriate representation for a layered ground with shallow ground water table, and will be helpful to understand the dynamic responses of the ground to complicated moving excitation.展开更多
In this paper, we will introduce how to apply Green's function method to get the pointwise estimates for the solutions of Cauchy problem of nonlinear evolution equations with dissipative structure. First of all, we i...In this paper, we will introduce how to apply Green's function method to get the pointwise estimates for the solutions of Cauchy problem of nonlinear evolution equations with dissipative structure. First of all, we introduce the pointwise estimates of the time-asymptotic shape of the solutions of the isentropic Navier-Stokes equations and show to exhibit the generalized Huygen's principle. Then, for other nonlinear dissipative evolution equations, we will only introduce the result and give some brief explanations. Our approach is based on the detailed analysis of the Green's function of the linearized system and micro-local analysis, such as frequency decomposition and so on.展开更多
As children mature, bike products for children in the market develop at the same time, and the conditions are frequently updated. Certain problems occur when using a bike, such as cycle overlapping, repeating function...As children mature, bike products for children in the market develop at the same time, and the conditions are frequently updated. Certain problems occur when using a bike, such as cycle overlapping, repeating function, and short life cycle, which go against the principles of energy conservation and the environmental protection intensive design concept. In this paper, a rational multi-function method of design through functional superposition, transformation, and technical implementation is proposed. An organic combination of frog-style scooter and children’s tricycle is developed using the multi-function method. From the ergonomic perspective, the paper elaborates on the body size of children aged 5 to 12 and effectively extracts data for a multi-function children’s bike, which can be used for gliding and riding. By inverting the body, parts can be interchanged between the handles and the pedals of the bike. Finally, the paper provides a detailed analysis of the components and structural design, body material, and processing technology of the bike. The study of Industrial Product Innovation Design provides an effective design method to solve the bicycle problems, extends the function problems, improves the product market situation, and enhances the energy saving feature while implementing intensive product development effectively at the same time.展开更多
The derivation of Green function in a two-layer fluid model has been treated in different ways. In a two-layer fluid with the upper layer having a free surface, there exist two modes of waves propagating due to the fr...The derivation of Green function in a two-layer fluid model has been treated in different ways. In a two-layer fluid with the upper layer having a free surface, there exist two modes of waves propagating due to the free surface and the interface. This paper is concerned with the derivation of Green functions in the three dimensional case of a stationary source oscillating. The source point is located either in the upper or lower part of a two-layer fluid of finite depth. The derivation is carried out by the method of singularities. This method has an advantage in that it involves representing the potential as a sum of singularities or multipoles placed within any structures being present. Furthermore, experience shows that the systems of equations resulted from using a singularity method possess excellent convergence characteristics and only a few equations are needed to obtain accurate numerical results. Validation is done by showing that the derived two-layer Green function can be reduced to that of a single layer of finite depth or that the upper Green function coincides with that of the lower, for each case. The effect of the density on the internal waves is demonstrated. Also, it is shown how the surface and internal wave amplitudes are compared for both the wave modes. The fluid in this case is considered to be inviscid and incompressible and the flow is irrotational.展开更多
A novel numerical model based on the image Green function and first-order Taylor expansion boundary element method(TEBEM), which can improve the accuracy of the hydrodynamic simulation for the non-smooth body, was dev...A novel numerical model based on the image Green function and first-order Taylor expansion boundary element method(TEBEM), which can improve the accuracy of the hydrodynamic simulation for the non-smooth body, was developed to calculate the side wall effects on first-order motion responses and second-order drift loads upon offshore structures in the wave tank. This model was confirmed by comparing it to the results from experiments on hydrodynamic coefficients, namely the first-order motion response and second-order drift load upon a hemisphere, prolate spheroid, and box-shaped barge in the wave tank. Then,the hydrodynamics of the KVLCC2 model were also calculated in two wave tanks with different widths. It was concluded that this model can predict the hydrodynamics for offshore structures effectively, and the side wall has a significant impact on the firstorder quantities and second-order drift loads, which satisfied the resonant rule.展开更多
文摘The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, the integrated Green’s function method has been adopted to solve the 3D Poisson equation subject to open boundary conditions. In this paper, we report on the efficient implementation of this method, which can save more than a factor of 50 computing time compared with the direct brute force implementation and its improvement under certain extreme conditions.
基金supported by the National Natural Science Foundation of China (Grant No. 50879090)
文摘The singularities, oscillatory performances and the contributing factors to the 3-'D translating-pulsating source Green function of deep-water Havelock form which consists of a local disturbance part and a far-field wave-like part, are analyzed systematically. Relative numerical integral methods about the two parts are presented in this paper. An improved method based on LOBATTO rule is used to eliminate singularities caused respectively by infinite discontinuity and jump discontinuous node from the local disturbance part function, which makes the improvement of calculation efficiency and accuracy possible. And variable substitution is applied to remove the singularity existing at the end of the integral interval of the far-field wave-like part function. Two auxiliary techniques such as valid interval calculation and local refinement of integral steps technique in narrow zones near false singularities are applied so as to avoid unnecessary integration of invalid interval and improve integral accordance. Numerical test results have proved the efficiency and accuracy in these integral methods that thus can be applied to calculate hydrodynamic performance of floating structures moving in waves.
文摘This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.
基金the National Natural Science Foundation of China(No.U2032141)the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology(No.NLK2022-02)+4 种基金the Central Government Guidance Funds for Local Scientific and Technological Development,China(Guike ZY22096024)the Natural Science Foundation of Henan Province(No.202300410479)the Guizhou Provincial Science and Technology Projects(No.ZK[2022]203)the Foundation of Fundamental Research for Young Teachers of Zhengzhou University(No.JC202041041)the Physics Research and Development Program of Zhengzhou University(No.32410217).
文摘The possible exotic nuclear properties in the neutron-rich Ca,Ni,Zr,and Sn isotopes are examined with the continuum Skyrme Hartree-Fock-Bogoliubov theory in the framework of the Green’s function method.The pairing correlation,the couplings with the continuum,and the blocking effects for the unpaired nucleon in odd-A nuclei are properly treated.The Skyrme interaction SLy4 is adopted for the ph channel and the density-dependentinteraction is adopted for the pp chan-nel,which well reproduce the experimental two-neutron separation energies S_(2n)and one-neutron separation energies Sn.It is found that the criterion S_(n)>0 predicts a neutron drip line with neutron numbers much smaller than those for S_(2n)>0.Owing to the unpaired odd neutron,the neutron pairing energies−E_(pair)in odd-A nuclei are much lower than those in the neighbor-ing even-even nuclei.By investigating the single-particle structures,the possible halo structures in the neutron-rich Ca,Ni,and Sn isotopes are predicted,where sharp increases in the root-mean-square(rms)radii with significant deviations from the traditional rA^(1∕3)rule and diffuse spatial density distributions are observed.Analyzing the contributions of various partial waves to the total neutron densityρlj(r)∕ρ(r)reveals that the orbitals located around the Fermi surface-particularly those with small angular momenta-significantly affect the extended nuclear density and large rms radii.The number of neutrons Nλ(N_(0))occupying above the Fermi surfacen(continuum threshold)is discussed,whose evolution as a function of the mass number A in each isotope is consistent with that of the pairing energy,supporting the key role of the pairing correlation in halo phenomena.
基金supported by the National Natural Science Foundation of China(No.U2032141)the Natural Science Foundation of Henan Province(No.202300410479,No.202300410480)+1 种基金the Foundation of Fundamental Research for Young Teachers of Zhengzhou University(No.JC202041041)the Physics Research and Development Program of Zhengzhou University(No.32410217).
文摘Single-particle resonances in the continuum are crucial for studies of exotic nuclei.In this study,the Green’s function approach is employed to search for single-particle resonances based on the relativistic-mean-field model.Taking^(120)Sn as an example,we identify singleparticle resonances and determine the energies and widths directly by probing the extrema of the Green’s functions.In contrast to the results found by exploring for the extremum of the density of states proposed in our recent study[Chin.Phys.C,44:084105(2020)],which has proven to be very successful,the same resonances as well as very close energies and widths are obtained.By comparing the Green’s functions plotted in different coordinate space sizes,we also found that the results very slightly depend on the space size.These findings demonstrate that the approach by exploring for the extremum of the Green’s function is also very reliable and effective for identifying resonant states,regardless of whether they are wide or narrow.
文摘In this paper, the Adomian decomposition method with Green’s function (Standard Adomian and Modified Technique) is applied to solve linear and nonlinear tenth-order boundary value problems with boundary conditions defined at any order derivatives. The numerical results obtained with a small amount of computation are compared with the exact solutions to show the efficiency of the method. The results show that the decomposition method is of high accuracy, more convenient and efficient for solving high-order boundary value problems.
文摘By using the fundamental equations of axisymmetric shallow shells of revolution, the nonlinear bending of a shallow corrugated shell with taper under arbitrary load has been investigated. The nonlinear boundary value problem of the corrugated shell was reduced to the nonlinear integral equations by using the method of Green's function. To solve the integral equations, expansion method was used to obtain Green's function. Then the integral equations were reduced to the form with degenerate core by expanding Green's function as series of characteristic function. Therefore, the integral equations become nonlinear algebraic equations. Newton' s iterative method was utilized to solve the nonlinear algebraic equations. To guarantee the convergence of the iterative method, deflection at center was taken as control parameter. Corresponding loads were obtained by increasing deflection one by one. As a numerical example,elastic characteristic of shallow corrugated shells with spherical taper was studied.Calculation results show that characteristic of corrugated shells changes remarkably. The snapping instability which is analogous to shallow spherical shells occurs with increasing load if the taper is relatively large. The solution is close to the experimental results.
基金This project is supported by the National Science Fundation of China
文摘A new method for solving electromagnetic field boundary value problem is given.Byusing this method,the boundary value problem of the vector wave equation can be transformedinto the independent boundary value problem of scalar wave equations and the two additionalvector differential operations.All the dyadic Green’s functions got by eigenfunction expansionof the dyadic Green’s function can be got by this method easily and some of the dyadic Green’sfunctions for complex systems which are very difficult to get by the ordinary method have beengot by this new method.The dyadic Green’s function for a dielectric loaded cavity is one of thegiven examples.
文摘The quasi-Green's function method is used to solve the free vibration problem of clamped thin plates on the Winkler foundation. Quasi-Green's function is established by the fundamental solution and the boundary equation of the problem. The function satisfies the homogeneous boundary condition of tile problem. The mode-shape differential equation of the free vibration problem of clamped thin plates on the Winkler foundation is reduced to the Fredholm integral equation of the second kind by Green's formula. The irregularity of the kernel of the integral equation is overcome by choosing a suitable form of the normalized boundary equation. The numerical results show the high accuracy of the proposed method.
基金funding from the International Quality Network:Georisk (Ger-man Academic Exchange Service),and the Elite Gradu-ate College THESIS (Bavarian Government)support from the European Hu-man Resources Mobility Program (Research Training Network SPICE)
文摘The concept of "numerical Green’s functions" (NGF or Green’s function database) is developed. The basic idea is: a large seismic fault is divided into subfaults of appropriate size, for which synthetic Green’s functions at the surface (NGF) are calculated and stored. Consequently, ground motions from arbitrary kinematic sources can be simulated, rapidly, for the whole fault or parts of it by superposition. The target fault is a simplified, vertical model of the Newport-Inglewood fault in the Los Angeles basin. This approach and its functionality are illustrated by investigating the variations of ground motions (e.g. peak ground velocity and synthetic seismograms) due to the source complexity. The source complexities are considered with two respects: hypocenter location and slip history. The results show a complex behavior, with dependence of absolute peak ground velocity and their variation on source process directionality, hypocenter location, local structure, and static slip asperity location. We concluded that combining effect due to 3-D structure and finite-source is necessary to quan- tify ground motion characteristics and their variations. Our results will facilitate the earthquake hazard assessment projects.
基金supported by CNSF(Granted No.40874050)Chinese High Technology Project(Granted No.2011YQ05006010)
文摘We present a method to unify the calculation of Green's functions for an electromagnetic(EM) transmitting source embedded in a homogeneous stratified medium.A virtual interface parallel to layer interfaces is introduced through the source location.The potentials for Green's function are derived by decomposing the partial wave solutions to Helmholtz's equations into upward and downward within boundaries.The amplitudes of the potentials in each stratum are obtained recursively from the initial amplitudes at the source level.The initial amplitudes are derived by coupling with the transmitting sources and following the discontinuity of the tangential electric and magnetic fields at the source interface.Only the initial terms are related to the transmitting sources and thus need to be modified for different transmitters,whereas the kernel connected with the stratified media stays unchanged.Hence,the present method can be easily applied to EM transmitting sources with little modification.The application of the proposed method to the marine controlled-source electromagnetic method(MCSEM) demonstrates its simplicity and flexibility.
基金State Natural Science Foundation (59879012) and Doctoral Foundation from State Education Commission (98024832).
文摘By using integral transform methods, the Green(s functions of horizontal harmonic force applied at the interior of the saturated half-space soil are obtained in the paper. The general solutions of the Biot dynamic equations in frequency domain are established through the use of Hankel integral transforms technique. Utilizing the above- mentioned general solutions, and the boundary conditions of the surface of the half-space and the continuous conditions at the plane of the horizontal force, the solutions of the boundary value problem can be determined. By the numerical inverse Hankel transforms method, the Green(s functions of the harmonic horizontal force are obtainable. The degenerate case of the results deduced from this paper agrees well with the known results. Two numerical examples are given in the paper.
基金National Natural Science Foundation of China Under Grant No.50378063
文摘Based on one type of practical Biot's equation and the dynamic-stiffness matrices ofa poroelastic soil layer and half-space, Green's functions were derived for unitformly distributed loads acting on an inclined line in a poroelastie layered site. This analysis overcomes significant problems in wave scattering due to local soil conditions and dynamic soil-structure interaction. The Green's functions can be reduced to the case of an elastic layered site developed by Wolf in 1985. Parametric studies are then carried out through two example problems.
基金National Natural Science Foundation of China under grant No.51578373 and 51578372the Natural Science Foundation of Tianjin Municipality under Grant No.16JCYBJC21600
文摘The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green’s functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic(TI)half-space.The loaded layer is fixed to obtain solutions restricted in it and the corresponding reactions forces,which are then applied to the total system with the opposite sign.By adding solutions restricted in the loaded layer to solutions from the reaction forces,the global solutions in the wavenumber domain are obtained,and the dynamic Green’s functions in the space domain are recovered by the inverse Fourier transform.The presented formulations can be reduced to the isotropic case developed by Wolf(1985),and are further verified by comparisons with existing solutions in a uniform isotropic as well as a layered TI halfspace subjected to horizontally distributed loads which are special cases of the more general problem addressed.The deduced Green’s functions,in conjunction with boundary element methods,will lead to significant advances in the investigation of a variety of wave scattering,wave radiation and soil-structure interaction problems in a layered TI site.Selected numerical results are given to investigate the influence of material anisotropy,frequency of excitation,inclination angle and layered on the responses of displacement and stress,and some conclusions are drawn.
基金National Natural Science Foundation of China Key Project,under Grant No.50538030Postdoctoral Science Foundation of China under Grant No.2013M531084Natural Science Foundation of Heilongjiang Province of China under Grant No.E201221
文摘This study proposes a Green's function, an essential representation of water-saturated ground under moving excitation, to simulate ground borne vibration from trains. First, general solutions to the governing equations of poroelastic medium are derived by means of integral transform. Secondly, the transmission and reflection matrix approach is used to formulate the relationship between displacement and stress of the stratified ground, which results in the matrix of the Green's function. Then the Green's function is combined into a train-track-ground model, and is verified by typical examples and a field test. Additional simulations show that the computed ground vibration attenuates faster in the immediate vicinity of the track than in the surrounding area. The wavelength of wheel-rail unevenness has a notable effect on computed displacement and pore pressure. The variation of vibration intensity with the depth of ground is significantly influenced by the layering of the strata soil. When the train speed is equal to the velocity of the Rayleigh wave, the Mach cone appears in the simulated wave field. The proposed Green's function is an appropriate representation for a layered ground with shallow ground water table, and will be helpful to understand the dynamic responses of the ground to complicated moving excitation.
基金supported by National Science Foundation of China(11071162)Shanghai Municipal Natural Science Foundation (09ZR1413500)
文摘In this paper, we will introduce how to apply Green's function method to get the pointwise estimates for the solutions of Cauchy problem of nonlinear evolution equations with dissipative structure. First of all, we introduce the pointwise estimates of the time-asymptotic shape of the solutions of the isentropic Navier-Stokes equations and show to exhibit the generalized Huygen's principle. Then, for other nonlinear dissipative evolution equations, we will only introduce the result and give some brief explanations. Our approach is based on the detailed analysis of the Green's function of the linearized system and micro-local analysis, such as frequency decomposition and so on.
基金supported by Social Science Fund for Young Scholar of Ministry of Education of China(Grant No. 12YJC760092)Changzhou Key Digital Manufacturing Technology Laboratory Foundation of China(Grant No. CM2007301)
文摘As children mature, bike products for children in the market develop at the same time, and the conditions are frequently updated. Certain problems occur when using a bike, such as cycle overlapping, repeating function, and short life cycle, which go against the principles of energy conservation and the environmental protection intensive design concept. In this paper, a rational multi-function method of design through functional superposition, transformation, and technical implementation is proposed. An organic combination of frog-style scooter and children’s tricycle is developed using the multi-function method. From the ergonomic perspective, the paper elaborates on the body size of children aged 5 to 12 and effectively extracts data for a multi-function children’s bike, which can be used for gliding and riding. By inverting the body, parts can be interchanged between the handles and the pedals of the bike. Finally, the paper provides a detailed analysis of the components and structural design, body material, and processing technology of the bike. The study of Industrial Product Innovation Design provides an effective design method to solve the bicycle problems, extends the function problems, improves the product market situation, and enhances the energy saving feature while implementing intensive product development effectively at the same time.
基金supported by the National Natural Science Foundation of China (Grant No. 50779008)
文摘The derivation of Green function in a two-layer fluid model has been treated in different ways. In a two-layer fluid with the upper layer having a free surface, there exist two modes of waves propagating due to the free surface and the interface. This paper is concerned with the derivation of Green functions in the three dimensional case of a stationary source oscillating. The source point is located either in the upper or lower part of a two-layer fluid of finite depth. The derivation is carried out by the method of singularities. This method has an advantage in that it involves representing the potential as a sum of singularities or multipoles placed within any structures being present. Furthermore, experience shows that the systems of equations resulted from using a singularity method possess excellent convergence characteristics and only a few equations are needed to obtain accurate numerical results. Validation is done by showing that the derived two-layer Green function can be reduced to that of a single layer of finite depth or that the upper Green function coincides with that of the lower, for each case. The effect of the density on the internal waves is demonstrated. Also, it is shown how the surface and internal wave amplitudes are compared for both the wave modes. The fluid in this case is considered to be inviscid and incompressible and the flow is irrotational.
基金the National Natural Science Foundation of China (Grant No.51709064)the Numerical Tank Project sponsored by the Ministry of Industry and Information Technology (MIIT)of P.R.China.
文摘A novel numerical model based on the image Green function and first-order Taylor expansion boundary element method(TEBEM), which can improve the accuracy of the hydrodynamic simulation for the non-smooth body, was developed to calculate the side wall effects on first-order motion responses and second-order drift loads upon offshore structures in the wave tank. This model was confirmed by comparing it to the results from experiments on hydrodynamic coefficients, namely the first-order motion response and second-order drift load upon a hemisphere, prolate spheroid, and box-shaped barge in the wave tank. Then,the hydrodynamics of the KVLCC2 model were also calculated in two wave tanks with different widths. It was concluded that this model can predict the hydrodynamics for offshore structures effectively, and the side wall has a significant impact on the firstorder quantities and second-order drift loads, which satisfied the resonant rule.