Machine learning(ML)provides a new surrogate method for investigating groundwater flow dynamics in unsaturated soils.Traditional pure data-driven methods(e.g.deep neural network,DNN)can provide rapid predictions,but t...Machine learning(ML)provides a new surrogate method for investigating groundwater flow dynamics in unsaturated soils.Traditional pure data-driven methods(e.g.deep neural network,DNN)can provide rapid predictions,but they do require sufficient on-site data for accurate training,and lack interpretability to the physical processes within the data.In this paper,we provide a physics and equalityconstrained artificial neural network(PECANN),to derive unsaturated infiltration solutions with a small amount of initial and boundary data.PECANN takes the physics-informed neural network(PINN)as a foundation,encodes the unsaturated infiltration physical laws(i.e.Richards equation,RE)into the loss function,and uses the augmented Lagrangian method to constrain the learning process of the solutions of RE by adding stronger penalty for the initial and boundary conditions.Four unsaturated infiltration cases are designed to test the training performance of PECANN,i.e.one-dimensional(1D)steady-state unsaturated infiltration,1D transient-state infiltration,two-dimensional(2D)transient-state infiltration,and 1D coupled unsaturated infiltration and deformation.The predicted results of PECANN are compared with the finite difference solutions or analytical solutions.The results indicate that PECANN can accurately capture the variations of pressure head during the unsaturated infiltration,and present higher precision and robustness than DNN and PINN.It is also revealed that PECANN can achieve the same accuracy as the finite difference method with fewer initial and boundary training data.Additionally,we investigate the effect of the hyperparameters of PECANN on solving RE problem.PECANN provides an effective tool for simulating unsaturated infiltration.展开更多
Determination of the infiltration rate in a watershed is not easy and in empirical and theoretical point of view, it is important to access average value of infiltration. Infiltration models has main role in managing ...Determination of the infiltration rate in a watershed is not easy and in empirical and theoretical point of view, it is important to access average value of infiltration. Infiltration models has main role in managing water sources. Therefore different types of models with various degrees of complexity were developed to reach this aim. Most of the estimating methods of soil infiltration are expensive and time consuming and these methods estimate infiltration with hypothesis of zero slope. One of the conceptual and physical models for estimating soil infiltration is Green-Ampt model which is similar to Richard model. This model uses slope factor in estimating infiltration and this is the power point of Green-Ampt model. In this research the empirical model of Green-Ampt was optimized with integrating artificial neural network model (ANN) and a model of geographical information system WMS to estimate the infiltration in Kakasharaf watershed. Results of the comparison between the output of this method and real value of infiltration in region (through multiple cylinders) showed that this method can estimate the infiltration rate of Kakasharaf watershed with low error and acceptable accuracy (Nash-Sutcliff performance coefficient 0.821, square error 0.216, correlation coefficient 0.905 and model error 0.024).展开更多
Soil infiltration is a very important concept in hydrology as well as irrigation, which plays a vital role in estimating surface runoff and groundwater recharge. It is a complicated process that varies with numerous f...Soil infiltration is a very important concept in hydrology as well as irrigation, which plays a vital role in estimating surface runoff and groundwater recharge. It is a complicated process that varies with numerous factors. Accurate estimation of soil infiltration is required for future irrigation, and many other purposes. To estimate the infiltration process, there are numerous models. The majority of them have some presumptions, a unique calculation method, and some limitations. The purpose of the paper was to assess the model’s performance for a similar hypothetical scenario involving soil infiltration. It compared the infiltration rate, runoff rate, and incremental infiltration versus time for three different infiltration models: the Green-Ampt model (GA), the Horton model and the Modified Green-Ampt (MGA) model. A spreadsheet was used to calculate the Horton model, and HYDROL-INF (V 5.03) was used to simulate the other two models. Among those three models, the MGA model outperformed those three models, while the GA model produced greater infiltration rate than rainfall, which was insensible. The study showed that the MGA model, which provides useful infiltration predictions, outperformed the other two infiltration models. Since the Horton model does not consider ponding conditions, it is only applicable when the effective rainfall intensity exceeds the final infiltration capacity. Moreover, the GA model’s initial infiltration rate is irrational because it disregards the intensity of the rainfall. The results of this study will assist in selecting the most accurate method for estimating soil infiltration for agricultural purposes.展开更多
Soil infiltration and redistribution are important processes in field water cycle, and it is necessary to develop a simple model to describe the processes. In this study, an algebraic solution for one-dimensional wate...Soil infiltration and redistribution are important processes in field water cycle, and it is necessary to develop a simple model to describe the processes. In this study, an algebraic solution for one-dimensional water infiltration and redistribution without evaporation in unsaturated soil was developed based on Richards equation. The algebraic solution had three parameters, namely, the saturated water conductivity, the comprehensive shape coefficient of the soil water content distribution, and the soil suction allocation coefficient. To analyze the physical features of these parameters, a relationship between the Green-Ampt model and the algebraic solution was established. The three parameters were estimated based on experimental observations, whereas the soil water content and the water infiltration duration were calculated using the algebraic solution. The calculated soil water content and infiltration duration were compared with the experimental observations, and the results indicated that the algebraic solution accurately described the unsaturated soil water flow processes.展开更多
The research on Constructed Soil Rapid Infiltration(CSRI) system is in its infancy at home and abroad.There are several details about the mechanism and application of CSRI system needed to be further studied.A major l...The research on Constructed Soil Rapid Infiltration(CSRI) system is in its infancy at home and abroad.There are several details about the mechanism and application of CSRI system needed to be further studied.A major limitation in the current research is the absence of degradation dynamics of pollutants,and the height of filtration bed in CSRI system currently determined by empirical judgment lacks accuracy and logicality.To solve these two prob-lems,the soil column of CSRI system was utilized to treat domestic wastewater,meanwhile,the NH3-N degradation dynamics were studied according to the Monod equation,the research of Mann A T and the NH3-N degradation law.Then the mathematical model of filtration bed height was built based on NH3-N degradation dynamics equation in the soil column.It has been proven that within a limited range this model can calculate the appropriate height of filtration bed accurately in order to optimize technological parameters of hydraulic load and the concentration of influent NH3-N,improving the effluent quality of CSRI system.展开更多
Field infiltration measurement is often a tedious task thus can be easily estimated from proposed infiltration models. The Horton equation is one of the popular models used in the characterization of field infiltratio...Field infiltration measurement is often a tedious task thus can be easily estimated from proposed infiltration models. The Horton equation is one of the popular models used in the characterization of field infiltration. In this study, the least square curve firing technique was employed to estimate the model parameters from fifteen field measured data and gave resultant mean regression coefficients (R2) value of 0.811. Furthermore, plotting the measured against the calculated infiltration rate for the first six (6) measurement points yielded R2 values close to unity in the regression curve indicating a marked relationship between the two. This indicates that the Horton infiltration model can be applied to estimate infiltration characteristics of soils in Samaru, Northern Guinea Savanna of Nigeria.展开更多
The effect of deformation of porous material on infiltrative performance is investigated. Based on Darcy theory and Boit principle, the Reynolds equation and mathematical expression of deformable metal rubber (MR) m...The effect of deformation of porous material on infiltrative performance is investigated. Based on Darcy theory and Boit principle, the Reynolds equation and mathematical expression of deformable metal rubber (MR) material under laminar flow are obtained according to the change of porosity of metal rubber. It is shown that the throttle of MR material is dependent on its porosity and diameter of metal wires. It will be of great value for the application of MR in throttle field.展开更多
Large-scale vegetation restoration can reduce local watershed water yield,limit vegetation establishment and subsequent growth,and influence regional ecosystem functions.Clipping management by reducing aboveground par...Large-scale vegetation restoration can reduce local watershed water yield,limit vegetation establishment and subsequent growth,and influence regional ecosystem functions.Clipping management by reducing aboveground parts of grassland was gradually recommended and adopted in Grain-for-Green project management to offset these additional issues.Thus,scientific evaluation of the effectiveness of clipping management on infiltration and runoff processes is necessary for maintaining the stability of the surface water system and the sustainability of vegetation restoration in semi-arid regions.A field simulated rainfall experiment was conducted with four managed clipping grasslands(mainly bunge needlegrass and Stipa grandis),including no clipping,light clipping,heavy clipping,and complete clipping under three slope gradients(10,20,and 30°)and three rainfall intensities(60,90,and 120 mm/h)to explore the mechanism of runoff and infiltration responses to clipping using structural equation modeling and variation partitioning based on an SCS-CN model.The results showed the runoff coefficient of the light clipping,heavy clipping,and complete clipping plots were 1.33,2.22,and 4.22 times that of the no clipping plot.The light clipping,heavy clipping,and complete clipping plots decreased the infiltration coefficients by 0%,5%,and 26%relative to the no clipping plot.Rainfall intensity dominated runoff and infiltration amounts,and clipping intensity's total effect was stronger than slope gradient.Clipping intensity and slope gradient were more influential on runoff with increasing rainfall intensity.The mutual inhibition effect was between clipping intensity and slope gradient on runoff.In order to maintain the sustainability of restoration,a 25-50%vegetation coverage after clipping maximizes the benefits of increasing runoff and maintaining enough soil water supply that prevents possible soil drought.We propose that future vegetation restoration policies should evaluate the appropriate clipping intensity;meanwhile,local physiographic and climate conditions should be considered.These findings may offer guidance for the development of measures for runoff regulation and ecosystem functions of the watershed during vegetation restoration on the northern Loess Plateau.展开更多
Severe soil erosion and drought are the two main factors affecting the ecological security of the Loess Plateau,China.Investigating the influence of drought on soil conservation service is of great importance to regio...Severe soil erosion and drought are the two main factors affecting the ecological security of the Loess Plateau,China.Investigating the influence of drought on soil conservation service is of great importance to regional environmental protection and sustainable development.However,there is little research on the coupling relationship between them.In this study,focusing on the Jinghe River Basin,China as a case study,we conducted a quantitative evaluation on meteorological,hydrological,and agricultural droughts(represented by the Standardized Precipitation Index(SPI),Standardized Runoff Index(SRI),and Standardized Soil Moisture Index(SSMI),respectively)using the Variable Infiltration Capacity(VIC)model,and quantified the soil conservation service using the Revised Universal Soil Loss Equation(RUSLE)in the historical period(2000-2019)and future period(2026-2060)under two Representative Concentration Pathways(RCPs)(RCP4.5 and RCP8.5).We further examined the influence of the three types of drought on soil conservation service at annual and seasonal scales.The NASA Earth Exchange Global Daily Downscaled Projections(NEX-GDDP)dataset was used to predict and model the hydrometeorological elements in the future period under the RCP4.5 and RCP8.5 scenarios.The results showed that in the historical period,annual-scale meteorological drought exhibited the highest intensity,while seasonal-scale drought was generally weakest in autumn and most severe in summer.Drought intensity of all three types of drought will increase over the next 40 years,with a greater increase under the RCP4.5 scenario than under the RCP8.5 scenario.Furthermore,the intra-annual variation in the drought intensity of the three types of drought becomes smaller under the two future scenarios relative to the historical period(2000-2019).Soil conservation service exhibits a distribution pattern characterized by high levels in the southwest and southeast and lower levels in the north,and this pattern has remained consistent both in the historical and future periods.Over the past 20 years,the intra-annual variation indicated peak soil conservation service in summer and lowest level in winter;the total soil conservation of the Jinghe River Basin displayed an upward trend,with the total soil conservation in 2019 being 1.14 times higher than that in 2000.The most substantial impact on soil conservation service arises from annual-scale meteorological drought,which remains consistent both in the historical and future periods.Additionally,at the seasonal scale,meteorological drought exerts the highest influence on soil conservation service in winter and autumn,particularly under the RCP4.5 and RCP8.5 scenarios.Compared to the historical period,the soil conservation service in the Jinghe River Basin will be significantly more affected by drought in the future period in terms of both the affected area and the magnitude of impact.This study conducted beneficial attempts to evaluate and predict the dynamic characteristics of watershed drought and soil conservation service,as well as the response of soil conservation service to different types of drought.Clarifying the interrelationship between the two is the foundation for achieving sustainable development in a relatively arid and severely eroded area such as the Jinghe River Basin.展开更多
基金funding support from the science and technology innovation Program of Hunan Province(Grant No.2023RC1017)Hunan Provincial Postgraduate Research and Innovation Project(Grant No.CX20220109)National Natural Science Foundation of China Youth Fund(Grant No.52208378).
文摘Machine learning(ML)provides a new surrogate method for investigating groundwater flow dynamics in unsaturated soils.Traditional pure data-driven methods(e.g.deep neural network,DNN)can provide rapid predictions,but they do require sufficient on-site data for accurate training,and lack interpretability to the physical processes within the data.In this paper,we provide a physics and equalityconstrained artificial neural network(PECANN),to derive unsaturated infiltration solutions with a small amount of initial and boundary data.PECANN takes the physics-informed neural network(PINN)as a foundation,encodes the unsaturated infiltration physical laws(i.e.Richards equation,RE)into the loss function,and uses the augmented Lagrangian method to constrain the learning process of the solutions of RE by adding stronger penalty for the initial and boundary conditions.Four unsaturated infiltration cases are designed to test the training performance of PECANN,i.e.one-dimensional(1D)steady-state unsaturated infiltration,1D transient-state infiltration,two-dimensional(2D)transient-state infiltration,and 1D coupled unsaturated infiltration and deformation.The predicted results of PECANN are compared with the finite difference solutions or analytical solutions.The results indicate that PECANN can accurately capture the variations of pressure head during the unsaturated infiltration,and present higher precision and robustness than DNN and PINN.It is also revealed that PECANN can achieve the same accuracy as the finite difference method with fewer initial and boundary training data.Additionally,we investigate the effect of the hyperparameters of PECANN on solving RE problem.PECANN provides an effective tool for simulating unsaturated infiltration.
文摘Determination of the infiltration rate in a watershed is not easy and in empirical and theoretical point of view, it is important to access average value of infiltration. Infiltration models has main role in managing water sources. Therefore different types of models with various degrees of complexity were developed to reach this aim. Most of the estimating methods of soil infiltration are expensive and time consuming and these methods estimate infiltration with hypothesis of zero slope. One of the conceptual and physical models for estimating soil infiltration is Green-Ampt model which is similar to Richard model. This model uses slope factor in estimating infiltration and this is the power point of Green-Ampt model. In this research the empirical model of Green-Ampt was optimized with integrating artificial neural network model (ANN) and a model of geographical information system WMS to estimate the infiltration in Kakasharaf watershed. Results of the comparison between the output of this method and real value of infiltration in region (through multiple cylinders) showed that this method can estimate the infiltration rate of Kakasharaf watershed with low error and acceptable accuracy (Nash-Sutcliff performance coefficient 0.821, square error 0.216, correlation coefficient 0.905 and model error 0.024).
文摘Soil infiltration is a very important concept in hydrology as well as irrigation, which plays a vital role in estimating surface runoff and groundwater recharge. It is a complicated process that varies with numerous factors. Accurate estimation of soil infiltration is required for future irrigation, and many other purposes. To estimate the infiltration process, there are numerous models. The majority of them have some presumptions, a unique calculation method, and some limitations. The purpose of the paper was to assess the model’s performance for a similar hypothetical scenario involving soil infiltration. It compared the infiltration rate, runoff rate, and incremental infiltration versus time for three different infiltration models: the Green-Ampt model (GA), the Horton model and the Modified Green-Ampt (MGA) model. A spreadsheet was used to calculate the Horton model, and HYDROL-INF (V 5.03) was used to simulate the other two models. Among those three models, the MGA model outperformed those three models, while the GA model produced greater infiltration rate than rainfall, which was insensible. The study showed that the MGA model, which provides useful infiltration predictions, outperformed the other two infiltration models. Since the Horton model does not consider ponding conditions, it is only applicable when the effective rainfall intensity exceeds the final infiltration capacity. Moreover, the GA model’s initial infiltration rate is irrational because it disregards the intensity of the rainfall. The results of this study will assist in selecting the most accurate method for estimating soil infiltration for agricultural purposes.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KSCX2-YW-N-003)the National Basic Research Program of China (No.2005CB121103)the National Natural Science Foundation ofChina (No.50879067).
文摘Soil infiltration and redistribution are important processes in field water cycle, and it is necessary to develop a simple model to describe the processes. In this study, an algebraic solution for one-dimensional water infiltration and redistribution without evaporation in unsaturated soil was developed based on Richards equation. The algebraic solution had three parameters, namely, the saturated water conductivity, the comprehensive shape coefficient of the soil water content distribution, and the soil suction allocation coefficient. To analyze the physical features of these parameters, a relationship between the Green-Ampt model and the algebraic solution was established. The three parameters were estimated based on experimental observations, whereas the soil water content and the water infiltration duration were calculated using the algebraic solution. The calculated soil water content and infiltration duration were compared with the experimental observations, and the results indicated that the algebraic solution accurately described the unsaturated soil water flow processes.
基金Under the auspices of Foundational Research Fund of Science Application in Sichuan Province (No. 05J029-098)
文摘The research on Constructed Soil Rapid Infiltration(CSRI) system is in its infancy at home and abroad.There are several details about the mechanism and application of CSRI system needed to be further studied.A major limitation in the current research is the absence of degradation dynamics of pollutants,and the height of filtration bed in CSRI system currently determined by empirical judgment lacks accuracy and logicality.To solve these two prob-lems,the soil column of CSRI system was utilized to treat domestic wastewater,meanwhile,the NH3-N degradation dynamics were studied according to the Monod equation,the research of Mann A T and the NH3-N degradation law.Then the mathematical model of filtration bed height was built based on NH3-N degradation dynamics equation in the soil column.It has been proven that within a limited range this model can calculate the appropriate height of filtration bed accurately in order to optimize technological parameters of hydraulic load and the concentration of influent NH3-N,improving the effluent quality of CSRI system.
文摘Field infiltration measurement is often a tedious task thus can be easily estimated from proposed infiltration models. The Horton equation is one of the popular models used in the characterization of field infiltration. In this study, the least square curve firing technique was employed to estimate the model parameters from fifteen field measured data and gave resultant mean regression coefficients (R2) value of 0.811. Furthermore, plotting the measured against the calculated infiltration rate for the first six (6) measurement points yielded R2 values close to unity in the regression curve indicating a marked relationship between the two. This indicates that the Horton infiltration model can be applied to estimate infiltration characteristics of soils in Samaru, Northern Guinea Savanna of Nigeria.
基金This project is supported by National Natural Science Foundation of China (No.50075017)Municipal Youth Foundation of Harbin, China(No.2003AFQXJ035).
文摘The effect of deformation of porous material on infiltrative performance is investigated. Based on Darcy theory and Boit principle, the Reynolds equation and mathematical expression of deformable metal rubber (MR) material under laminar flow are obtained according to the change of porosity of metal rubber. It is shown that the throttle of MR material is dependent on its porosity and diameter of metal wires. It will be of great value for the application of MR in throttle field.
基金This work was financially supported by the National Natural Science Foundation of China(No.42077071,U22A20613 and 41877080)the Loess Plateau Ecological Restoration Innovation Team,Shaanxi Academy of Forestry(SXLK2020-03-02).
文摘Large-scale vegetation restoration can reduce local watershed water yield,limit vegetation establishment and subsequent growth,and influence regional ecosystem functions.Clipping management by reducing aboveground parts of grassland was gradually recommended and adopted in Grain-for-Green project management to offset these additional issues.Thus,scientific evaluation of the effectiveness of clipping management on infiltration and runoff processes is necessary for maintaining the stability of the surface water system and the sustainability of vegetation restoration in semi-arid regions.A field simulated rainfall experiment was conducted with four managed clipping grasslands(mainly bunge needlegrass and Stipa grandis),including no clipping,light clipping,heavy clipping,and complete clipping under three slope gradients(10,20,and 30°)and three rainfall intensities(60,90,and 120 mm/h)to explore the mechanism of runoff and infiltration responses to clipping using structural equation modeling and variation partitioning based on an SCS-CN model.The results showed the runoff coefficient of the light clipping,heavy clipping,and complete clipping plots were 1.33,2.22,and 4.22 times that of the no clipping plot.The light clipping,heavy clipping,and complete clipping plots decreased the infiltration coefficients by 0%,5%,and 26%relative to the no clipping plot.Rainfall intensity dominated runoff and infiltration amounts,and clipping intensity's total effect was stronger than slope gradient.Clipping intensity and slope gradient were more influential on runoff with increasing rainfall intensity.The mutual inhibition effect was between clipping intensity and slope gradient on runoff.In order to maintain the sustainability of restoration,a 25-50%vegetation coverage after clipping maximizes the benefits of increasing runoff and maintaining enough soil water supply that prevents possible soil drought.We propose that future vegetation restoration policies should evaluate the appropriate clipping intensity;meanwhile,local physiographic and climate conditions should be considered.These findings may offer guidance for the development of measures for runoff regulation and ecosystem functions of the watershed during vegetation restoration on the northern Loess Plateau.
基金supported by the National Natural Science Foundation of China(42071285,42371297)the Key R&D Program Projects in Shaanxi Province of China(2022SF-382)the Fundamental Research Funds for the Central Universities(GK202302002).
文摘Severe soil erosion and drought are the two main factors affecting the ecological security of the Loess Plateau,China.Investigating the influence of drought on soil conservation service is of great importance to regional environmental protection and sustainable development.However,there is little research on the coupling relationship between them.In this study,focusing on the Jinghe River Basin,China as a case study,we conducted a quantitative evaluation on meteorological,hydrological,and agricultural droughts(represented by the Standardized Precipitation Index(SPI),Standardized Runoff Index(SRI),and Standardized Soil Moisture Index(SSMI),respectively)using the Variable Infiltration Capacity(VIC)model,and quantified the soil conservation service using the Revised Universal Soil Loss Equation(RUSLE)in the historical period(2000-2019)and future period(2026-2060)under two Representative Concentration Pathways(RCPs)(RCP4.5 and RCP8.5).We further examined the influence of the three types of drought on soil conservation service at annual and seasonal scales.The NASA Earth Exchange Global Daily Downscaled Projections(NEX-GDDP)dataset was used to predict and model the hydrometeorological elements in the future period under the RCP4.5 and RCP8.5 scenarios.The results showed that in the historical period,annual-scale meteorological drought exhibited the highest intensity,while seasonal-scale drought was generally weakest in autumn and most severe in summer.Drought intensity of all three types of drought will increase over the next 40 years,with a greater increase under the RCP4.5 scenario than under the RCP8.5 scenario.Furthermore,the intra-annual variation in the drought intensity of the three types of drought becomes smaller under the two future scenarios relative to the historical period(2000-2019).Soil conservation service exhibits a distribution pattern characterized by high levels in the southwest and southeast and lower levels in the north,and this pattern has remained consistent both in the historical and future periods.Over the past 20 years,the intra-annual variation indicated peak soil conservation service in summer and lowest level in winter;the total soil conservation of the Jinghe River Basin displayed an upward trend,with the total soil conservation in 2019 being 1.14 times higher than that in 2000.The most substantial impact on soil conservation service arises from annual-scale meteorological drought,which remains consistent both in the historical and future periods.Additionally,at the seasonal scale,meteorological drought exerts the highest influence on soil conservation service in winter and autumn,particularly under the RCP4.5 and RCP8.5 scenarios.Compared to the historical period,the soil conservation service in the Jinghe River Basin will be significantly more affected by drought in the future period in terms of both the affected area and the magnitude of impact.This study conducted beneficial attempts to evaluate and predict the dynamic characteristics of watershed drought and soil conservation service,as well as the response of soil conservation service to different types of drought.Clarifying the interrelationship between the two is the foundation for achieving sustainable development in a relatively arid and severely eroded area such as the Jinghe River Basin.