Acrylic acid(AA)is an important and widely used industrial chemical,but its high toxicity renders its use incompatible with the concept of green development.By leveraging its terminal carboxyl group and unsaturated bo...Acrylic acid(AA)is an important and widely used industrial chemical,but its high toxicity renders its use incompatible with the concept of green development.By leveraging its terminal carboxyl group and unsaturated bond,we designed and explored a new strategy to increase the greenness of AA via its eutectic melting using a quaternary ammonium salt(choline chloride)to form a deep eutectic solvent(DES),followed by polymerisation of the DES to form a polymer(poly(DES)).The greenness of AA,DES,and poly(DES)was evaluated via an in vitro test using MGC80-3 cells and an in vivo test using Kunming mice.The toxicity improved from Grade 2(moderately toxic)for AA to Grade 1(slightly toxic)for DESs and Grade 0(non-toxic)for poly(DES)in the in vitro test.Moreover,the poly(DES)s showed a lower toxicity in mice than the DESs in the in vivo test.Thus,greenness enhancement was successfully achieved,with the greenness following the order AA<DES<poly(DES).Furthermore,the mechanisms underlying the change in toxicity were explored through microscopy and flow cytometry,which revealed that the DES can permeate the MGC80-3 cell membrane during the G_(0)/G_(1) phase to adversely affect DNA synthesis in the S phase,but the poly(DES)cannot.Finally,the green poly(DES),which showed good adsorption properties and flexible functionality,was successfully applied as a carrier or excipient of drugs.Through the novel strategy reported herein,greenness enhancement and the broadening of the application scope of a toxic organic acid were achieved,making such acids applicable for green development.展开更多
Urban vegetation in China has changed substantially in recent decades due to rapid urbanization and dramatic climate change.Nevertheless,the spatial differentiation of greenness among major cities of China and its evo...Urban vegetation in China has changed substantially in recent decades due to rapid urbanization and dramatic climate change.Nevertheless,the spatial differentiation of greenness among major cities of China and its evolution process and drivers are still poorly understood.This study examined the spatial patterns of vegetation greenness across 289 cities in China in 2000,2005,2010,2015,and 2018 by using spatial autocorrelation analysis on the Normalized Difference Vegetation Index(NDVI);then,the influencing factors were analyzed by using the optimal parameters-based geographical detector(OPGD)model and 18 natural and anthropogenic indicators.The findings demonstrated a noticeable rise in the overall greenness of the selected cities during 2000-2018.The cities in northwest China and east China exhibited the rapidest and slowest greening,respectively,among the six sub-regions.A significant positive spatial correlation was detected between the greenness of the 289 cities in different periods,but the correlation strength weakened over time.The hot and very hot spots in southern and eastern China gradually shifted to the southwest.While the spatial pattern of urban greenness in China is primarily influenced by wind speed(WS)and precipitation(PRE),the interaction between PRE and gross domestic product(GDP)has the highest explanatory power.The explanatory power of most natural factors decreased and,conversely,the influence of anthropogenic factors generally increased.These findings emphasize the variations in the influence strength of multiple factors on urban greenness pattern,which should be taken into account to understand and adapt to the changing urban ecosystem.展开更多
Objective This study aimed to explore the relationships between residential greenness and cardiometabolic risk factors among rural adults in Xinjiang Uygur Autonomous Region(Xinjiang)and thus provide a theoretical bas...Objective This study aimed to explore the relationships between residential greenness and cardiometabolic risk factors among rural adults in Xinjiang Uygur Autonomous Region(Xinjiang)and thus provide a theoretical basis and data support for improving the health of residents in this region.Methods We recruited 9,723 adult rural residents from the 51st Regiment of the Third Division of the Xinjiang Production and Construction Corps in September 2016.The normalized difference vegetation index(NDVI)was used to estimate residential greenness.The generalized linear mixed model(GLMM)was used to examine the association between residential greenness and cardiometabolic risk factors.Results Higher residential greenness was associated with lower cardiometabolic risk factor prevalence.After adjustments were made for age,sex,education,and marital status,for each interquartile range(IQR)increase of NDVI500-m,the risk of hypertension was reduced by 10.3%(OR=0.897,95%CI=0.836-0.962),the risk of obesity by 20.5%(OR=0.795,95%CI=0.695-0.910),the risk of type 2 diabetes by 15.1%(OR=0.849,95%CI=0.740-0.974),and the risk of dyslipidemia by 10.5%(OR=0.895,95%CI=0.825-0.971).Risk factor aggregation was reduced by 20.4%(OR=0.796,95%CI=0.716-0.885)for the same.Stratified analysis showed that NDVI500-m was associated more strongly with hypertension,dyslipidemia,and risk factor aggregation among male participants.The association of NDVI500-m with type 2 diabetes was stronger among participants with a higher education level.PM10 and physical activity mediated 1.9%-9.2%of the associations between NDVI500-m and obesity,dyslipidemia,and risk factor aggregation.Conclusion Higher residential greenness has a protective effect against cardiometabolic risk factors among rural residents in Xinjiang.Increasing the area of green space around residences is an effective measure to reduce the burden of cardiometabolic-related diseases among rural residents in Xinjiang.展开更多
The region-wide spatial pattern of the drivers of vegetation trends in the African Sahel-Sudano-Guinean region, one of the main drylands of the world, has not been fully investigated. Time-series satellite earth obser...The region-wide spatial pattern of the drivers of vegetation trends in the African Sahel-Sudano-Guinean region, one of the main drylands of the world, has not been fully investigated. Time-series satellite earth observation datasets were used to investigate spatiotemporal patterns of the vegetation greenness changes in the region and then a principal component regression method was applied to identify the region-wide spatial pattern of driving factors. Results find that vegetation greening is widespread in the region, while vegetation browning is more clustered in central West Africa. The dominant drivers of vegetation greenness have a distinct spatial pattern. Climatic factors are the primary drivers, but the impacts of precipitation decrease from north to south, while the impacts of temperature are contrariwise. Coupled with climatic drivers, land cover changes lead to greening trends in the arid zone, especially in the western Sahelian belt. However, the cluster of browning trends in central West Africa can primarily be attributed to the human-induced land cover changes, including an increasing fractional abundance of agriculture. The results highlight the spatial pattern of climatic and anthropic factors driving vegetation greenness changes, which helps natural resources sustainable use and mitigation of climate change and human activities in global dryland ecosystems.展开更多
Globally,vegetation has been changing dramatically.The vegetation-water dynamic is key to understanding ecosystem structure and functioning in water-limited ecosystems.Continual satellite monitoring has detected globa...Globally,vegetation has been changing dramatically.The vegetation-water dynamic is key to understanding ecosystem structure and functioning in water-limited ecosystems.Continual satellite monitoring has detected global vegetation greening.However,a vegetation greenness increase does not mean that ecosystem functions increase.The intricate interplays resulting from the relationships between vegetation and precipitation must be more adequately comprehended.In this study,satellite data,for example,leaf area index(LAI),net primary production(NPP),and rainfall use efficiency(RUE),were used to quantify vegetation dynamics and their relationship with rainfall in different reaches of the Yellow River Basin(YRB).A sequential regression method was used to detect trends of NPP sensitivity to rainfall.The results showed that 34.53%of the YRB exhibited a significant greening trend since 2000.Among them,20.54%,53.37%,and 16.73%of upper,middle,and lower reach areas showed a significant positive trend,respectively.NPP showed a similar trend to LAI in the YRB upper,middle,and lower reaches.A notable difference was noted in the distributions and trends of RUE across the upper,middle,and lower reaches.Moreover,there were significant trends in vegetation-rainfall sensitivity in 16.86%of the YRB’s middle reaches—14.08%showed negative trends and 2.78%positive trends.A total of 8.41%of the YRB exhibited a marked increase in LAI,NPP,and RUE.Subsequently,strategic locations reliant on the correlation between vegetation and rainfall were identified and designated for restoration planning purposes to propose future ecological restoration efforts.Our analysis indicates that the middle reach of the YRB exhibited the most significant variation in vegetation greenness and productivity.The present study underscores the significance of examining the correlation between vegetation and rainfall within the context of the high-quality development strategy of the YRB.The outcomes of our analysis and the proposed ecological restoration framework can provide decision-makers with valuable insights for executing rational basin pattern optimization and sustainable management.展开更多
为了建立水禽细小病毒(WPV)快速检测方法,根据序列比对结果在水禽细小病毒NS基因SF3保守区域内设计特异性引物,建立SYBR Green Ⅰ荧光定量PCR通用检测方法。该方法的扩增效率(E)为90.0%,相关系数(R~2)=0.99,标准曲线方程为y=-3.607x+38....为了建立水禽细小病毒(WPV)快速检测方法,根据序列比对结果在水禽细小病毒NS基因SF3保守区域内设计特异性引物,建立SYBR Green Ⅰ荧光定量PCR通用检测方法。该方法的扩增效率(E)为90.0%,相关系数(R~2)=0.99,标准曲线方程为y=-3.607x+38.77;除WPV出现S形扩增曲线外,新城疫病毒(NDV)、H9亚型禽流感病毒(H9 AIV)、鸭坦布苏病毒(DTMUV)、鸭肝炎病毒(DHAV)、鸭肠炎病毒(DEV)、鸭呼肠孤病毒(DRV)样品均未出现S形阳性扩增曲线;批内变异系数(CV)为0.15%~0.23%,批间变异系数为0.09%~0.28%。结果表明,SYBR Green Ⅰ荧光定量PCR检测方法重复性好、灵敏度高和特异性强。临床样品检测结果表明,SYBR Green Ⅰ荧光定量PCR与普通PCR的符合率达98.4%,灵敏度是普通PCR的1 000倍。SYBR Green Ⅰ荧光定量PCR检测方法不仅能定性检测WPV,还可以进行定量检测,可用于种鸭场、种鹅场的WPV净化检测,也可用于WPV临床大量样品的快速检测。展开更多
为了建立高效、灵敏的猪流行性腹泻病毒(PEDV)检测方法,本研究从GenBank数据库中获取PEDV N基因序列,扩增出PEDV N基因标准质粒,并在N基因的保守区域内设计了一对特异性荧光定量引物,成功建立了SYBR Green I实时荧光定量PCR检测方法。...为了建立高效、灵敏的猪流行性腹泻病毒(PEDV)检测方法,本研究从GenBank数据库中获取PEDV N基因序列,扩增出PEDV N基因标准质粒,并在N基因的保守区域内设计了一对特异性荧光定量引物,成功建立了SYBR Green I实时荧光定量PCR检测方法。经过一系列试验表明,该检测方法线性关系良好,R^(2)值为0.99;特异性强,敏感性高,最低可检测至2.23 copies/μL,比普通PCR灵敏约100倍;重复性好,组内变异系数为0.25%~0.43%,组间变异系数为0.67%~0.97%;对于各地区96份临床样品检测出PEDV阳性率为25%。本研究建立的实时荧光定量PCR检测方法为PEDV的临床诊断、流行病学调查以及定量研究提供了有效的检测工具。展开更多
试验旨在建立一种快速检测禽源沙门氏菌SYBR Green Ⅰ荧光定量PCR(qPCR)的方法,即根据沙门氏菌invA基因的保守序列设计引物,利用普通PCR方法扩增沙门氏菌invA基因保守基因片段,将其克隆到pMD18-T载体上,将获得的重组质粒pMD18-T-invA作...试验旨在建立一种快速检测禽源沙门氏菌SYBR Green Ⅰ荧光定量PCR(qPCR)的方法,即根据沙门氏菌invA基因的保守序列设计引物,利用普通PCR方法扩增沙门氏菌invA基因保守基因片段,将其克隆到pMD18-T载体上,将获得的重组质粒pMD18-T-invA作为标准阳性模板。经qPCR条件优化后,进行特异性、灵敏性和重复性试验。结果显示,所建立的SYBR Green Ⅰ qPCR方法的Ct值与标准品在1.4~1.4×10^(10)拷贝/μL范围内呈良好的线性关系,R2为0.9963,扩增效率为95%,检测下限为1.4拷贝/μL;与大肠埃希菌、金黄色葡萄球菌、链球菌、痢疾志贺菌、多杀性巴氏杆菌无交叉反应;该方法组内变异系数和组间变异系数均小于2.5%;对44份粪便样本和132份蛋液样本进行qPCR方法和常规PCR方法检测,结果显示该qPCR方法的阳性检出率分别为22.7%(10/44)、0.8%(1/132),常规PCR的阳性检出率分别为9.1%(4/44),0%(0/132)。结果表明:试验成功建立禽源沙门氏菌qPCR检测方法,可为禽源沙门氏菌的快速检测提供技术支撑。展开更多
Stroke can cause Wallerian degeneration in regions outside of the brain,particularly in the corticospinal tract.To investigate the fate of major glial cells and axons within affected areas of the corticospinal tract f...Stroke can cause Wallerian degeneration in regions outside of the brain,particularly in the corticospinal tract.To investigate the fate of major glial cells and axons within affected areas of the corticospinal tract following stroke,we induced photochemical infarction of the sensorimotor cortex leading to Wallerian degeneration along the full extent of the corticospinal tract.We first used a routine,sensitive marker of axonal injury,amyloid precursor protein,to examine Wallerian degeneration of the corticospinal tract.An antibody to amyloid precursor protein mapped exclusively to proximal axonal segments within the ischemic cortex,with no positive signal in distal parts of the corticospinal tract,at all time points.To improve visualization of Wallerian degeneration,we next utilized an orthograde virus that expresses green fluorescent protein to label the corticospinal tract and then quantitatively evaluated green fluorescent protein-expressing axons.Using this approach,we found that axonal degeneration began on day 3 post-stroke and was almost complete by 7 days after stroke.In addition,microglia mobilized and activated early,from day 7 after stroke,but did not maintain a phagocytic state over time.Meanwhile,astrocytes showed relatively delayed mobilization and a moderate response to Wallerian degeneration.Moreover,no anterograde degeneration of spinal anterior horn cells was observed in response to Wallerian degeneration of the corticospinal tract.In conclusion,our data provide evidence for dynamic,pathogenic spatiotemporal changes in major cellular components of the corticospinal tract during Wallerian degeneration.展开更多
Different government departments and researchers have paid considerable atten- tion at various levels to improving the eco-environment in ecologically fragile areas. Over the past decade, large numbers of people have ...Different government departments and researchers have paid considerable atten- tion at various levels to improving the eco-environment in ecologically fragile areas. Over the past decade, large numbers of people have emigrated from rural areas as a result of the rapid urbanization in Chinese society. The question then remains: to what extent does this migra- tion affect the regional vegetation greenness in the areas that people have moved from? Based on normalized difference vegetation index (NDVI) data with a resolution of 1 km, as well as meteorological data and socio-economic data from 2000 to 2010 in Inner Mongolia, the spatio-temporal variation of vegetation greenness in the study area was analyzed via trend analysis and significance test methods. The contributions of human activities and natural factors to the variation of vegetation conditions during this period were also quantita- tively tested and verified, using a multi-regression analysis method. We found that: (1)the vegetation greenness of the study area increased by 10.1% during 2000-2010. More than 28% of the vegetation greenness increased significantly, and only about 2% decreased evi- dently during the study period. (2) The area with significant degradation showed a banded distribution at the northern edge of the agro-pastoral ecotone in central Inner Mongolia. This indicates that the eco-environment is still fragile in this area, which should be paid close at- tention. The area where vegetation greenness significantly improved showed a concentrated distribution in the southeast and west of Inner Mongolia. (3) The effect of agricultural labor on vegetation greenness exceeded those due to natural factors (i.e. precipitation and tempera- ture). The emigration of agricultural labor improved the regional vegetation greenness sig- nificantly.展开更多
基金supported by National Natural Science Foundation of China(22178081)Interdisciplinary Research Program of Natural Science of Hebei University(No.DXK202116)+1 种基金Functional Pharmaceutical Chromatographic Materials Innovation Team(605020521006)High-level Talents Introduction Program of Hebei University。
文摘Acrylic acid(AA)is an important and widely used industrial chemical,but its high toxicity renders its use incompatible with the concept of green development.By leveraging its terminal carboxyl group and unsaturated bond,we designed and explored a new strategy to increase the greenness of AA via its eutectic melting using a quaternary ammonium salt(choline chloride)to form a deep eutectic solvent(DES),followed by polymerisation of the DES to form a polymer(poly(DES)).The greenness of AA,DES,and poly(DES)was evaluated via an in vitro test using MGC80-3 cells and an in vivo test using Kunming mice.The toxicity improved from Grade 2(moderately toxic)for AA to Grade 1(slightly toxic)for DESs and Grade 0(non-toxic)for poly(DES)in the in vitro test.Moreover,the poly(DES)s showed a lower toxicity in mice than the DESs in the in vivo test.Thus,greenness enhancement was successfully achieved,with the greenness following the order AA<DES<poly(DES).Furthermore,the mechanisms underlying the change in toxicity were explored through microscopy and flow cytometry,which revealed that the DES can permeate the MGC80-3 cell membrane during the G_(0)/G_(1) phase to adversely affect DNA synthesis in the S phase,but the poly(DES)cannot.Finally,the green poly(DES),which showed good adsorption properties and flexible functionality,was successfully applied as a carrier or excipient of drugs.Through the novel strategy reported herein,greenness enhancement and the broadening of the application scope of a toxic organic acid were achieved,making such acids applicable for green development.
基金supported by the Foundation of High-level Talents of Qingdao Agricultural University(Grant No.665/1120041)the Open Research Fund of the State Key Laboratory of Soil Erosion and Dry-land Farming on the Loess Plateau(Grant No.A314021402-202221)+1 种基金the Natural Science Foundation of Shandong Province(Grants No.ZR2020QD114 and ZR2021ME167)the Postgraduate Innovation Program of Qingdao Agricultural University(Grant No.QNYCX22031).
文摘Urban vegetation in China has changed substantially in recent decades due to rapid urbanization and dramatic climate change.Nevertheless,the spatial differentiation of greenness among major cities of China and its evolution process and drivers are still poorly understood.This study examined the spatial patterns of vegetation greenness across 289 cities in China in 2000,2005,2010,2015,and 2018 by using spatial autocorrelation analysis on the Normalized Difference Vegetation Index(NDVI);then,the influencing factors were analyzed by using the optimal parameters-based geographical detector(OPGD)model and 18 natural and anthropogenic indicators.The findings demonstrated a noticeable rise in the overall greenness of the selected cities during 2000-2018.The cities in northwest China and east China exhibited the rapidest and slowest greening,respectively,among the six sub-regions.A significant positive spatial correlation was detected between the greenness of the 289 cities in different periods,but the correlation strength weakened over time.The hot and very hot spots in southern and eastern China gradually shifted to the southwest.While the spatial pattern of urban greenness in China is primarily influenced by wind speed(WS)and precipitation(PRE),the interaction between PRE and gross domestic product(GDP)has the highest explanatory power.The explanatory power of most natural factors decreased and,conversely,the influence of anthropogenic factors generally increased.These findings emphasize the variations in the influence strength of multiple factors on urban greenness pattern,which should be taken into account to understand and adapt to the changing urban ecosystem.
基金funded by the Science and Technology Project of the Xinjiang Production and Construction Corps(NO.2021AB030)the Innovative Development Project of Shihezi University(NO.CXFZ202005)the Non-profit Central Research Institute Fund of the Chinese Academy of Medical Sciences(2020-PT330-003).
文摘Objective This study aimed to explore the relationships between residential greenness and cardiometabolic risk factors among rural adults in Xinjiang Uygur Autonomous Region(Xinjiang)and thus provide a theoretical basis and data support for improving the health of residents in this region.Methods We recruited 9,723 adult rural residents from the 51st Regiment of the Third Division of the Xinjiang Production and Construction Corps in September 2016.The normalized difference vegetation index(NDVI)was used to estimate residential greenness.The generalized linear mixed model(GLMM)was used to examine the association between residential greenness and cardiometabolic risk factors.Results Higher residential greenness was associated with lower cardiometabolic risk factor prevalence.After adjustments were made for age,sex,education,and marital status,for each interquartile range(IQR)increase of NDVI500-m,the risk of hypertension was reduced by 10.3%(OR=0.897,95%CI=0.836-0.962),the risk of obesity by 20.5%(OR=0.795,95%CI=0.695-0.910),the risk of type 2 diabetes by 15.1%(OR=0.849,95%CI=0.740-0.974),and the risk of dyslipidemia by 10.5%(OR=0.895,95%CI=0.825-0.971).Risk factor aggregation was reduced by 20.4%(OR=0.796,95%CI=0.716-0.885)for the same.Stratified analysis showed that NDVI500-m was associated more strongly with hypertension,dyslipidemia,and risk factor aggregation among male participants.The association of NDVI500-m with type 2 diabetes was stronger among participants with a higher education level.PM10 and physical activity mediated 1.9%-9.2%of the associations between NDVI500-m and obesity,dyslipidemia,and risk factor aggregation.Conclusion Higher residential greenness has a protective effect against cardiometabolic risk factors among rural residents in Xinjiang.Increasing the area of green space around residences is an effective measure to reduce the burden of cardiometabolic-related diseases among rural residents in Xinjiang.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA19030203)the National Natural Science Foundation of China project(Grant No.41661144022)。
文摘The region-wide spatial pattern of the drivers of vegetation trends in the African Sahel-Sudano-Guinean region, one of the main drylands of the world, has not been fully investigated. Time-series satellite earth observation datasets were used to investigate spatiotemporal patterns of the vegetation greenness changes in the region and then a principal component regression method was applied to identify the region-wide spatial pattern of driving factors. Results find that vegetation greening is widespread in the region, while vegetation browning is more clustered in central West Africa. The dominant drivers of vegetation greenness have a distinct spatial pattern. Climatic factors are the primary drivers, but the impacts of precipitation decrease from north to south, while the impacts of temperature are contrariwise. Coupled with climatic drivers, land cover changes lead to greening trends in the arid zone, especially in the western Sahelian belt. However, the cluster of browning trends in central West Africa can primarily be attributed to the human-induced land cover changes, including an increasing fractional abundance of agriculture. The results highlight the spatial pattern of climatic and anthropic factors driving vegetation greenness changes, which helps natural resources sustainable use and mitigation of climate change and human activities in global dryland ecosystems.
基金supported by the Fundamental Research Funds for the Central Universities (QNTD202303)the National Natural Science Foundation of China (42177310 and 42377331)+1 种基金the National Key Research and Development Program (2022YFF1300803)Yang Yu received the Outstanding Chinese and Foreign Youth Exchange Program supported by China Association for Science and Technology (2020-2022).
文摘Globally,vegetation has been changing dramatically.The vegetation-water dynamic is key to understanding ecosystem structure and functioning in water-limited ecosystems.Continual satellite monitoring has detected global vegetation greening.However,a vegetation greenness increase does not mean that ecosystem functions increase.The intricate interplays resulting from the relationships between vegetation and precipitation must be more adequately comprehended.In this study,satellite data,for example,leaf area index(LAI),net primary production(NPP),and rainfall use efficiency(RUE),were used to quantify vegetation dynamics and their relationship with rainfall in different reaches of the Yellow River Basin(YRB).A sequential regression method was used to detect trends of NPP sensitivity to rainfall.The results showed that 34.53%of the YRB exhibited a significant greening trend since 2000.Among them,20.54%,53.37%,and 16.73%of upper,middle,and lower reach areas showed a significant positive trend,respectively.NPP showed a similar trend to LAI in the YRB upper,middle,and lower reaches.A notable difference was noted in the distributions and trends of RUE across the upper,middle,and lower reaches.Moreover,there were significant trends in vegetation-rainfall sensitivity in 16.86%of the YRB’s middle reaches—14.08%showed negative trends and 2.78%positive trends.A total of 8.41%of the YRB exhibited a marked increase in LAI,NPP,and RUE.Subsequently,strategic locations reliant on the correlation between vegetation and rainfall were identified and designated for restoration planning purposes to propose future ecological restoration efforts.Our analysis indicates that the middle reach of the YRB exhibited the most significant variation in vegetation greenness and productivity.The present study underscores the significance of examining the correlation between vegetation and rainfall within the context of the high-quality development strategy of the YRB.The outcomes of our analysis and the proposed ecological restoration framework can provide decision-makers with valuable insights for executing rational basin pattern optimization and sustainable management.
文摘为了建立水禽细小病毒(WPV)快速检测方法,根据序列比对结果在水禽细小病毒NS基因SF3保守区域内设计特异性引物,建立SYBR Green Ⅰ荧光定量PCR通用检测方法。该方法的扩增效率(E)为90.0%,相关系数(R~2)=0.99,标准曲线方程为y=-3.607x+38.77;除WPV出现S形扩增曲线外,新城疫病毒(NDV)、H9亚型禽流感病毒(H9 AIV)、鸭坦布苏病毒(DTMUV)、鸭肝炎病毒(DHAV)、鸭肠炎病毒(DEV)、鸭呼肠孤病毒(DRV)样品均未出现S形阳性扩增曲线;批内变异系数(CV)为0.15%~0.23%,批间变异系数为0.09%~0.28%。结果表明,SYBR Green Ⅰ荧光定量PCR检测方法重复性好、灵敏度高和特异性强。临床样品检测结果表明,SYBR Green Ⅰ荧光定量PCR与普通PCR的符合率达98.4%,灵敏度是普通PCR的1 000倍。SYBR Green Ⅰ荧光定量PCR检测方法不仅能定性检测WPV,还可以进行定量检测,可用于种鸭场、种鹅场的WPV净化检测,也可用于WPV临床大量样品的快速检测。
文摘试验旨在建立一种快速检测禽源沙门氏菌SYBR Green Ⅰ荧光定量PCR(qPCR)的方法,即根据沙门氏菌invA基因的保守序列设计引物,利用普通PCR方法扩增沙门氏菌invA基因保守基因片段,将其克隆到pMD18-T载体上,将获得的重组质粒pMD18-T-invA作为标准阳性模板。经qPCR条件优化后,进行特异性、灵敏性和重复性试验。结果显示,所建立的SYBR Green Ⅰ qPCR方法的Ct值与标准品在1.4~1.4×10^(10)拷贝/μL范围内呈良好的线性关系,R2为0.9963,扩增效率为95%,检测下限为1.4拷贝/μL;与大肠埃希菌、金黄色葡萄球菌、链球菌、痢疾志贺菌、多杀性巴氏杆菌无交叉反应;该方法组内变异系数和组间变异系数均小于2.5%;对44份粪便样本和132份蛋液样本进行qPCR方法和常规PCR方法检测,结果显示该qPCR方法的阳性检出率分别为22.7%(10/44)、0.8%(1/132),常规PCR的阳性检出率分别为9.1%(4/44),0%(0/132)。结果表明:试验成功建立禽源沙门氏菌qPCR检测方法,可为禽源沙门氏菌的快速检测提供技术支撑。
基金supported by the National Natural Science Foundation of China,Nos.31 730030 (to XL),81941011 (to XL),31 771053 (to HD),82271403 (to XL),82272171 (to ZY),31971279 (to ZY)82201542 (to FH)+1 种基金the Natural Science Foundation of Beijing,No.7222004 (to HD)the Science and Technology Program of Beijing,No.Z181100001818007(to ZY)
文摘Stroke can cause Wallerian degeneration in regions outside of the brain,particularly in the corticospinal tract.To investigate the fate of major glial cells and axons within affected areas of the corticospinal tract following stroke,we induced photochemical infarction of the sensorimotor cortex leading to Wallerian degeneration along the full extent of the corticospinal tract.We first used a routine,sensitive marker of axonal injury,amyloid precursor protein,to examine Wallerian degeneration of the corticospinal tract.An antibody to amyloid precursor protein mapped exclusively to proximal axonal segments within the ischemic cortex,with no positive signal in distal parts of the corticospinal tract,at all time points.To improve visualization of Wallerian degeneration,we next utilized an orthograde virus that expresses green fluorescent protein to label the corticospinal tract and then quantitatively evaluated green fluorescent protein-expressing axons.Using this approach,we found that axonal degeneration began on day 3 post-stroke and was almost complete by 7 days after stroke.In addition,microglia mobilized and activated early,from day 7 after stroke,but did not maintain a phagocytic state over time.Meanwhile,astrocytes showed relatively delayed mobilization and a moderate response to Wallerian degeneration.Moreover,no anterograde degeneration of spinal anterior horn cells was observed in response to Wallerian degeneration of the corticospinal tract.In conclusion,our data provide evidence for dynamic,pathogenic spatiotemporal changes in major cellular components of the corticospinal tract during Wallerian degeneration.
基金Projects of International Cooperation and Exchanges NSFC,No.41161140352The Major Research Plan of the National Natural Science Foundation of China,No.91325302National Natural Science Foundation of China,No.41271119
文摘Different government departments and researchers have paid considerable atten- tion at various levels to improving the eco-environment in ecologically fragile areas. Over the past decade, large numbers of people have emigrated from rural areas as a result of the rapid urbanization in Chinese society. The question then remains: to what extent does this migra- tion affect the regional vegetation greenness in the areas that people have moved from? Based on normalized difference vegetation index (NDVI) data with a resolution of 1 km, as well as meteorological data and socio-economic data from 2000 to 2010 in Inner Mongolia, the spatio-temporal variation of vegetation greenness in the study area was analyzed via trend analysis and significance test methods. The contributions of human activities and natural factors to the variation of vegetation conditions during this period were also quantita- tively tested and verified, using a multi-regression analysis method. We found that: (1)the vegetation greenness of the study area increased by 10.1% during 2000-2010. More than 28% of the vegetation greenness increased significantly, and only about 2% decreased evi- dently during the study period. (2) The area with significant degradation showed a banded distribution at the northern edge of the agro-pastoral ecotone in central Inner Mongolia. This indicates that the eco-environment is still fragile in this area, which should be paid close at- tention. The area where vegetation greenness significantly improved showed a concentrated distribution in the southeast and west of Inner Mongolia. (3) The effect of agricultural labor on vegetation greenness exceeded those due to natural factors (i.e. precipitation and tempera- ture). The emigration of agricultural labor improved the regional vegetation greenness sig- nificantly.