期刊文献+
共找到4,669篇文章
< 1 2 234 >
每页显示 20 50 100
基于灰色GM(1,1)模型的我国医院感染患病率变化趋势及预测 被引量:1
1
作者 姜雪锦 李阳 +2 位作者 丁红红 吕敏 孙吉花 《中国医院统计》 2024年第2期87-89,94,共4页
目的了解我国医院感染患病率变化趋势,并采用灰色GM(1,1)模型对我国不同规模医院的医院感染患病率进行预测,为医院感染防控提供数据支持和新思路。方法采用描述性流行病学方法分析我国医院感染患病率变化趋势,2008—2016年我国医院感染... 目的了解我国医院感染患病率变化趋势,并采用灰色GM(1,1)模型对我国不同规模医院的医院感染患病率进行预测,为医院感染防控提供数据支持和新思路。方法采用描述性流行病学方法分析我国医院感染患病率变化趋势,2008—2016年我国医院感染患病率数据进行灰色GM(1,1)模型构建,2018—2020年数据进行模型验证。采用构建的灰色GM(1,1)模型对2022—2024年我国医院感染患病率进行预测。结果我国医院感染患病率呈下降趋势,随着医院规模的增加医院感染患病率升高。医院感染患病率灰色GM(1,1)模型的精度良好、拟合效果较高。2024年全国、<300张床位医院、300~599张床位医院、600~899张床位医院和≥900张床位医院的医院感染患病率可降为1.00%、0.49%、0.90%、1.13%和2.05%。结论我国医院感染防控效果明显,灰色GM(1,1)模型对我国医院感染患病率有较好的预测效果。 展开更多
关键词 灰色gm(1 1)模型 医院感染 患病率 预测
下载PDF
GM(1,1)模型在安徽省城镇化水平预测中的应用
2
作者 贾朝勇 潘玉荣 马程 《哈尔滨师范大学自然科学学报》 CAS 2024年第1期30-35,共6页
为了推进安徽省城镇化建设,制定正确的城镇发展方针政策是十分必要的.而对安徽省未来城镇化水平进行合理预测则可为政府制定城镇发展方针政策提供理论依据.现选取2010~2021年的安徽省城镇化率作为研究数据,采用GM(1,1)模型对安徽省城镇... 为了推进安徽省城镇化建设,制定正确的城镇发展方针政策是十分必要的.而对安徽省未来城镇化水平进行合理预测则可为政府制定城镇发展方针政策提供理论依据.现选取2010~2021年的安徽省城镇化率作为研究数据,采用GM(1,1)模型对安徽省城镇化水平建立动态预测模型,并对建立的模型进行了检验.研究表明:GM(1,1)模型具有较好的拟合精度,建模精度达到99.38%.运用GM(1,1)模型对2022~2026年安徽省城镇化率进行预测,预测结果显示未来几年安徽省城镇化水平将呈上升趋势. 展开更多
关键词 gm(1 1)模型 安徽省 城镇化率 预测
下载PDF
基于新陈代谢GM(1,1)++的疫情应急物资需求量预测研究
3
作者 王庆荣 张慈仁 《商丘师范学院学报》 CAS 2024年第6期1-5,共5页
当大规模疫情发生时,应急物资的供给至关重要.在新陈代谢GM(1,1)模型的基础上提出了一种新陈代谢GM(1,1)++模型,即再加入新信息,移除原始数据中的旧信息的同时,将原始数据中与拟合值相对残差最大的数据项用拟合值替代.提出的方法既能够... 当大规模疫情发生时,应急物资的供给至关重要.在新陈代谢GM(1,1)模型的基础上提出了一种新陈代谢GM(1,1)++模型,即再加入新信息,移除原始数据中的旧信息的同时,将原始数据中与拟合值相对残差最大的数据项用拟合值替代.提出的方法既能够及时去掉意义逐渐降低的老信息,加入更能够反应系统目前特征的新信息,又能够降低其他因素对原始数据的扰动性,使原始数据更具规律性.为了检验新陈代谢GM(1,1)++模型的有效性,将其预测结果分别与传统GM(1,1)、新信息GM(1,1)、新陈代谢GM(1,1)的预测结果进行比较研究.试验结果显示,新陈代谢GM(1,1)++模型的误差平方和最小,预测准确性远优于另外3种预测模型. 展开更多
关键词 gm(1 1) 灰色预测模型 预测模型 应急物资
下载PDF
基于GM(1,1)模型的地铁基坑变形预测研究
4
作者 苟胜荣 张文学 白立东 《粉煤灰综合利用》 CAS 2024年第2期70-74,共5页
在深大基坑开挖过程中,基坑周围土体会受到扰动,势必会影响到基坑、基坑周围建筑物和构筑物的稳定与安全。为解决基坑开挖过程中变形监测周期过长而无法长期监测以及监测数据误差等问题,以某工程实例为依据,对基坑周围地表沉降变形进行... 在深大基坑开挖过程中,基坑周围土体会受到扰动,势必会影响到基坑、基坑周围建筑物和构筑物的稳定与安全。为解决基坑开挖过程中变形监测周期过长而无法长期监测以及监测数据误差等问题,以某工程实例为依据,对基坑周围地表沉降变形进行监测,以地表沉降监测数据为基础数据建立GM(1,1)预测模型,进行基坑后期沉降变形预测分析。结果表明:该模型预测结果能较好的反映基坑的沉降变形情况,预测精度能满足工程需要,预测结果相对于实际观测值表现出超前现象,可为类似工程建设提供参考。 展开更多
关键词 灰色理论 深基坑 变形预测 gm(1 1)模型
下载PDF
Deformation critical threshold estimation of Xiaowan ultrahigh arch dam with time-varying grey model 被引量:1
5
作者 Er-feng Zhao Bo Li +1 位作者 Hao Chen Bing-bing Nie 《Water Science and Engineering》 EI CAS CSCD 2023年第3期302-312,共11页
The structural behavior of the Xiaowan ultrahigh arch dam is primarily influenced by external loads and time-varying characteristics of dam concrete and foundation rock mass during long-term operation. According to ov... The structural behavior of the Xiaowan ultrahigh arch dam is primarily influenced by external loads and time-varying characteristics of dam concrete and foundation rock mass during long-term operation. According to overload testing with a geological model and the measured time series of installed perpendicular lines, the space and time evolution characteristics of the arch dam structure were analyzed, and its mechanical performance was evaluated. Subsequently, the deformation centroid of the deflective curve was suggested to indicate the magnitude and unique distribution rules for a typical dam section using the measured deformation values at multi-monitoring points. The ellipse equations of the critical ellipsoid for the centroid were derived from the historical measured time series. Hydrostatic and seasonal components were extracted from the measured deformation values with a traditional statistical model, and residuals were adopted as a grey component. A time-varying grey model was developed to accurately predict the evolution of the deformation behavior of the ultrahigh arch dam during future operation. In the developed model, constant coefficients were modified so as to be time-dependent functions, and the prediction accuracy was significantly improved through introduction of a forgetting factor. Finally, the critical threshold was estimated, and predicted ellipsoids were derived for the Xiaowan arch dam. The findings of this study can provide technical support for safety evaluation of the actual operation of ultrahigh arch dams and help to provide early warning of abnormal changes. 展开更多
关键词 Arch dam Deformation behavior EVOLUTION Critical threshold grey model
下载PDF
基于GM(1,1)模型的甘肃省碳排放灰色预测研究
6
作者 张巨峰 《煤》 2024年第10期1-5,共5页
“双碳”目标战略为我国经济低碳绿色发展提供了机遇和挑战,为了给甘肃省碳减排方案的制定和实施提供理论依据,文章基于《甘肃省统计年鉴》2009—2021年各行业能源消费相关数据,通过二氧化碳排放测算得出甘肃省碳排放基础数据,运用GM(1... “双碳”目标战略为我国经济低碳绿色发展提供了机遇和挑战,为了给甘肃省碳减排方案的制定和实施提供理论依据,文章基于《甘肃省统计年鉴》2009—2021年各行业能源消费相关数据,通过二氧化碳排放测算得出甘肃省碳排放基础数据,运用GM(1,1)模型对2022—2033年的甘肃省碳排放量、碳排放强度和人均碳排放量进行了预测,得出了2022—2033年甘肃省的碳排放量和人均碳排放量整体呈逐年上升趋势,而碳排放强度却呈现出逐年下降趋势的结论。研究结果表明:以甘肃省当前的发展现状,在未实施强有力的碳减排干预措施下,甘肃省整体碳排放量和人均碳排放量仍逐年上升,还未见峰值和拐点,要想与全国同步实现“双碳”目标,需要制定强有力的碳减排政策措施,进行产业结构调整,深入贯彻落实减污降碳行动。 展开更多
关键词 碳排放量 碳排放强度 人均碳排放量 gm(1 1)模型 甘肃省
下载PDF
改进GM(1,1)-ARIMA-LR模型天然气产量预测研究 被引量:1
7
作者 林文辉 杜彦炜 赵鹏 《西安工业大学学报》 CAS 2024年第1期32-40,共9页
为提高天然气产量在少样本情形下预测的准确性,基于对过去的预测误差进行学习的思想,加入自适应学习因子和组合学习因子以改进模型,构建包含GM(1,1)、ARIMA和LR的集成预测模型。该模型以平均误差百分比为评价指标,依据预测步长变化和过... 为提高天然气产量在少样本情形下预测的准确性,基于对过去的预测误差进行学习的思想,加入自适应学习因子和组合学习因子以改进模型,构建包含GM(1,1)、ARIMA和LR的集成预测模型。该模型以平均误差百分比为评价指标,依据预测步长变化和过去预测误差对单个模型分别进行动态调整,再建立目标规划模型对各模型进行动态加权。实证结果表明,改进GM(1,1)-ARIMA-LR模型能够更好地提取时间序列的长短时依赖关系,与其它的主流模型相比,其预测精度更高。对近5年的天然气产量进行一步、五步与八步预测,GM(1,1)-ARIMA-LR集成模型预测误差分别为1.187%、3.129%、9.855%。本文运用该模型对2023-2030年中国天然气产量进行预测。 展开更多
关键词 天然气产量 ARIMA模型 灰色gm(1 1)模型 线性回归 多步预测
下载PDF
Prediction model of interval grey number based on DGM(1,1) 被引量:19
8
作者 Bo Zeng Sifeng Liu Naiming Xie 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第4期598-603,共6页
In grey system theory,the studies in the field of grey prediction model are focused on real number sequences,rather than grey number ones.Hereby,a prediction model based on interval grey number sequences is proposed.B... In grey system theory,the studies in the field of grey prediction model are focused on real number sequences,rather than grey number ones.Hereby,a prediction model based on interval grey number sequences is proposed.By mining the geometric features of interval grey number sequences on a two-dimensional surface,all the interval grey numbers are converted into real numbers by means of certain algorithm,and then the prediction model is established based on those real number sequences.The entire process avoids the algebraic operations of grey number,and the prediction problem of interval grey number is usefully solved.Ultimately,through an example's program simulation,the validity and practicability of this novel model are verified. 展开更多
关键词 grey system theory prediction model interval grey number grey number band grey number layer Dgm(1 1) model.
下载PDF
A New Modified GM (1,1) Model: Grey Optimization Model 被引量:12
9
作者 Xiao Xinping College of Scienced, Wuhan University of Technologyl 430063, P R. China Deng Julong Dept. of Control, Huazhong University of Science and Technology, Wuhan 430074,P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第2期1-5,共5页
Based on the optimization method, a new modified GM (1,1) model is presented, which is characterized by more accuracy prediction for the grey modeling.
关键词 gm (1 1) grey optimization model Optimization method.
下载PDF
基于SSA-LMD-GM的大坝变形组合预测模型 被引量:1
10
作者 李旭 冯晓 +1 位作者 刘宇豪 潘国兵 《工程勘察》 2024年第1期45-49,共5页
为提高大坝变形预测精度,针对大坝原始监测信号中的噪声,以及其非平稳性、非线性等特点,引入奇异谱分析(SSA)和局部均值分解(LMD)方法,提出SSA-LMD-GM模型。采用奇异谱分析(SSA)对原始监测信号进行去噪处理,为充分提取大坝形变信息特征... 为提高大坝变形预测精度,针对大坝原始监测信号中的噪声,以及其非平稳性、非线性等特点,引入奇异谱分析(SSA)和局部均值分解(LMD)方法,提出SSA-LMD-GM模型。采用奇异谱分析(SSA)对原始监测信号进行去噪处理,为充分提取大坝形变信息特征,利用局部均值分解(LMD)对去噪后的监测信号进行分解。针对乘积函数(PF)分量的特征采用合适的模型预测分析,剩下余项则采用GM(1,1)模型。利用实际工程案例进行检验,结果表明,相较于其他模型,SSA-LMD-GM模型预测精度和拟合精度更加优秀,能较好地预测大坝变形趋势,具有一定的应用价值。 展开更多
关键词 大坝变形监测 奇异谱分析 局部均值分解 gm(1 1)模型 组合预测模型
下载PDF
基于改进GM(1,1)模型的生活用水量预测 被引量:1
11
作者 高华昆 陶月赞 杨杰 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第3期387-391,416,共6页
生活用水量预测是城市给水规划的关键,其核心是提高预测的精准度。由于传统GM(1,1)模型误差主要来源于背景值和初始值,文章采取引入幂函数改进背景值和初始值2种改进方法。引入幂函数改进背景值权重构造,使新数据占改进模型主导地位;引... 生活用水量预测是城市给水规划的关键,其核心是提高预测的精准度。由于传统GM(1,1)模型误差主要来源于背景值和初始值,文章采取引入幂函数改进背景值和初始值2种改进方法。引入幂函数改进背景值权重构造,使新数据占改进模型主导地位;引入幂函数减少原始数据振荡,优化原始序列。将改进后的2种模型应用于河南省生活用水量预测中,并与传统GM(1,1)模型进行比较。结果表明改进模型各个检验均满足要求,可进行中长期用水量预测,预测可得2025年河南省生活用水量为48.31×10^(8)m^(3)。优化原始值改进的GM(1,1)模型预测效果好、精度高,可为当地水资源保护、管理提供参考。 展开更多
关键词 优化原始值 优化背景值 改进gm(1 1)模型 用水量预测
下载PDF
Multi-Objective Optimization of Fused Deposition Modeling for Mechanical Properties of Biopolymer Parts Using the Grey-Taguchi Method
12
作者 Kapil Kumar Hari Singh 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期51-64,共14页
The urgent need to develop customized functional products only possible by 3D printing had realized when faced with the unavailability of medical devices like surgical instruments during the coronavirus-19 disease and... The urgent need to develop customized functional products only possible by 3D printing had realized when faced with the unavailability of medical devices like surgical instruments during the coronavirus-19 disease and the ondemand necessity to perform surgery during space missions.Biopolymers have recently been the most appropriate option for fabricating surgical instruments via 3D printing in terms of cheaper and faster processing.Among all 3D printing techniques,fused deposition modelling(FDM)is a low-cost and more rapid printing technique.This article proposes the fabrication of surgical instruments,namely,forceps and hemostat using the fused deposition modeling(FDM)process.Excellent mechanical properties are the only indicator to judge the quality of the functional parts.The mechanical properties of FDM-processed parts depend on various process parameters.These parameters are layer height,infill pattern,top/bottom pattern,number of top/bottom layers,infill density,flow,number of shells,printing temperature,build plate temperature,printing speed,and fan speed.Tensile strength and modulus of elasticity are chosen as evaluation indexes to ascertain the mechanical properties of polylactic acid(PLA)parts printed by FDM.The experiments have performed through Taguchi’s L27orthogonal array(OA).Variance analysis(ANOVA)ascertains the significance of the process parameters and their percent contributions to the evaluation indexes.Finally,as a multiobjective optimization technique,grey relational analysis(GRA)obtains an optimal set of FDM process parameters to fabricate the best parts with comprehensive mechanical properties.Scanning electron microscopy(SEM)examines the types of defects and strong bonding between rasters.The proposed research ensures the successful fabrication of functional surgical tools with substantial ultimate tensile strength(42.6 MPa)and modulus of elasticity(3274 MPa). 展开更多
关键词 Fused deposition modeling Mechanical properties Taguchi method ANOVA grey relational analysis SEM
下载PDF
Grey GM(1,1) Model with Function-Transfer Method for Wear Trend Prediction and its Application 被引量:11
13
作者 LUO You xin 1 , PENG Zhu 2 , ZHANG Long ting 1 , GUO Hui xin 1 , CAI An hui 1 1Department of Mechanical Engineering, Changde Teachers University, Changde 415003, P.R. China 2 Engineering Technology Board, Changsha Cigare 《International Journal of Plant Engineering and Management》 2001年第4期203-212,共10页
Trend forecasting is an important aspect in fault diagnosis and work state supervision. The principle, where Grey theory is applied in fault forecasting, is that the forecast system is considered as a Grey system; the... Trend forecasting is an important aspect in fault diagnosis and work state supervision. The principle, where Grey theory is applied in fault forecasting, is that the forecast system is considered as a Grey system; the existing known information is used to infer the unknown information's character, state and development trend in a fault pattern, and to make possible forecasting and decisions for future development. It involves the whitenization of a Grey process. But the traditional equal time interval Grey GM (1,1) model requires equal interval data and needs to bring about accumulating addition generation and reversion calculations. Its calculation is very complex. However, the non equal interval Grey GM (1,1) model decreases the condition of the primitive data when establishing a model, but its requirement is still higher and the data were pre processed. The abrasion primitive data of plant could not always satisfy these modeling requirements. Therefore, it establishes a division method suited for general data modeling and estimating parameters of GM (1,1), the standard error coefficient that was applied to judge accuracy height of the model was put forward; further, the function transform to forecast plant abrasion trend and assess GM (1,1) parameter was established. These two models need not pre process the primitive data. It is not only suited for equal interval data modeling, but also for non equal interval data modeling. Its calculation is simple and convenient to use. The oil spectrum analysis acted as an example. The two GM (1,1) models put forward in this paper and the new information model and its comprehensive usage were investigated. The example shows that the two models are simple and practical, and worth expanding and applying in plant fault diagnosis. 展开更多
关键词 grey gm (1 1) model fault diagnosis function transfer method trend prediction
下载PDF
Prediction of Total Output Value of Construction Industry in Jiangxi Province Based on Grey Prediction Model
14
作者 Le XU Yuangui LIU 《Asian Agricultural Research》 2023年第5期11-13,43,共4页
In order to realize the accurate prediction of the total output value of construction industry in the future,the grey prediction model is used to compare the measured value with the predicted value from 2012 to 2021,a... In order to realize the accurate prediction of the total output value of construction industry in the future,the grey prediction model is used to compare the measured value with the predicted value from 2012 to 2021,and based on the existing data,the total output value of construction industry in Jiangxi Province in the next five years is predicted.The results show that the grey prediction model has a good prediction effect,and the error between the predicted value and the measured value is within 14%,which provides a basis for policy adjustment and resource optimization. 展开更多
关键词 Jiangxi Province grey prediction model Total output value of construction industry FORECAST
下载PDF
Application of Grey System GM (1,1) model and unary linear regression model in coal consumption of Jilin Province 被引量:1
15
作者 TIAN Songlin LU Laijun 《Global Geology》 2015年第1期26-31,共6页
The data on the coal production and consumption in Jilin Province for the last ten years were collected,and the Grey System GM( 1,1) model and unary linear regression model were applied to predict the coal consumption... The data on the coal production and consumption in Jilin Province for the last ten years were collected,and the Grey System GM( 1,1) model and unary linear regression model were applied to predict the coal consumption of Jilin Production in 2014 and 2015. Through calculation,the predictive value on the coal consumption of Jilin Province was attained,namely consumption of 2014 is 114. 84 × 106 t and of 2015 is 117. 98 ×106t,respectively. Analysis of error data indicated that the predicted accuracy of Grey System GM( 1,1) model on the coal consumption in Jilin Province improved 0. 21% in comparison to unary linear regression model. 展开更多
关键词 grey System gm 1 1 model unary linear regression model model test PREDICTION coal con-sumption Jilin Province
下载PDF
Prediction of syphilis incident rate and number in China based on the GM(1,1)grey model 被引量:1
16
作者 Run-Hua Li Jing Huang +1 位作者 Shun-Ying Luo Mei-Ying Zhang 《Food Therapy and Health Care》 2020年第4期170-175,共6页
Objective:To explore the feasibility of using grey model GM(1,1)model to predict syphilis,and to provide a theoretical basis for the health sector to develop corresponding strategies.Methods:GM(1,1)model was used to c... Objective:To explore the feasibility of using grey model GM(1,1)model to predict syphilis,and to provide a theoretical basis for the health sector to develop corresponding strategies.Methods:GM(1,1)model was used to construct and simulate the incident rate and case number of syphilis in China from 2009 to 2018 to predict the change trend.Results:The GM(1,1)prediction model of syphilis incident rate was x^(1)(k+1)=929.367901 e(0.029413k)-906.297901.The GM(1,1)prediction model for the number of syphilis patients was x^(1)(k+1)=1060.278025 e(0.034280k)-1029.639925.For syphilis incidence model,the posterior difference ratio was 0.19819 and the probability of small error was 1.For the syphilis incident number model,the posterior difference ratio was 0.18450 and the probability of small error was 1.The above models have good fitting accuracy with excellent grade level and can be predicted by extrapolation and predicted that the syphilis incidence in 2019-2021 may be 36.15 per 100,000,37.23 per 100,000 and 38.34 per 100,000,respectively.From 2019 to 2021,the number of incident syphilis cases in China may be 503,406,520,962 and 539,130,respectively.Conclusion:The GM(1,1)model can well fit and predict the change trend of syphilis incidence in time series.The prediction model showed that the incidence of syphilis may continue to increase and the number of syphilis cases per year may continue to increase substantially.More effort is needed to strengthen the prevention and treatment of venereal disease,reduce venereal harm to the population and improve the early detection rate of syphilis. 展开更多
关键词 SYPHILIS grey model PREDICTION
下载PDF
An improved interval model updating method via adaptive Kriging models
17
作者 Sha WEI Yifeng CHEN +1 位作者 Hu DING Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期497-514,共18页
Interval model updating(IMU)methods have been widely used in uncertain model updating due to their low requirements for sample data.However,the surrogate model in IMU methods mostly adopts the one-time construction me... Interval model updating(IMU)methods have been widely used in uncertain model updating due to their low requirements for sample data.However,the surrogate model in IMU methods mostly adopts the one-time construction method.This makes the accuracy of the surrogate model highly dependent on the experience of users and affects the accuracy of IMU methods.Therefore,an improved IMU method via the adaptive Kriging models is proposed.This method transforms the objective function of the IMU problem into two deterministic global optimization problems about the upper bound and the interval diameter through universal grey numbers.These optimization problems are addressed through the adaptive Kriging models and the particle swarm optimization(PSO)method to quantify the uncertain parameters,and the IMU is accomplished.During the construction of these adaptive Kriging models,the sample space is gridded according to sensitivity information.Local sampling is then performed in key subspaces based on the maximum mean square error(MMSE)criterion.The interval division coefficient and random sampling coefficient are adaptively adjusted without human interference until the model meets accuracy requirements.The effectiveness of the proposed method is demonstrated by a numerical example of a three-degree-of-freedom mass-spring system and an experimental example of a butted cylindrical shell.The results show that the updated results of the interval model are in good agreement with the experimental results. 展开更多
关键词 interval model updating(IMU) non-probabilistic uncertainty adaptive Kriging model surrogate model grey number
下载PDF
基于灰色GM-BP神经网络组合模型的中国镍原矿多情景需求预测
18
作者 周文潇 詹成 +2 位作者 张周益 阮晟哲 成金华 《资源与产业》 2024年第2期53-66,共14页
2016年我国颁布《全国矿产资源规划(2016—2020年)》,首次将镍列为战略性矿产资源。我国是全球最大的镍消费国,但镍资源储量少,对外依存度高,科学预测镍原矿需求量对保障镍矿产业链与供应链安全具有重要的现实意义。从需求侧出发,利用... 2016年我国颁布《全国矿产资源规划(2016—2020年)》,首次将镍列为战略性矿产资源。我国是全球最大的镍消费国,但镍资源储量少,对外依存度高,科学预测镍原矿需求量对保障镍矿产业链与供应链安全具有重要的现实意义。从需求侧出发,利用灰色关联度法选取中国不锈钢产量、人均GDP、电镀行业市场规模、城镇化率、产业结构、新能源汽车产量作为镍原矿需求情景预测的驱动变量,再在灰色GM(1,1)模型预测基础上,与BP神经网络算法相结合,构建基于残差优化的GM-BP组合模型,对2025—2035年中国镍原矿需求展开多情景预测。研究结果表明:组合模型实现了对小样本非线性时间序列数据的有效预测,且比GM(1,1)模型拟合误差更小,预测精度更高;根据组合模型,2025年、2030年、2035年我国镍原矿多情景需求均值分别为182.22万t、272.08万t、395.17万t,“十四五”“十五五”“十六五”期间需求年均增长4.26%、10.54%、9.78%。镍原矿需求呈稳定上升态势,镍矿供需矛盾将进一步加剧,我国必须提高镍供应能力,降低对进口镍的依赖程度。对此,提出如下政策建议:1)推进国内不锈钢产业的转型升级,优化生产工艺和产品结构,推广新型合金材料的应用;2)加大对镍矿勘探和开发的支持力度,如鼓励矿业企业技术创新,提高勘探效率和精度,同时积极推动国际合作,吸引国外先进技术、设备进入国内市场;3)促进进口多元化,与多个供应国建立合作关系,鼓励国内企业参与海外镍矿项目。 展开更多
关键词 gm-BP模型 BP神经网络 镍原矿需求 情景预测
下载PDF
基于GM(1,1)模型的江苏省淮安市5岁以下儿童死亡预测分析 被引量:1
19
作者 王慧 丁伟洁 +3 位作者 卢红梅 李晓宇 何鹏 朱晓琴 《安徽医药》 CAS 2024年第4期750-755,共6页
目的 分析2008年1月1日至2021年12月31日淮安市5岁以下儿童死亡现状,构建灰色GM(1,1)预测模型预测2022—2025年淮安市5岁以下儿童死亡变化趋势。方法 数据来源于江苏省妇幼卫生信息系统监测数据。采用描述流行病学方法综合分析2008-202... 目的 分析2008年1月1日至2021年12月31日淮安市5岁以下儿童死亡现状,构建灰色GM(1,1)预测模型预测2022—2025年淮安市5岁以下儿童死亡变化趋势。方法 数据来源于江苏省妇幼卫生信息系统监测数据。采用描述流行病学方法综合分析2008-2021年淮安市5岁以下儿童死亡死因并评估失能调整寿命年(DALY)损失,用R3.6.2软件构建灰色GM(1,1)预测模型预测淮安市2022-2025年不同年龄段儿童死亡率和非故意伤害死亡发生率。结果 2008-2021年淮安市共报告5岁以下儿童死亡3 315例,平均死亡率为4.44‰,总体呈下降趋势。5岁以下儿童主要死因为意外窒息、先天性心脏病、早产或低出生体质量、出生窒息、溺水。14年间因5岁以下儿童死亡共损失111 141.98个DALY。GM(1,1)模型结果显示,除了交通意外的模型精确等级结果为3级,其他指标的预测模型拟合效果均较好。2022-2025年预测结果显示,除交通意外死亡率呈逐年上升趋势外,不同年龄段5岁以下死亡和非故意伤害死亡率均呈下降趋势。结论 GM(1,1)对5岁以下儿童死亡预测的拟合效果较好,可以应用于预测。灰色GM(1,1)预测模型预测2022-2025年淮安市5岁以下儿童死亡率总体呈下降趋势,政府相关部门应进一步加强儿童早产、先天性心脏病及非故意伤害的防控和救治工作,把5岁以下儿童死亡率控制在更低的水平。 展开更多
关键词 儿童死亡率 灰色预测模型 gm(1 1) 儿童 学龄前 预测分析 江苏省淮安市
下载PDF
基于DPSIR和GM(1,1)模型的土地生态安全评价与预测——以河南省洛阳市为例
20
作者 张瑶 李帅 王鹏飞 《湖北农业科学》 2024年第2期162-169,共8页
为探究洛阳市土地生态安全现状及主要影响因子,基于DPSIR模型,选取24个评价指标,构建评价指标体系。运用熵权法、障碍度模型(ODM)和灰色系统GM(1,1)模型对2010—2020年洛阳市土地生态安全状况进行评价与预测。结果表明,2010—2020年洛... 为探究洛阳市土地生态安全现状及主要影响因子,基于DPSIR模型,选取24个评价指标,构建评价指标体系。运用熵权法、障碍度模型(ODM)和灰色系统GM(1,1)模型对2010—2020年洛阳市土地生态安全状况进行评价与预测。结果表明,2010—2020年洛阳市土地生态安全呈上升趋势,2010—2017年波动幅度较小,2018年土地生态安全指数大幅增加,从0.4805增加至0.6027;2020年土地生态安全等级从临界安全等级上升至较安全等级,其中人口自然增长率、单位耕地农药消耗、人均公园绿地面积、第三产业产值比重等指标因素是指数上涨的重要动力;权重最大的子系统为响应子系统,权重最大的单一指标为人均公园绿地面积;障碍因素中出现频次最高的指标为生活垃圾无害化处理率;从灰色系统GM(1,1)模型的预测结果来看,洛阳市土地生态安全等级将在2023年达到安全等级。 展开更多
关键词 土地生态安全指数 DPSIR模型 灰色系统gm(1 1)模型 障碍度模型(ODM) 河南省洛阳市
下载PDF
上一页 1 2 234 下一页 到第
使用帮助 返回顶部