The structural behavior of the Xiaowan ultrahigh arch dam is primarily influenced by external loads and time-varying characteristics of dam concrete and foundation rock mass during long-term operation. According to ov...The structural behavior of the Xiaowan ultrahigh arch dam is primarily influenced by external loads and time-varying characteristics of dam concrete and foundation rock mass during long-term operation. According to overload testing with a geological model and the measured time series of installed perpendicular lines, the space and time evolution characteristics of the arch dam structure were analyzed, and its mechanical performance was evaluated. Subsequently, the deformation centroid of the deflective curve was suggested to indicate the magnitude and unique distribution rules for a typical dam section using the measured deformation values at multi-monitoring points. The ellipse equations of the critical ellipsoid for the centroid were derived from the historical measured time series. Hydrostatic and seasonal components were extracted from the measured deformation values with a traditional statistical model, and residuals were adopted as a grey component. A time-varying grey model was developed to accurately predict the evolution of the deformation behavior of the ultrahigh arch dam during future operation. In the developed model, constant coefficients were modified so as to be time-dependent functions, and the prediction accuracy was significantly improved through introduction of a forgetting factor. Finally, the critical threshold was estimated, and predicted ellipsoids were derived for the Xiaowan arch dam. The findings of this study can provide technical support for safety evaluation of the actual operation of ultrahigh arch dams and help to provide early warning of abnormal changes.展开更多
In grey system theory,the studies in the field of grey prediction model are focused on real number sequences,rather than grey number ones.Hereby,a prediction model based on interval grey number sequences is proposed.B...In grey system theory,the studies in the field of grey prediction model are focused on real number sequences,rather than grey number ones.Hereby,a prediction model based on interval grey number sequences is proposed.By mining the geometric features of interval grey number sequences on a two-dimensional surface,all the interval grey numbers are converted into real numbers by means of certain algorithm,and then the prediction model is established based on those real number sequences.The entire process avoids the algebraic operations of grey number,and the prediction problem of interval grey number is usefully solved.Ultimately,through an example's program simulation,the validity and practicability of this novel model are verified.展开更多
Based on the optimization method, a new modified GM (1,1) model is presented, which is characterized by more accuracy prediction for the grey modeling.
The urgent need to develop customized functional products only possible by 3D printing had realized when faced with the unavailability of medical devices like surgical instruments during the coronavirus-19 disease and...The urgent need to develop customized functional products only possible by 3D printing had realized when faced with the unavailability of medical devices like surgical instruments during the coronavirus-19 disease and the ondemand necessity to perform surgery during space missions.Biopolymers have recently been the most appropriate option for fabricating surgical instruments via 3D printing in terms of cheaper and faster processing.Among all 3D printing techniques,fused deposition modelling(FDM)is a low-cost and more rapid printing technique.This article proposes the fabrication of surgical instruments,namely,forceps and hemostat using the fused deposition modeling(FDM)process.Excellent mechanical properties are the only indicator to judge the quality of the functional parts.The mechanical properties of FDM-processed parts depend on various process parameters.These parameters are layer height,infill pattern,top/bottom pattern,number of top/bottom layers,infill density,flow,number of shells,printing temperature,build plate temperature,printing speed,and fan speed.Tensile strength and modulus of elasticity are chosen as evaluation indexes to ascertain the mechanical properties of polylactic acid(PLA)parts printed by FDM.The experiments have performed through Taguchi’s L27orthogonal array(OA).Variance analysis(ANOVA)ascertains the significance of the process parameters and their percent contributions to the evaluation indexes.Finally,as a multiobjective optimization technique,grey relational analysis(GRA)obtains an optimal set of FDM process parameters to fabricate the best parts with comprehensive mechanical properties.Scanning electron microscopy(SEM)examines the types of defects and strong bonding between rasters.The proposed research ensures the successful fabrication of functional surgical tools with substantial ultimate tensile strength(42.6 MPa)and modulus of elasticity(3274 MPa).展开更多
Trend forecasting is an important aspect in fault diagnosis and work state supervision. The principle, where Grey theory is applied in fault forecasting, is that the forecast system is considered as a Grey system; the...Trend forecasting is an important aspect in fault diagnosis and work state supervision. The principle, where Grey theory is applied in fault forecasting, is that the forecast system is considered as a Grey system; the existing known information is used to infer the unknown information's character, state and development trend in a fault pattern, and to make possible forecasting and decisions for future development. It involves the whitenization of a Grey process. But the traditional equal time interval Grey GM (1,1) model requires equal interval data and needs to bring about accumulating addition generation and reversion calculations. Its calculation is very complex. However, the non equal interval Grey GM (1,1) model decreases the condition of the primitive data when establishing a model, but its requirement is still higher and the data were pre processed. The abrasion primitive data of plant could not always satisfy these modeling requirements. Therefore, it establishes a division method suited for general data modeling and estimating parameters of GM (1,1), the standard error coefficient that was applied to judge accuracy height of the model was put forward; further, the function transform to forecast plant abrasion trend and assess GM (1,1) parameter was established. These two models need not pre process the primitive data. It is not only suited for equal interval data modeling, but also for non equal interval data modeling. Its calculation is simple and convenient to use. The oil spectrum analysis acted as an example. The two GM (1,1) models put forward in this paper and the new information model and its comprehensive usage were investigated. The example shows that the two models are simple and practical, and worth expanding and applying in plant fault diagnosis.展开更多
In order to realize the accurate prediction of the total output value of construction industry in the future,the grey prediction model is used to compare the measured value with the predicted value from 2012 to 2021,a...In order to realize the accurate prediction of the total output value of construction industry in the future,the grey prediction model is used to compare the measured value with the predicted value from 2012 to 2021,and based on the existing data,the total output value of construction industry in Jiangxi Province in the next five years is predicted.The results show that the grey prediction model has a good prediction effect,and the error between the predicted value and the measured value is within 14%,which provides a basis for policy adjustment and resource optimization.展开更多
The data on the coal production and consumption in Jilin Province for the last ten years were collected,and the Grey System GM( 1,1) model and unary linear regression model were applied to predict the coal consumption...The data on the coal production and consumption in Jilin Province for the last ten years were collected,and the Grey System GM( 1,1) model and unary linear regression model were applied to predict the coal consumption of Jilin Production in 2014 and 2015. Through calculation,the predictive value on the coal consumption of Jilin Province was attained,namely consumption of 2014 is 114. 84 × 106 t and of 2015 is 117. 98 ×106t,respectively. Analysis of error data indicated that the predicted accuracy of Grey System GM( 1,1) model on the coal consumption in Jilin Province improved 0. 21% in comparison to unary linear regression model.展开更多
Objective:To explore the feasibility of using grey model GM(1,1)model to predict syphilis,and to provide a theoretical basis for the health sector to develop corresponding strategies.Methods:GM(1,1)model was used to c...Objective:To explore the feasibility of using grey model GM(1,1)model to predict syphilis,and to provide a theoretical basis for the health sector to develop corresponding strategies.Methods:GM(1,1)model was used to construct and simulate the incident rate and case number of syphilis in China from 2009 to 2018 to predict the change trend.Results:The GM(1,1)prediction model of syphilis incident rate was x^(1)(k+1)=929.367901 e(0.029413k)-906.297901.The GM(1,1)prediction model for the number of syphilis patients was x^(1)(k+1)=1060.278025 e(0.034280k)-1029.639925.For syphilis incidence model,the posterior difference ratio was 0.19819 and the probability of small error was 1.For the syphilis incident number model,the posterior difference ratio was 0.18450 and the probability of small error was 1.The above models have good fitting accuracy with excellent grade level and can be predicted by extrapolation and predicted that the syphilis incidence in 2019-2021 may be 36.15 per 100,000,37.23 per 100,000 and 38.34 per 100,000,respectively.From 2019 to 2021,the number of incident syphilis cases in China may be 503,406,520,962 and 539,130,respectively.Conclusion:The GM(1,1)model can well fit and predict the change trend of syphilis incidence in time series.The prediction model showed that the incidence of syphilis may continue to increase and the number of syphilis cases per year may continue to increase substantially.More effort is needed to strengthen the prevention and treatment of venereal disease,reduce venereal harm to the population and improve the early detection rate of syphilis.展开更多
Interval model updating(IMU)methods have been widely used in uncertain model updating due to their low requirements for sample data.However,the surrogate model in IMU methods mostly adopts the one-time construction me...Interval model updating(IMU)methods have been widely used in uncertain model updating due to their low requirements for sample data.However,the surrogate model in IMU methods mostly adopts the one-time construction method.This makes the accuracy of the surrogate model highly dependent on the experience of users and affects the accuracy of IMU methods.Therefore,an improved IMU method via the adaptive Kriging models is proposed.This method transforms the objective function of the IMU problem into two deterministic global optimization problems about the upper bound and the interval diameter through universal grey numbers.These optimization problems are addressed through the adaptive Kriging models and the particle swarm optimization(PSO)method to quantify the uncertain parameters,and the IMU is accomplished.During the construction of these adaptive Kriging models,the sample space is gridded according to sensitivity information.Local sampling is then performed in key subspaces based on the maximum mean square error(MMSE)criterion.The interval division coefficient and random sampling coefficient are adaptively adjusted without human interference until the model meets accuracy requirements.The effectiveness of the proposed method is demonstrated by a numerical example of a three-degree-of-freedom mass-spring system and an experimental example of a butted cylindrical shell.The results show that the updated results of the interval model are in good agreement with the experimental results.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52079046)the Fundamental Research Funds for the Central Universities(Grant No.B210202017).
文摘The structural behavior of the Xiaowan ultrahigh arch dam is primarily influenced by external loads and time-varying characteristics of dam concrete and foundation rock mass during long-term operation. According to overload testing with a geological model and the measured time series of installed perpendicular lines, the space and time evolution characteristics of the arch dam structure were analyzed, and its mechanical performance was evaluated. Subsequently, the deformation centroid of the deflective curve was suggested to indicate the magnitude and unique distribution rules for a typical dam section using the measured deformation values at multi-monitoring points. The ellipse equations of the critical ellipsoid for the centroid were derived from the historical measured time series. Hydrostatic and seasonal components were extracted from the measured deformation values with a traditional statistical model, and residuals were adopted as a grey component. A time-varying grey model was developed to accurately predict the evolution of the deformation behavior of the ultrahigh arch dam during future operation. In the developed model, constant coefficients were modified so as to be time-dependent functions, and the prediction accuracy was significantly improved through introduction of a forgetting factor. Finally, the critical threshold was estimated, and predicted ellipsoids were derived for the Xiaowan arch dam. The findings of this study can provide technical support for safety evaluation of the actual operation of ultrahigh arch dams and help to provide early warning of abnormal changes.
基金supported by the National Natural Science Foundation of China(7084001290924022)the Ph.D.Thesis Innovation and Excellent Foundation of Nanjing University of Aeronautics and Astronautics(2010)
文摘In grey system theory,the studies in the field of grey prediction model are focused on real number sequences,rather than grey number ones.Hereby,a prediction model based on interval grey number sequences is proposed.By mining the geometric features of interval grey number sequences on a two-dimensional surface,all the interval grey numbers are converted into real numbers by means of certain algorithm,and then the prediction model is established based on those real number sequences.The entire process avoids the algebraic operations of grey number,and the prediction problem of interval grey number is usefully solved.Ultimately,through an example's program simulation,the validity and practicability of this novel model are verified.
文摘Based on the optimization method, a new modified GM (1,1) model is presented, which is characterized by more accuracy prediction for the grey modeling.
文摘The urgent need to develop customized functional products only possible by 3D printing had realized when faced with the unavailability of medical devices like surgical instruments during the coronavirus-19 disease and the ondemand necessity to perform surgery during space missions.Biopolymers have recently been the most appropriate option for fabricating surgical instruments via 3D printing in terms of cheaper and faster processing.Among all 3D printing techniques,fused deposition modelling(FDM)is a low-cost and more rapid printing technique.This article proposes the fabrication of surgical instruments,namely,forceps and hemostat using the fused deposition modeling(FDM)process.Excellent mechanical properties are the only indicator to judge the quality of the functional parts.The mechanical properties of FDM-processed parts depend on various process parameters.These parameters are layer height,infill pattern,top/bottom pattern,number of top/bottom layers,infill density,flow,number of shells,printing temperature,build plate temperature,printing speed,and fan speed.Tensile strength and modulus of elasticity are chosen as evaluation indexes to ascertain the mechanical properties of polylactic acid(PLA)parts printed by FDM.The experiments have performed through Taguchi’s L27orthogonal array(OA).Variance analysis(ANOVA)ascertains the significance of the process parameters and their percent contributions to the evaluation indexes.Finally,as a multiobjective optimization technique,grey relational analysis(GRA)obtains an optimal set of FDM process parameters to fabricate the best parts with comprehensive mechanical properties.Scanning electron microscopy(SEM)examines the types of defects and strong bonding between rasters.The proposed research ensures the successful fabrication of functional surgical tools with substantial ultimate tensile strength(42.6 MPa)and modulus of elasticity(3274 MPa).
文摘Trend forecasting is an important aspect in fault diagnosis and work state supervision. The principle, where Grey theory is applied in fault forecasting, is that the forecast system is considered as a Grey system; the existing known information is used to infer the unknown information's character, state and development trend in a fault pattern, and to make possible forecasting and decisions for future development. It involves the whitenization of a Grey process. But the traditional equal time interval Grey GM (1,1) model requires equal interval data and needs to bring about accumulating addition generation and reversion calculations. Its calculation is very complex. However, the non equal interval Grey GM (1,1) model decreases the condition of the primitive data when establishing a model, but its requirement is still higher and the data were pre processed. The abrasion primitive data of plant could not always satisfy these modeling requirements. Therefore, it establishes a division method suited for general data modeling and estimating parameters of GM (1,1), the standard error coefficient that was applied to judge accuracy height of the model was put forward; further, the function transform to forecast plant abrasion trend and assess GM (1,1) parameter was established. These two models need not pre process the primitive data. It is not only suited for equal interval data modeling, but also for non equal interval data modeling. Its calculation is simple and convenient to use. The oil spectrum analysis acted as an example. The two GM (1,1) models put forward in this paper and the new information model and its comprehensive usage were investigated. The example shows that the two models are simple and practical, and worth expanding and applying in plant fault diagnosis.
文摘In order to realize the accurate prediction of the total output value of construction industry in the future,the grey prediction model is used to compare the measured value with the predicted value from 2012 to 2021,and based on the existing data,the total output value of construction industry in Jiangxi Province in the next five years is predicted.The results show that the grey prediction model has a good prediction effect,and the error between the predicted value and the measured value is within 14%,which provides a basis for policy adjustment and resource optimization.
基金Supported by project of National Natural Science Foundation of China(No.41272360)
文摘The data on the coal production and consumption in Jilin Province for the last ten years were collected,and the Grey System GM( 1,1) model and unary linear regression model were applied to predict the coal consumption of Jilin Production in 2014 and 2015. Through calculation,the predictive value on the coal consumption of Jilin Province was attained,namely consumption of 2014 is 114. 84 × 106 t and of 2015 is 117. 98 ×106t,respectively. Analysis of error data indicated that the predicted accuracy of Grey System GM( 1,1) model on the coal consumption in Jilin Province improved 0. 21% in comparison to unary linear regression model.
文摘Objective:To explore the feasibility of using grey model GM(1,1)model to predict syphilis,and to provide a theoretical basis for the health sector to develop corresponding strategies.Methods:GM(1,1)model was used to construct and simulate the incident rate and case number of syphilis in China from 2009 to 2018 to predict the change trend.Results:The GM(1,1)prediction model of syphilis incident rate was x^(1)(k+1)=929.367901 e(0.029413k)-906.297901.The GM(1,1)prediction model for the number of syphilis patients was x^(1)(k+1)=1060.278025 e(0.034280k)-1029.639925.For syphilis incidence model,the posterior difference ratio was 0.19819 and the probability of small error was 1.For the syphilis incident number model,the posterior difference ratio was 0.18450 and the probability of small error was 1.The above models have good fitting accuracy with excellent grade level and can be predicted by extrapolation and predicted that the syphilis incidence in 2019-2021 may be 36.15 per 100,000,37.23 per 100,000 and 38.34 per 100,000,respectively.From 2019 to 2021,the number of incident syphilis cases in China may be 503,406,520,962 and 539,130,respectively.Conclusion:The GM(1,1)model can well fit and predict the change trend of syphilis incidence in time series.The prediction model showed that the incidence of syphilis may continue to increase and the number of syphilis cases per year may continue to increase substantially.More effort is needed to strengthen the prevention and treatment of venereal disease,reduce venereal harm to the population and improve the early detection rate of syphilis.
基金Project supported by the National Natural Science Foundation of China(Nos.12272211,12072181,12121002)。
文摘Interval model updating(IMU)methods have been widely used in uncertain model updating due to their low requirements for sample data.However,the surrogate model in IMU methods mostly adopts the one-time construction method.This makes the accuracy of the surrogate model highly dependent on the experience of users and affects the accuracy of IMU methods.Therefore,an improved IMU method via the adaptive Kriging models is proposed.This method transforms the objective function of the IMU problem into two deterministic global optimization problems about the upper bound and the interval diameter through universal grey numbers.These optimization problems are addressed through the adaptive Kriging models and the particle swarm optimization(PSO)method to quantify the uncertain parameters,and the IMU is accomplished.During the construction of these adaptive Kriging models,the sample space is gridded according to sensitivity information.Local sampling is then performed in key subspaces based on the maximum mean square error(MMSE)criterion.The interval division coefficient and random sampling coefficient are adaptively adjusted without human interference until the model meets accuracy requirements.The effectiveness of the proposed method is demonstrated by a numerical example of a three-degree-of-freedom mass-spring system and an experimental example of a butted cylindrical shell.The results show that the updated results of the interval model are in good agreement with the experimental results.