期刊文献+
共找到192篇文章
< 1 2 10 >
每页显示 20 50 100
Function chain neural network prediction on heat transfer performance of oscillating heat pipe based on grey relational analysis 被引量:12
1
作者 鄂加强 李玉强 龚金科 《Journal of Central South University》 SCIE EI CAS 2011年第5期1733-1737,共5页
As for the factors affecting the heat transfer performance of complex and nonlinear oscillating heat pipe (OHP),grey relational analysis (GRA) was used to deal with the relationship between heat transfer rate of a loo... As for the factors affecting the heat transfer performance of complex and nonlinear oscillating heat pipe (OHP),grey relational analysis (GRA) was used to deal with the relationship between heat transfer rate of a looped copper-water OHP and charging ratio,inner diameter,inclination angel,heat input,number of turns,and the main influencing factors were defined.Then,forecasting model was obtained by using main influencing factors (such as charging ratio,interior diameter,and inclination angel) as the inputs of function chain neural network.The results show that the relative average error between the predicted and actual value is 4%,which illustrates that the function chain neural network can be applied to predict the performance of OHP accurately. 展开更多
关键词 oscillating heat pipe grey relational analysis fimction chain neural network heat transfer
下载PDF
A new grey forecasting model based on BP neural network and Markov chain 被引量:6
2
作者 李存斌 王恪铖 《Journal of Central South University of Technology》 EI 2007年第5期713-718,共6页
A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is eq... A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is equivalent to the time response model, was proved by analyzing the features of grey forecasting model(GM(1,1)). Based on this, the differential equation parameters were included in the network when the BP neural network was constructed, and the neural network was trained by extracting samples from grey system's known data. When BP network was converged, the whitened grey differential equation parameters were extracted and then the grey neural network forecasting model (GNNM(1,1)) was built. In order to reduce stochastic phenomenon in GNNM(1,1), the state transition probability between two states was defined and the Markov transition matrix was established by building the residual sequences between grey forecasting and actual value. Thus, the new grey forecasting model(MNNGM(1,1)) was proposed by combining Markov chain with GNNM(1,1). Based on the above discussion, three different approaches were put forward for forecasting China electricity demands. By comparing GM(1, 1) and GNNM(1,1) with the proposed model, the results indicate that the absolute mean error of MNNGM(1,1) is about 0.4 times of GNNM(1,1) and 0.2 times of GM(I, 1), and the mean square error of MNNGM(1,1) is about 0.25 times of GNNM(1,1) and 0.1 times of GM(1,1). 展开更多
关键词 grey forecasting model neural network Markov chain electricity demand forecasting
下载PDF
Research on train integrated positioning based on grey neural network 被引量:1
3
作者 YANG Yang CHEN Guang-wu +1 位作者 WANG Jing-wen LI Cheng-dong 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2019年第2期143-149,共7页
Train positioning is the key to ensure the transportation and efficient operation of the railway.Due to the low accuracy and the poor real-time of the train positioning,a train positioning system based on global navig... Train positioning is the key to ensure the transportation and efficient operation of the railway.Due to the low accuracy and the poor real-time of the train positioning,a train positioning system based on global navigation satellite system/inertial measurement unit/odometer(GNSS/IMU/ODO)combination framework and a train integrated positioning method based on grey neural network are put forward.A data updating method based on the established grey prediction model of train positioning is put forward,which uses the accumulation and summary of the grey theory for the rough prediction of the data.The purpose of the method is to reduce the noise of the original data.Moreover,the radial basis function(RBF)neural network is introduced to correct residual sequence of the grey prediction model.Compared with the single model calibration,this method can make full use of the advantages of each model,thus getting a high positioning accuracy in the case of small samples and poor information.Experiments show that the method has good real-time performance and high accuracy,and has certain application value. 展开更多
关键词 rail transport GNSS/IMU/ODO grey neural network train positioning
下载PDF
ELMAN Neural Network with Modified Grey Wolf Optimizer for Enhanced Wind Speed Forecasting 被引量:5
4
作者 M. Madhiarasan S. N. Deepa 《Circuits and Systems》 2016年第10期2975-2995,共21页
The scope of this paper is to forecast wind speed. Wind speed, temperature, wind direction, relative humidity, precipitation of water content and air pressure are the main factors make the wind speed forecasting as a ... The scope of this paper is to forecast wind speed. Wind speed, temperature, wind direction, relative humidity, precipitation of water content and air pressure are the main factors make the wind speed forecasting as a complex problem and neural network performance is mainly influenced by proper hidden layer neuron units. This paper proposes new criteria for appropriate hidden layer neuron unit’s determination and attempts a novel hybrid method in order to achieve enhanced wind speed forecasting. This paper proposes the following two main innovative contributions 1) both either over fitting or under fitting issues are avoided by means of the proposed new criteria based hidden layer neuron unit’s estimation. 2) ELMAN neural network is optimized through Modified Grey Wolf Optimizer (MGWO). The proposed hybrid method (ELMAN-MGWO) performance, effectiveness is confirmed by means of the comparison between Grey Wolf Optimizer (GWO), Adaptive Gbest-guided Gravitational Search Algorithm (GGSA), Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), Cuckoo Search (CS), Particle Swarm Optimization (PSO), Evolution Strategy (ES), Genetic Algorithm (GA) algorithms, meanwhile proposed new criteria effectiveness and precise are verified comparison with other existing selection criteria. Three real-time wind data sets are utilized in order to analysis the performance of the proposed approach. Simulation results demonstrate that the proposed hybrid method (ELMAN-MGWO) achieve the mean square error AVG ± STD of 4.1379e-11 ± 1.0567e-15, 6.3073e-11 ± 3.5708e-15 and 7.5840e-11 ± 1.1613e-14 respectively for evaluation on three real-time data sets. Hence, the proposed hybrid method is superior, precise, enhance wind speed forecasting than that of other existing methods and robust. 展开更多
关键词 ELMAN neural network Modified grey Wolf Optimizer Hidden Layer Neuron Units Forecasting Wind Speed
下载PDF
Prediction Model of Sewing Technical Condition by Grey Neural Network
5
作者 董英 方方 张渭源 《Journal of Donghua University(English Edition)》 EI CAS 2007年第4期565-568,共4页
The grey system theory and the artificial neural network technology were applied to predict the sewing technical condition. The representative parameters, such as needle, stitch, were selected. Prediction model was es... The grey system theory and the artificial neural network technology were applied to predict the sewing technical condition. The representative parameters, such as needle, stitch, were selected. Prediction model was established based on the different fabrics’ mechanical properties that measured by KES instrument. Grey relevant degree analysis was applied to choose the input parameters of the neural network. The result showed that prediction model has good precision. The average relative error was 4.08% for needle and 4.25% for stitch. 展开更多
关键词 grey relevant degree neural network NEEDLE STITCH KES measurement prediction model
下载PDF
A study of using grey system theory and artificial neural network on the climbing ability of <i>Buergeria robusta</i>frog
6
作者 Yuan-Hsiou Chang Tsai-Fu Chuang 《Open Journal of Ecology》 2013年第2期83-93,共11页
Ecological engineering is an emerging study of integrating both ecology and engineering, concerned with the design, monitoring, and construction of ecosystems. In recent years, the threat to amphibian animals is becom... Ecological engineering is an emerging study of integrating both ecology and engineering, concerned with the design, monitoring, and construction of ecosystems. In recent years, the threat to amphibian animals is becoming more and more serious. In particular, the loss of habitats caused by changes to the way land is used by human beings has hit amphibians particularly hard. Amphibians are known to be particularly vulnerable to human activities because they rely on both terrestrial and aquatic habitats for survival. With the increasing development of many areas in recent years, concrete structures are often installed along water bodies in order to increase the safety of local residents. The construction of concrete banks along rivers associated with human development has become a serious problem in Taiwan. Most ecosystems used by amphibians are lakes and stream banks, yet no related design solutions to accommodate the needs of amphibians. The need to develop the relevant design specification considering protecting the amphibian is imperative. Buergeria robusta, an endemic species in Taiwan, is tree frog widely distributed in lowland montane regions. Their breeding season is from April to September. They like to rest on trees or hide at caves during the daytime and move to the stream nearby in dusk for breeding. Males usually emit weak mating call while standing on stones. Sticky eggs are attached to undersides of rocks and stones. Tadpoles are found in slow flowing water of streams [1]. The goal of this study is to improve the understanding of the relationship between the climbing ability and the physical characteristics of amphibians. In this study, we use Artificial Neural Network to simulate the climbing ability of Buergeria robusta. Besides, Grey System Theory is also adopted to improve the performance of Artificial Neural Network. Artificial Neural Network (ANN) is a computing system that uses a large number of artificial neurons imitating natural neural ability to deal with an information network by computing system. The numerical results have show good agreement with the experimental results. The results can serve as a reference for technicians involved in future ecological engineering designs of banks throughout the world. 展开更多
关键词 ECOLOGICAL Engineering Artificial neural network grey System Theory Buergeria ROBUSTA
下载PDF
GNNSched:面向GPU的图神经网络推理任务调度框架 被引量:1
7
作者 孙庆骁 刘轶 +4 位作者 杨海龙 王一晴 贾婕 栾钟治 钱德沛 《计算机工程与科学》 CSCD 北大核心 2024年第1期1-11,共11页
由于频繁的显存访问,图神经网络GNN在GPU上运行时往往资源利用率较低。现有的推理框架由于没有考虑GNN输入的不规则性,直接适用到GNN进行推理任务共置时可能会超出显存容量导致任务失败。对于GNN推理任务,需要根据其输入特点预先分析并... 由于频繁的显存访问,图神经网络GNN在GPU上运行时往往资源利用率较低。现有的推理框架由于没有考虑GNN输入的不规则性,直接适用到GNN进行推理任务共置时可能会超出显存容量导致任务失败。对于GNN推理任务,需要根据其输入特点预先分析并发任务的显存占用情况,以确保并发任务在GPU上的成功共置。此外,多租户场景提交的推理任务亟需灵活的调度策略,以满足并发推理任务的服务质量要求。为了解决上述问题,提出了GNNSched,其在GPU上高效管理GNN推理任务的共置运行。具体来说,GNNSched将并发推理任务组织为队列,并在算子粒度上根据成本函数估算每个任务的显存占用情况。GNNSched实现了多种调度策略来生成任务组,这些任务组被迭代地提交到GPU并发执行。实验结果表明,GNNSched能够满足并发GNN推理任务的服务质量并降低推理任务的响应时延。 展开更多
关键词 图神经网络 图形处理器 推理框架 任务调度 估计模型
下载PDF
Mountain ground movement prediction caused by mining based on BP-neural network 被引量:3
8
作者 ZHANG He-sheng LIU Li-juan LIU Hong-fu 《Journal of Coal Science & Engineering(China)》 2011年第1期12-15,共4页
Six main influencing factors: slope, aspect, distance, angle, angle of coal seam, and the ratio of depth and thickness, were selected by Grey correlation theory and Grey relational analysis procedure programmed by th... Six main influencing factors: slope, aspect, distance, angle, angle of coal seam, and the ratio of depth and thickness, were selected by Grey correlation theory and Grey relational analysis procedure programmed by the MATLAB software package to select the surface movement and deformation parameters. On this basis, the paper built a BP neural network model that takes the six main influencing factors as input data and corresponding value of ground subsidence as output data. Ground subsidence of the 3406 mining face in Haoyu Coal was predicted by the trained BP neural network. By comparing the prediction and the practices, the research shows that it is feasible to use the 13P neural network to predict mountain mining subsidence. 展开更多
关键词 BP neural network mountain regions mining subsidence grey theory
下载PDF
Design of Neural Network Based Wind Speed Prediction Model Using GWO 被引量:2
9
作者 R.Kingsy Grace R.Manimegalai 《Computer Systems Science & Engineering》 SCIE EI 2022年第2期593-606,共14页
The prediction of wind speed is imperative nowadays due to the increased and effective generation of wind power.Wind power is the clean,free and conservative renewable energy.It is necessary to predict the wind speed,... The prediction of wind speed is imperative nowadays due to the increased and effective generation of wind power.Wind power is the clean,free and conservative renewable energy.It is necessary to predict the wind speed,to implement wind power generation.This paper proposes a new model,named WT-GWO-BPNN,by integrating Wavelet Transform(WT),Back Propagation Neural Network(BPNN)and GreyWolf Optimization(GWO).The wavelet transform is adopted to decompose the original time series data(wind speed)into approximation and detailed band.GWO-BPNN is applied to predict the wind speed.GWO is used to optimize the parameters of back propagation neural network and to improve the convergence state.This work uses wind power data of six months with 25,086 data points to test and verify the performance of the proposed model.The proposed work,WT-GWO-BPNN,predicts the wind speed using a three-step procedure and provides better results.Mean Absolute Error(MAE),Mean Squared Error(MSE),Mean absolute percentage error(MAPE)and Root mean squared error(RMSE)are calculated to validate the performance of the proposed model.Experimental results demonstrate that the proposed model has better performance when compared to other methods in the literature. 展开更多
关键词 Wind speed wavelet transform back propagation neural network grey wolf optimization time series
下载PDF
Analysis and Prediction of Regional Electricity Consumption Based on BP Neural Network 被引量:5
10
作者 Pingping Xia Aihua Xu Tong Lian 《Journal of Quantum Computing》 2020年第1期25-32,共8页
Electricity consumption forecasting is one of the most important tasks for power system workers,and plays an important role in regional power systems.Due to the difference in the trend of power load and the past in th... Electricity consumption forecasting is one of the most important tasks for power system workers,and plays an important role in regional power systems.Due to the difference in the trend of power load and the past in the new normal,the influencing factors are more diversified,which makes it more difficult to predict the current electricity consumption.In this paper,the grey system theory and BP neural network are combined to predict the annual electricity consumption in Jiangsu.According to the historical data of annual electricity consumption and the six factors affecting electricity consumption,the gray correlation analysis method is used to screen the important factors,and three factors with large correlation degree are selected as the input parameters of BP neural network.The power forecasting model uses nearly 18 years of data to train and validate the model.The results show that the gray correlation analysis and BP neural network method have higher accuracy in power consumption prediction,and the calculation is more convenient than traditional methods. 展开更多
关键词 Electricity consumption prediction BP neural network grey relational analysis
下载PDF
基于强化联邦GNN的个性化公共安全突发事件检测
11
作者 管泽礼 杜军平 +3 位作者 薛哲 王沛文 潘圳辉 王晓阳 《软件学报》 EI CSCD 北大核心 2024年第4期1774-1789,共16页
近年来,将公共安全数据转换为图的形式,通过图神经网络(GNN)构造节点表示应用于下游任务的方法,充分利用了公共安全数据的实体与关联信息,取得了较好的效果.为了提高模型的有效性,需要大量的高质量数据,但是高质量的数据通常归属于政府... 近年来,将公共安全数据转换为图的形式,通过图神经网络(GNN)构造节点表示应用于下游任务的方法,充分利用了公共安全数据的实体与关联信息,取得了较好的效果.为了提高模型的有效性,需要大量的高质量数据,但是高质量的数据通常归属于政府、公司和组织,很难通过数据集中的方式使模型学习到有效的事件检测模型.由于各数据拥有方的关注主题与收集时间不同,数据之间存在Non-IID的问题.传统的假设一个全局模型可以适合所有客户端的方法难以解决此类问题.提出了基于强化联邦图神经网络的个性化公共安全突发事件检测方法PPSED,各客户端采用多方协作的方式训练个性化的模型来解决本地的突发事件检测任务.设计了联邦公共安全突发事件检测模型的本地训练与梯度量化模块,采用基于图采样的minibatch机制的GraphSage构造公共安全突发事件检测本地模型,以减小数据Non-IID的影响,采用梯度量化方法减小梯度通信的消耗.设计了基于随机图嵌入的客户端状态感知模块,在保护隐私的同时,更好地保留客户端模型有价值的梯度信息.设计了强化联邦图神经网络的个性化梯度聚合与量化策略,采用DDPG拟合个性化联邦学习梯度聚合加权策略,并根据权重决定是否对梯度进行量化,对模型的性能与通信压力进行平衡.通过在微博平台收集的公共安全数据集和3个公开的图数据集进行了大量的实验,实验结果表明了所提方法的有效性. 展开更多
关键词 联邦学习 图神经网络(gnn) 公共安全 突发事件检测
下载PDF
Hybridized Intelligent Neural Network Optimization Model for Forecasting Prices of Rubber in Malaysia
12
作者 Shehab Abdulhabib Alzaeemi Saratha Sathasivam +2 位作者 Majid Khan bin Majahar Ali K.G.Tay Muraly Velavan 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期1471-1491,共21页
Rubber producers,consumers,traders,and those who are involved in the rubber industry face major risks of rubber price fluctuations.As a result,decision-makers are required to make an accurate estimation of the price o... Rubber producers,consumers,traders,and those who are involved in the rubber industry face major risks of rubber price fluctuations.As a result,decision-makers are required to make an accurate estimation of the price of rubber.This paper aims to propose hybrid intelligent models,which can be utilized to forecast the price of rubber in Malaysia by employing monthly Malaysia’s rubber pricing data,spanning from January 2016 to March 2021.The projected hybrid model consists of different algorithms with the symbolic Radial Basis Functions Neural Network k-Satisfiability Logic Mining(RBFNN-kSAT).These algorithms,including Grey Wolf Optimization Algorithm,Artificial Bee Colony Algorithm,and Particle Swarm Optimization Algorithm were utilized in the forecasting data analysis.Several factors,which affect the monthly price of rubber,such as rubber production,total exports of rubber,total imports of rubber,stocks of rubber,currency exchange rate,and crude oil prices were also considered in the analysis.To evaluate the results of the introduced model,a comparison has been conducted for each model to identify the most optimum model for forecasting the price of rubber.The findings showed that GWO with RBFNN-kSAT represents the most accurate and efficient model compared with ABC with RBFNNkSAT and PSO with RBFNN-kSAT in forecasting the price of rubber.The GWO with RBFNN-kSAT obtained the greatest average accuracy(92%),with a better correlation coefficient R=0.983871 than ABC with RBFNN-kSAT and PSO with RBFNN-kSAT.Furthermore,the empirical results of this study provided several directions for policymakers to make the right decision in terms of devising proper measures in the industry to address frequent price changes so that the Malaysian rubber industry maintains dominance in the international markets. 展开更多
关键词 Rubber prices in Malaysia grey wolf optimization algorithm radial basis functions neural network k-satisfiability commodity prices
下载PDF
结合注意力CNN与GNN的信息融合推荐方法 被引量:1
13
作者 钱忠胜 赵畅 +1 位作者 俞情媛 李端明 《软件学报》 EI CSCD 北大核心 2023年第5期2317-2336,共20页
稀疏性问题一直是推荐系统面临的主要挑战,而信息融合推荐可以利用用户的评论、评分以及信任等信息发掘用户的偏好来缓解这一问题,从而为目标用户生成相应的推荐.用户、项目信息的充分学习是构建一个成功推荐系统的关键.但不同用户对不... 稀疏性问题一直是推荐系统面临的主要挑战,而信息融合推荐可以利用用户的评论、评分以及信任等信息发掘用户的偏好来缓解这一问题,从而为目标用户生成相应的推荐.用户、项目信息的充分学习是构建一个成功推荐系统的关键.但不同用户对不同项目有不同的偏好,且用户的兴趣偏好及社交圈是动态变化的.提出一种结合深度学习与信息融合的推荐方法来解决稀疏性等问题.特别地,构建了一种新的深度学习模型——结合注意力卷积神经网络(attention CNN)与图神经网络(GNN)的信息融合推荐模型ACGIF.首先,在CNN中加入注意力机制来处理评论信息,从评论信息中学习用户和项目的个性化表示.根据评论编码学习评论表示,通过用户/项目编码学习评论中用户/项目表示.加入个性化注意力机制来筛选不同重要性级别的评论.然后,利用GNN来处理评分和信任信息.对于每个用户来说,扩散过程从最初的嵌入开始,融合相关特性和捕获潜在行为偏好的自由用户潜在向量.设计了一个分层的影响传播结构,以模拟用户的潜在嵌入如何随着社交扩散过程的继续而演变.最后,对前两部分得到的用户对项目的偏好向量进行加权融合,获得最终的用户对于项目的偏好向量.在4组公开数据集上,以推荐结果的MAE和RMSE作为评估指标进行了实验验证.结果表明,与现有的7个典型推荐模型相比,所提模型的推荐效果和运行时间均占优. 展开更多
关键词 推荐系统 注意力机制 卷积神经网络 图神经网络 信息融合
下载PDF
使用GNN与RNN实现用户行为分析 被引量:5
14
作者 王晓东 赵一宁 +2 位作者 肖海力 王小宁 迟学斌 《计算机科学与探索》 CSCD 北大核心 2021年第5期838-847,共10页
随着国家高性能计算环境(CNGrid)各个节点产生日志数量不断增加,采用传统的人工方式进行用户行为分析已不能满足日常的分析需求。近年来,深度学习在入侵检测、图像识别、自然语言处理和恶意软件检测等与计算机科学相关的关键任务中取得... 随着国家高性能计算环境(CNGrid)各个节点产生日志数量不断增加,采用传统的人工方式进行用户行为分析已不能满足日常的分析需求。近年来,深度学习在入侵检测、图像识别、自然语言处理和恶意软件检测等与计算机科学相关的关键任务中取得了良好的效果。演示了如何将深度学习模型应用于用户行为分析。为此,在CNGrid中对用户行为进行分类,提取大量绑定到会话的用户操作序列,然后将这些序列放入抽象的深度学习模型中。提出了一种基于图神经网络(GNN)和循环神经网络(RNN)的深度学习模型来预测用户行为。图神经网络能够捕捉用户局部行为的隐藏状态,可以作为预处理步骤。循环神经网络能够捕捉时间序列的信息。因此,通过将GNN和RNN相结合的方式来构建该模型,以获得两者的优点。为了验证模型的有效性,在CNGrid的真实用户行为数据集上进行了实验,并在实验中与多种不同的其他方法进行对比。实验结果证明了这种新的深度学习模型的有效性。 展开更多
关键词 用户行为分析 图神经网络(gnn) 循环神经网络(RNN)
下载PDF
基于HCS-GNN模型的ORP传感器故障诊断 被引量:3
15
作者 陈剑楠 南新元 李娜 《自动化与仪表》 2016年第5期29-33,共5页
针对生物氧化预处理过程中氧化还原电位(ORP)传感器常见故障,通过详细分析该工艺中影响ORP的因素,提出一种混合布谷鸟搜索(HCS)算法与灰色神经网络(GNN)相结合的传感器故障诊断方法。即采用HCS算法对GNN模型参数进行优化,建立ORP非线性... 针对生物氧化预处理过程中氧化还原电位(ORP)传感器常见故障,通过详细分析该工艺中影响ORP的因素,提出一种混合布谷鸟搜索(HCS)算法与灰色神经网络(GNN)相结合的传感器故障诊断方法。即采用HCS算法对GNN模型参数进行优化,建立ORP非线性预测模型,将ORP预测结果与实际测量值相比较得到残差,分析残差的变化趋势,最终实现对ORP传感器的故障诊断。仿真结果表明,HCS-GNN模型具有较高的预测精度,能够有效地完成对ORP传感器的故障诊断。 展开更多
关键词 氧化还原电位传感器 混合布谷鸟搜索算法 灰色神经网络 故障诊断
下载PDF
Sampling Methods for Efficient Training of Graph Convolutional Networks:A Survey 被引量:5
16
作者 Xin Liu Mingyu Yan +3 位作者 Lei Deng Guoqi Li Xiaochun Ye Dongrui Fan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第2期205-234,共30页
Graph convolutional networks(GCNs)have received significant attention from various research fields due to the excellent performance in learning graph representations.Although GCN performs well compared with other meth... Graph convolutional networks(GCNs)have received significant attention from various research fields due to the excellent performance in learning graph representations.Although GCN performs well compared with other methods,it still faces challenges.Training a GCN model for large-scale graphs in a conventional way requires high computation and storage costs.Therefore,motivated by an urgent need in terms of efficiency and scalability in training GCN,sampling methods have been proposed and achieved a significant effect.In this paper,we categorize sampling methods based on the sampling mechanisms and provide a comprehensive survey of sampling methods for efficient training of GCN.To highlight the characteristics and differences of sampling methods,we present a detailed comparison within each category and further give an overall comparative analysis for the sampling methods in all categories.Finally,we discuss some challenges and future research directions of the sampling methods. 展开更多
关键词 Efficient training graph convolutional networks(GCNs) graph neural networks(gnns) sampling method
下载PDF
Multi objective prediction and optimization of control parameters in the milling of aluminium hybrid metal matrix composites using ANN and Taguchi-grey relational analysis 被引量:3
17
作者 S.Ajith Arul Daniel R.Pugazhenthi +1 位作者 R.Kumar S.Vijayananth 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第4期545-556,共12页
This study aims to optimize the input parameters such as mass fraction and particle size of SiC along with depth of cut,feed and cutting speed in the milling of Al5059/SiC/MoS2.The hybrid metal matrix composites are g... This study aims to optimize the input parameters such as mass fraction and particle size of SiC along with depth of cut,feed and cutting speed in the milling of Al5059/SiC/MoS2.The hybrid metal matrix composites are generally fabricated by reinforcing of different sizes(10,20,40 μm)of SiC with aluminium at a different levels(5%,10%& 15%)whereas the MoS2 addition is fixed as 2%.The effect of each control factor on response variables are analyzed through Taguchi S/N ratio method.Also,the most significant method for prediction of response parameters is satisfied by ANN model than the regression model.Analysis of variance(ANOVA)results envisage that mass fraction of SiC,feed rate is the most domineering factor on response variable. 展开更多
关键词 Silicon CARBIDE Temperature Surface roughness Cutting FORCES Artificial neural network grey RELATIONAL analysis
下载PDF
基于GNN的矩阵分解推荐算法 被引量:10
18
作者 王英博 孙永荻 《计算机工程与应用》 CSCD 北大核心 2021年第19期129-134,共6页
相较于协同过滤,矩阵分解有着更好的拓展性和灵活性,但同样受到数据稀疏和冷启动的困扰。针对上述问题,提出一种融合GNN和PMF的推荐算法GNN_MF。该算法通过神经网络对社交网络图以及用户项目图进行建模,将两个图内在的联系起来,学习目... 相较于协同过滤,矩阵分解有着更好的拓展性和灵活性,但同样受到数据稀疏和冷启动的困扰。针对上述问题,提出一种融合GNN和PMF的推荐算法GNN_MF。该算法通过神经网络对社交网络图以及用户项目图进行建模,将两个图内在的联系起来,学习目标用户在社会空间以及项目空间上的特征向量。通过MLP将两个特征向量串联提取用户的潜在特征向量,集成在概率矩阵分解模型上,产生预测评分。在真实数据集Epinions、Ciao上的大量实验表明,GNN_MF算法的均方根误差和平均绝对误差较传统PMF分别降低了2.91%、3.10%和4.83%、3.84%。验证了GNN_MF算法在推荐系统中的有效性以及可行性。 展开更多
关键词 概率矩阵分解 图神经网络 推荐算法 社交网络
下载PDF
A Grey Wolf Optimization-Based Tilt Tri-rotor UAV Altitude Control in Transition Mode 被引量:2
19
作者 MA Yan WANG Yingxun +2 位作者 CAI Zhihao ZHAO Jiang LIU Ningjun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第2期186-200,共15页
To solve the problem of altitude control of a tilt tri-rotor unmanned aerial vehicle(UAV)in the transition mode,this study presents a grey wolf optimization(GWO)based neural network adaptive control scheme for a tilt ... To solve the problem of altitude control of a tilt tri-rotor unmanned aerial vehicle(UAV)in the transition mode,this study presents a grey wolf optimization(GWO)based neural network adaptive control scheme for a tilt trirotor UAV in the transition mode.Firstly,the nonlinear model of the tilt tri-rotor UAV is established.Secondly,the tilt tri-rotor UAV altitude controller and attitude controller are designed by a neural network adaptive control method,and the GWO algorithm is adopted to optimize the parameters of the neural network and the controllers.Thirdly,two altitude control strategies are designed in the transition mode.Finally,comparative simulations are carried out to demonstrate the effectiveness and robustness of the proposed control scheme. 展开更多
关键词 tilt tri-rotor unmanned aerial vehicle altitude control neural network adaptive control grey wolf optimization(GWO)
下载PDF
Distribution Inventory Cost Optimization Under Grey and Fuzzy Uncertainty
20
作者 LIU Dongbo HUANG Dao CHEN Yujua 《Wuhan University Journal of Natural Sciences》 CAS 2006年第5期1238-1242,共5页
The grey fuzzy variable was defined for the two fold uncertain parameters combining grey and fuzziness factors. On the basis of the credibility and chance measure of grey fuzzy variables, the distribution center inven... The grey fuzzy variable was defined for the two fold uncertain parameters combining grey and fuzziness factors. On the basis of the credibility and chance measure of grey fuzzy variables, the distribution center inventory uncertain programming model was presented. The grey fuzzy simulation technology can generate input-output data for the uncertain functions. The neural network trained from the inputoutput data can approximate the uncertain functions. The designed hybrid intelligent algorithm by embedding the trained neural network into genetic algorithm can optimize the general grey fuzzy programming problems. Finally, one numerical example is provided to illustrate the effectiveness of the model and the hybrid intelligent algorithm. 展开更多
关键词 grey fuzzy variable grey fuzzy simulation neural network genetic algorithm inventory control supply chain optimization
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部