As for the factors affecting the heat transfer performance of complex and nonlinear oscillating heat pipe (OHP),grey relational analysis (GRA) was used to deal with the relationship between heat transfer rate of a loo...As for the factors affecting the heat transfer performance of complex and nonlinear oscillating heat pipe (OHP),grey relational analysis (GRA) was used to deal with the relationship between heat transfer rate of a looped copper-water OHP and charging ratio,inner diameter,inclination angel,heat input,number of turns,and the main influencing factors were defined.Then,forecasting model was obtained by using main influencing factors (such as charging ratio,interior diameter,and inclination angel) as the inputs of function chain neural network.The results show that the relative average error between the predicted and actual value is 4%,which illustrates that the function chain neural network can be applied to predict the performance of OHP accurately.展开更多
A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is eq...A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is equivalent to the time response model, was proved by analyzing the features of grey forecasting model(GM(1,1)). Based on this, the differential equation parameters were included in the network when the BP neural network was constructed, and the neural network was trained by extracting samples from grey system's known data. When BP network was converged, the whitened grey differential equation parameters were extracted and then the grey neural network forecasting model (GNNM(1,1)) was built. In order to reduce stochastic phenomenon in GNNM(1,1), the state transition probability between two states was defined and the Markov transition matrix was established by building the residual sequences between grey forecasting and actual value. Thus, the new grey forecasting model(MNNGM(1,1)) was proposed by combining Markov chain with GNNM(1,1). Based on the above discussion, three different approaches were put forward for forecasting China electricity demands. By comparing GM(1, 1) and GNNM(1,1) with the proposed model, the results indicate that the absolute mean error of MNNGM(1,1) is about 0.4 times of GNNM(1,1) and 0.2 times of GM(I, 1), and the mean square error of MNNGM(1,1) is about 0.25 times of GNNM(1,1) and 0.1 times of GM(1,1).展开更多
Train positioning is the key to ensure the transportation and efficient operation of the railway.Due to the low accuracy and the poor real-time of the train positioning,a train positioning system based on global navig...Train positioning is the key to ensure the transportation and efficient operation of the railway.Due to the low accuracy and the poor real-time of the train positioning,a train positioning system based on global navigation satellite system/inertial measurement unit/odometer(GNSS/IMU/ODO)combination framework and a train integrated positioning method based on grey neural network are put forward.A data updating method based on the established grey prediction model of train positioning is put forward,which uses the accumulation and summary of the grey theory for the rough prediction of the data.The purpose of the method is to reduce the noise of the original data.Moreover,the radial basis function(RBF)neural network is introduced to correct residual sequence of the grey prediction model.Compared with the single model calibration,this method can make full use of the advantages of each model,thus getting a high positioning accuracy in the case of small samples and poor information.Experiments show that the method has good real-time performance and high accuracy,and has certain application value.展开更多
The scope of this paper is to forecast wind speed. Wind speed, temperature, wind direction, relative humidity, precipitation of water content and air pressure are the main factors make the wind speed forecasting as a ...The scope of this paper is to forecast wind speed. Wind speed, temperature, wind direction, relative humidity, precipitation of water content and air pressure are the main factors make the wind speed forecasting as a complex problem and neural network performance is mainly influenced by proper hidden layer neuron units. This paper proposes new criteria for appropriate hidden layer neuron unit’s determination and attempts a novel hybrid method in order to achieve enhanced wind speed forecasting. This paper proposes the following two main innovative contributions 1) both either over fitting or under fitting issues are avoided by means of the proposed new criteria based hidden layer neuron unit’s estimation. 2) ELMAN neural network is optimized through Modified Grey Wolf Optimizer (MGWO). The proposed hybrid method (ELMAN-MGWO) performance, effectiveness is confirmed by means of the comparison between Grey Wolf Optimizer (GWO), Adaptive Gbest-guided Gravitational Search Algorithm (GGSA), Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), Cuckoo Search (CS), Particle Swarm Optimization (PSO), Evolution Strategy (ES), Genetic Algorithm (GA) algorithms, meanwhile proposed new criteria effectiveness and precise are verified comparison with other existing selection criteria. Three real-time wind data sets are utilized in order to analysis the performance of the proposed approach. Simulation results demonstrate that the proposed hybrid method (ELMAN-MGWO) achieve the mean square error AVG ± STD of 4.1379e-11 ± 1.0567e-15, 6.3073e-11 ± 3.5708e-15 and 7.5840e-11 ± 1.1613e-14 respectively for evaluation on three real-time data sets. Hence, the proposed hybrid method is superior, precise, enhance wind speed forecasting than that of other existing methods and robust.展开更多
The grey system theory and the artificial neural network technology were applied to predict the sewing technical condition. The representative parameters, such as needle, stitch, were selected. Prediction model was es...The grey system theory and the artificial neural network technology were applied to predict the sewing technical condition. The representative parameters, such as needle, stitch, were selected. Prediction model was established based on the different fabrics’ mechanical properties that measured by KES instrument. Grey relevant degree analysis was applied to choose the input parameters of the neural network. The result showed that prediction model has good precision. The average relative error was 4.08% for needle and 4.25% for stitch.展开更多
Ecological engineering is an emerging study of integrating both ecology and engineering, concerned with the design, monitoring, and construction of ecosystems. In recent years, the threat to amphibian animals is becom...Ecological engineering is an emerging study of integrating both ecology and engineering, concerned with the design, monitoring, and construction of ecosystems. In recent years, the threat to amphibian animals is becoming more and more serious. In particular, the loss of habitats caused by changes to the way land is used by human beings has hit amphibians particularly hard. Amphibians are known to be particularly vulnerable to human activities because they rely on both terrestrial and aquatic habitats for survival. With the increasing development of many areas in recent years, concrete structures are often installed along water bodies in order to increase the safety of local residents. The construction of concrete banks along rivers associated with human development has become a serious problem in Taiwan. Most ecosystems used by amphibians are lakes and stream banks, yet no related design solutions to accommodate the needs of amphibians. The need to develop the relevant design specification considering protecting the amphibian is imperative. Buergeria robusta, an endemic species in Taiwan, is tree frog widely distributed in lowland montane regions. Their breeding season is from April to September. They like to rest on trees or hide at caves during the daytime and move to the stream nearby in dusk for breeding. Males usually emit weak mating call while standing on stones. Sticky eggs are attached to undersides of rocks and stones. Tadpoles are found in slow flowing water of streams [1]. The goal of this study is to improve the understanding of the relationship between the climbing ability and the physical characteristics of amphibians. In this study, we use Artificial Neural Network to simulate the climbing ability of Buergeria robusta. Besides, Grey System Theory is also adopted to improve the performance of Artificial Neural Network. Artificial Neural Network (ANN) is a computing system that uses a large number of artificial neurons imitating natural neural ability to deal with an information network by computing system. The numerical results have show good agreement with the experimental results. The results can serve as a reference for technicians involved in future ecological engineering designs of banks throughout the world.展开更多
Six main influencing factors: slope, aspect, distance, angle, angle of coal seam, and the ratio of depth and thickness, were selected by Grey correlation theory and Grey relational analysis procedure programmed by th...Six main influencing factors: slope, aspect, distance, angle, angle of coal seam, and the ratio of depth and thickness, were selected by Grey correlation theory and Grey relational analysis procedure programmed by the MATLAB software package to select the surface movement and deformation parameters. On this basis, the paper built a BP neural network model that takes the six main influencing factors as input data and corresponding value of ground subsidence as output data. Ground subsidence of the 3406 mining face in Haoyu Coal was predicted by the trained BP neural network. By comparing the prediction and the practices, the research shows that it is feasible to use the 13P neural network to predict mountain mining subsidence.展开更多
The prediction of wind speed is imperative nowadays due to the increased and effective generation of wind power.Wind power is the clean,free and conservative renewable energy.It is necessary to predict the wind speed,...The prediction of wind speed is imperative nowadays due to the increased and effective generation of wind power.Wind power is the clean,free and conservative renewable energy.It is necessary to predict the wind speed,to implement wind power generation.This paper proposes a new model,named WT-GWO-BPNN,by integrating Wavelet Transform(WT),Back Propagation Neural Network(BPNN)and GreyWolf Optimization(GWO).The wavelet transform is adopted to decompose the original time series data(wind speed)into approximation and detailed band.GWO-BPNN is applied to predict the wind speed.GWO is used to optimize the parameters of back propagation neural network and to improve the convergence state.This work uses wind power data of six months with 25,086 data points to test and verify the performance of the proposed model.The proposed work,WT-GWO-BPNN,predicts the wind speed using a three-step procedure and provides better results.Mean Absolute Error(MAE),Mean Squared Error(MSE),Mean absolute percentage error(MAPE)and Root mean squared error(RMSE)are calculated to validate the performance of the proposed model.Experimental results demonstrate that the proposed model has better performance when compared to other methods in the literature.展开更多
Electricity consumption forecasting is one of the most important tasks for power system workers,and plays an important role in regional power systems.Due to the difference in the trend of power load and the past in th...Electricity consumption forecasting is one of the most important tasks for power system workers,and plays an important role in regional power systems.Due to the difference in the trend of power load and the past in the new normal,the influencing factors are more diversified,which makes it more difficult to predict the current electricity consumption.In this paper,the grey system theory and BP neural network are combined to predict the annual electricity consumption in Jiangsu.According to the historical data of annual electricity consumption and the six factors affecting electricity consumption,the gray correlation analysis method is used to screen the important factors,and three factors with large correlation degree are selected as the input parameters of BP neural network.The power forecasting model uses nearly 18 years of data to train and validate the model.The results show that the gray correlation analysis and BP neural network method have higher accuracy in power consumption prediction,and the calculation is more convenient than traditional methods.展开更多
Rubber producers,consumers,traders,and those who are involved in the rubber industry face major risks of rubber price fluctuations.As a result,decision-makers are required to make an accurate estimation of the price o...Rubber producers,consumers,traders,and those who are involved in the rubber industry face major risks of rubber price fluctuations.As a result,decision-makers are required to make an accurate estimation of the price of rubber.This paper aims to propose hybrid intelligent models,which can be utilized to forecast the price of rubber in Malaysia by employing monthly Malaysia’s rubber pricing data,spanning from January 2016 to March 2021.The projected hybrid model consists of different algorithms with the symbolic Radial Basis Functions Neural Network k-Satisfiability Logic Mining(RBFNN-kSAT).These algorithms,including Grey Wolf Optimization Algorithm,Artificial Bee Colony Algorithm,and Particle Swarm Optimization Algorithm were utilized in the forecasting data analysis.Several factors,which affect the monthly price of rubber,such as rubber production,total exports of rubber,total imports of rubber,stocks of rubber,currency exchange rate,and crude oil prices were also considered in the analysis.To evaluate the results of the introduced model,a comparison has been conducted for each model to identify the most optimum model for forecasting the price of rubber.The findings showed that GWO with RBFNN-kSAT represents the most accurate and efficient model compared with ABC with RBFNNkSAT and PSO with RBFNN-kSAT in forecasting the price of rubber.The GWO with RBFNN-kSAT obtained the greatest average accuracy(92%),with a better correlation coefficient R=0.983871 than ABC with RBFNN-kSAT and PSO with RBFNN-kSAT.Furthermore,the empirical results of this study provided several directions for policymakers to make the right decision in terms of devising proper measures in the industry to address frequent price changes so that the Malaysian rubber industry maintains dominance in the international markets.展开更多
Graph convolutional networks(GCNs)have received significant attention from various research fields due to the excellent performance in learning graph representations.Although GCN performs well compared with other meth...Graph convolutional networks(GCNs)have received significant attention from various research fields due to the excellent performance in learning graph representations.Although GCN performs well compared with other methods,it still faces challenges.Training a GCN model for large-scale graphs in a conventional way requires high computation and storage costs.Therefore,motivated by an urgent need in terms of efficiency and scalability in training GCN,sampling methods have been proposed and achieved a significant effect.In this paper,we categorize sampling methods based on the sampling mechanisms and provide a comprehensive survey of sampling methods for efficient training of GCN.To highlight the characteristics and differences of sampling methods,we present a detailed comparison within each category and further give an overall comparative analysis for the sampling methods in all categories.Finally,we discuss some challenges and future research directions of the sampling methods.展开更多
This study aims to optimize the input parameters such as mass fraction and particle size of SiC along with depth of cut,feed and cutting speed in the milling of Al5059/SiC/MoS2.The hybrid metal matrix composites are g...This study aims to optimize the input parameters such as mass fraction and particle size of SiC along with depth of cut,feed and cutting speed in the milling of Al5059/SiC/MoS2.The hybrid metal matrix composites are generally fabricated by reinforcing of different sizes(10,20,40 μm)of SiC with aluminium at a different levels(5%,10%& 15%)whereas the MoS2 addition is fixed as 2%.The effect of each control factor on response variables are analyzed through Taguchi S/N ratio method.Also,the most significant method for prediction of response parameters is satisfied by ANN model than the regression model.Analysis of variance(ANOVA)results envisage that mass fraction of SiC,feed rate is the most domineering factor on response variable.展开更多
To solve the problem of altitude control of a tilt tri-rotor unmanned aerial vehicle(UAV)in the transition mode,this study presents a grey wolf optimization(GWO)based neural network adaptive control scheme for a tilt ...To solve the problem of altitude control of a tilt tri-rotor unmanned aerial vehicle(UAV)in the transition mode,this study presents a grey wolf optimization(GWO)based neural network adaptive control scheme for a tilt trirotor UAV in the transition mode.Firstly,the nonlinear model of the tilt tri-rotor UAV is established.Secondly,the tilt tri-rotor UAV altitude controller and attitude controller are designed by a neural network adaptive control method,and the GWO algorithm is adopted to optimize the parameters of the neural network and the controllers.Thirdly,two altitude control strategies are designed in the transition mode.Finally,comparative simulations are carried out to demonstrate the effectiveness and robustness of the proposed control scheme.展开更多
The grey fuzzy variable was defined for the two fold uncertain parameters combining grey and fuzziness factors. On the basis of the credibility and chance measure of grey fuzzy variables, the distribution center inven...The grey fuzzy variable was defined for the two fold uncertain parameters combining grey and fuzziness factors. On the basis of the credibility and chance measure of grey fuzzy variables, the distribution center inventory uncertain programming model was presented. The grey fuzzy simulation technology can generate input-output data for the uncertain functions. The neural network trained from the inputoutput data can approximate the uncertain functions. The designed hybrid intelligent algorithm by embedding the trained neural network into genetic algorithm can optimize the general grey fuzzy programming problems. Finally, one numerical example is provided to illustrate the effectiveness of the model and the hybrid intelligent algorithm.展开更多
基金Project(531107040300) supported by the Fundamental Research Funds for the Central Universities in ChinaProject(2006BAJ04B04) supported by the National Science and Technology Pillar Program during the Eleventh Five-year Plan Period of China
文摘As for the factors affecting the heat transfer performance of complex and nonlinear oscillating heat pipe (OHP),grey relational analysis (GRA) was used to deal with the relationship between heat transfer rate of a looped copper-water OHP and charging ratio,inner diameter,inclination angel,heat input,number of turns,and the main influencing factors were defined.Then,forecasting model was obtained by using main influencing factors (such as charging ratio,interior diameter,and inclination angel) as the inputs of function chain neural network.The results show that the relative average error between the predicted and actual value is 4%,which illustrates that the function chain neural network can be applied to predict the performance of OHP accurately.
基金Project(70572090) supported by the National Natural Science Foundation of China
文摘A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is equivalent to the time response model, was proved by analyzing the features of grey forecasting model(GM(1,1)). Based on this, the differential equation parameters were included in the network when the BP neural network was constructed, and the neural network was trained by extracting samples from grey system's known data. When BP network was converged, the whitened grey differential equation parameters were extracted and then the grey neural network forecasting model (GNNM(1,1)) was built. In order to reduce stochastic phenomenon in GNNM(1,1), the state transition probability between two states was defined and the Markov transition matrix was established by building the residual sequences between grey forecasting and actual value. Thus, the new grey forecasting model(MNNGM(1,1)) was proposed by combining Markov chain with GNNM(1,1). Based on the above discussion, three different approaches were put forward for forecasting China electricity demands. By comparing GM(1, 1) and GNNM(1,1) with the proposed model, the results indicate that the absolute mean error of MNNGM(1,1) is about 0.4 times of GNNM(1,1) and 0.2 times of GM(I, 1), and the mean square error of MNNGM(1,1) is about 0.25 times of GNNM(1,1) and 0.1 times of GM(1,1).
基金Gansu Province Basic Research Innovation Group Plan(No.1606RJIA327)Natural Science Foundation of Gansu Province(No.1606RJYA225)+1 种基金Lanzhou Jiaotong University Youth Fund(No.2014031)Longyuan Youth Innovative Support Program(No.2016-43)
文摘Train positioning is the key to ensure the transportation and efficient operation of the railway.Due to the low accuracy and the poor real-time of the train positioning,a train positioning system based on global navigation satellite system/inertial measurement unit/odometer(GNSS/IMU/ODO)combination framework and a train integrated positioning method based on grey neural network are put forward.A data updating method based on the established grey prediction model of train positioning is put forward,which uses the accumulation and summary of the grey theory for the rough prediction of the data.The purpose of the method is to reduce the noise of the original data.Moreover,the radial basis function(RBF)neural network is introduced to correct residual sequence of the grey prediction model.Compared with the single model calibration,this method can make full use of the advantages of each model,thus getting a high positioning accuracy in the case of small samples and poor information.Experiments show that the method has good real-time performance and high accuracy,and has certain application value.
文摘The scope of this paper is to forecast wind speed. Wind speed, temperature, wind direction, relative humidity, precipitation of water content and air pressure are the main factors make the wind speed forecasting as a complex problem and neural network performance is mainly influenced by proper hidden layer neuron units. This paper proposes new criteria for appropriate hidden layer neuron unit’s determination and attempts a novel hybrid method in order to achieve enhanced wind speed forecasting. This paper proposes the following two main innovative contributions 1) both either over fitting or under fitting issues are avoided by means of the proposed new criteria based hidden layer neuron unit’s estimation. 2) ELMAN neural network is optimized through Modified Grey Wolf Optimizer (MGWO). The proposed hybrid method (ELMAN-MGWO) performance, effectiveness is confirmed by means of the comparison between Grey Wolf Optimizer (GWO), Adaptive Gbest-guided Gravitational Search Algorithm (GGSA), Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), Cuckoo Search (CS), Particle Swarm Optimization (PSO), Evolution Strategy (ES), Genetic Algorithm (GA) algorithms, meanwhile proposed new criteria effectiveness and precise are verified comparison with other existing selection criteria. Three real-time wind data sets are utilized in order to analysis the performance of the proposed approach. Simulation results demonstrate that the proposed hybrid method (ELMAN-MGWO) achieve the mean square error AVG ± STD of 4.1379e-11 ± 1.0567e-15, 6.3073e-11 ± 3.5708e-15 and 7.5840e-11 ± 1.1613e-14 respectively for evaluation on three real-time data sets. Hence, the proposed hybrid method is superior, precise, enhance wind speed forecasting than that of other existing methods and robust.
文摘The grey system theory and the artificial neural network technology were applied to predict the sewing technical condition. The representative parameters, such as needle, stitch, were selected. Prediction model was established based on the different fabrics’ mechanical properties that measured by KES instrument. Grey relevant degree analysis was applied to choose the input parameters of the neural network. The result showed that prediction model has good precision. The average relative error was 4.08% for needle and 4.25% for stitch.
文摘Ecological engineering is an emerging study of integrating both ecology and engineering, concerned with the design, monitoring, and construction of ecosystems. In recent years, the threat to amphibian animals is becoming more and more serious. In particular, the loss of habitats caused by changes to the way land is used by human beings has hit amphibians particularly hard. Amphibians are known to be particularly vulnerable to human activities because they rely on both terrestrial and aquatic habitats for survival. With the increasing development of many areas in recent years, concrete structures are often installed along water bodies in order to increase the safety of local residents. The construction of concrete banks along rivers associated with human development has become a serious problem in Taiwan. Most ecosystems used by amphibians are lakes and stream banks, yet no related design solutions to accommodate the needs of amphibians. The need to develop the relevant design specification considering protecting the amphibian is imperative. Buergeria robusta, an endemic species in Taiwan, is tree frog widely distributed in lowland montane regions. Their breeding season is from April to September. They like to rest on trees or hide at caves during the daytime and move to the stream nearby in dusk for breeding. Males usually emit weak mating call while standing on stones. Sticky eggs are attached to undersides of rocks and stones. Tadpoles are found in slow flowing water of streams [1]. The goal of this study is to improve the understanding of the relationship between the climbing ability and the physical characteristics of amphibians. In this study, we use Artificial Neural Network to simulate the climbing ability of Buergeria robusta. Besides, Grey System Theory is also adopted to improve the performance of Artificial Neural Network. Artificial Neural Network (ANN) is a computing system that uses a large number of artificial neurons imitating natural neural ability to deal with an information network by computing system. The numerical results have show good agreement with the experimental results. The results can serve as a reference for technicians involved in future ecological engineering designs of banks throughout the world.
文摘Six main influencing factors: slope, aspect, distance, angle, angle of coal seam, and the ratio of depth and thickness, were selected by Grey correlation theory and Grey relational analysis procedure programmed by the MATLAB software package to select the surface movement and deformation parameters. On this basis, the paper built a BP neural network model that takes the six main influencing factors as input data and corresponding value of ground subsidence as output data. Ground subsidence of the 3406 mining face in Haoyu Coal was predicted by the trained BP neural network. By comparing the prediction and the practices, the research shows that it is feasible to use the 13P neural network to predict mountain mining subsidence.
文摘The prediction of wind speed is imperative nowadays due to the increased and effective generation of wind power.Wind power is the clean,free and conservative renewable energy.It is necessary to predict the wind speed,to implement wind power generation.This paper proposes a new model,named WT-GWO-BPNN,by integrating Wavelet Transform(WT),Back Propagation Neural Network(BPNN)and GreyWolf Optimization(GWO).The wavelet transform is adopted to decompose the original time series data(wind speed)into approximation and detailed band.GWO-BPNN is applied to predict the wind speed.GWO is used to optimize the parameters of back propagation neural network and to improve the convergence state.This work uses wind power data of six months with 25,086 data points to test and verify the performance of the proposed model.The proposed work,WT-GWO-BPNN,predicts the wind speed using a three-step procedure and provides better results.Mean Absolute Error(MAE),Mean Squared Error(MSE),Mean absolute percentage error(MAPE)and Root mean squared error(RMSE)are calculated to validate the performance of the proposed model.Experimental results demonstrate that the proposed model has better performance when compared to other methods in the literature.
基金This work is supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(19KJB520028)the Collaborative Innovation Center of Jiangsu Maritime Institute。
文摘Electricity consumption forecasting is one of the most important tasks for power system workers,and plays an important role in regional power systems.Due to the difference in the trend of power load and the past in the new normal,the influencing factors are more diversified,which makes it more difficult to predict the current electricity consumption.In this paper,the grey system theory and BP neural network are combined to predict the annual electricity consumption in Jiangsu.According to the historical data of annual electricity consumption and the six factors affecting electricity consumption,the gray correlation analysis method is used to screen the important factors,and three factors with large correlation degree are selected as the input parameters of BP neural network.The power forecasting model uses nearly 18 years of data to train and validate the model.The results show that the gray correlation analysis and BP neural network method have higher accuracy in power consumption prediction,and the calculation is more convenient than traditional methods.
基金supported by the Ministry of Higher Education Malaysia (MOHE)through the Fundamental Research Grant Scheme (FRGS),FRGS/1/2022/STG06/USM/02/11 and Universiti Sains Malaysia.
文摘Rubber producers,consumers,traders,and those who are involved in the rubber industry face major risks of rubber price fluctuations.As a result,decision-makers are required to make an accurate estimation of the price of rubber.This paper aims to propose hybrid intelligent models,which can be utilized to forecast the price of rubber in Malaysia by employing monthly Malaysia’s rubber pricing data,spanning from January 2016 to March 2021.The projected hybrid model consists of different algorithms with the symbolic Radial Basis Functions Neural Network k-Satisfiability Logic Mining(RBFNN-kSAT).These algorithms,including Grey Wolf Optimization Algorithm,Artificial Bee Colony Algorithm,and Particle Swarm Optimization Algorithm were utilized in the forecasting data analysis.Several factors,which affect the monthly price of rubber,such as rubber production,total exports of rubber,total imports of rubber,stocks of rubber,currency exchange rate,and crude oil prices were also considered in the analysis.To evaluate the results of the introduced model,a comparison has been conducted for each model to identify the most optimum model for forecasting the price of rubber.The findings showed that GWO with RBFNN-kSAT represents the most accurate and efficient model compared with ABC with RBFNNkSAT and PSO with RBFNN-kSAT in forecasting the price of rubber.The GWO with RBFNN-kSAT obtained the greatest average accuracy(92%),with a better correlation coefficient R=0.983871 than ABC with RBFNN-kSAT and PSO with RBFNN-kSAT.Furthermore,the empirical results of this study provided several directions for policymakers to make the right decision in terms of devising proper measures in the industry to address frequent price changes so that the Malaysian rubber industry maintains dominance in the international markets.
基金supported by the National Natural Science Foundation of China(61732018,61872335,61802367,61876215)the Strategic Priority Research Program of Chinese Academy of Sciences(XDC05000000)+1 种基金Beijing Academy of Artificial Intelligence(BAAI),the Open Project Program of the State Key Laboratory of Mathematical Engineering and Advanced Computing(2019A07)the Open Project of Zhejiang Laboratory,and a grant from the Institute for Guo Qiang,Tsinghua University.Recommended by Associate Editor Long Chen.
文摘Graph convolutional networks(GCNs)have received significant attention from various research fields due to the excellent performance in learning graph representations.Although GCN performs well compared with other methods,it still faces challenges.Training a GCN model for large-scale graphs in a conventional way requires high computation and storage costs.Therefore,motivated by an urgent need in terms of efficiency and scalability in training GCN,sampling methods have been proposed and achieved a significant effect.In this paper,we categorize sampling methods based on the sampling mechanisms and provide a comprehensive survey of sampling methods for efficient training of GCN.To highlight the characteristics and differences of sampling methods,we present a detailed comparison within each category and further give an overall comparative analysis for the sampling methods in all categories.Finally,we discuss some challenges and future research directions of the sampling methods.
文摘This study aims to optimize the input parameters such as mass fraction and particle size of SiC along with depth of cut,feed and cutting speed in the milling of Al5059/SiC/MoS2.The hybrid metal matrix composites are generally fabricated by reinforcing of different sizes(10,20,40 μm)of SiC with aluminium at a different levels(5%,10%& 15%)whereas the MoS2 addition is fixed as 2%.The effect of each control factor on response variables are analyzed through Taguchi S/N ratio method.Also,the most significant method for prediction of response parameters is satisfied by ANN model than the regression model.Analysis of variance(ANOVA)results envisage that mass fraction of SiC,feed rate is the most domineering factor on response variable.
文摘To solve the problem of altitude control of a tilt tri-rotor unmanned aerial vehicle(UAV)in the transition mode,this study presents a grey wolf optimization(GWO)based neural network adaptive control scheme for a tilt trirotor UAV in the transition mode.Firstly,the nonlinear model of the tilt tri-rotor UAV is established.Secondly,the tilt tri-rotor UAV altitude controller and attitude controller are designed by a neural network adaptive control method,and the GWO algorithm is adopted to optimize the parameters of the neural network and the controllers.Thirdly,two altitude control strategies are designed in the transition mode.Finally,comparative simulations are carried out to demonstrate the effectiveness and robustness of the proposed control scheme.
基金Supported bythe Science and Research Foundationof Shanghai Municipal Educational Commssion (05DZ33)
文摘The grey fuzzy variable was defined for the two fold uncertain parameters combining grey and fuzziness factors. On the basis of the credibility and chance measure of grey fuzzy variables, the distribution center inventory uncertain programming model was presented. The grey fuzzy simulation technology can generate input-output data for the uncertain functions. The neural network trained from the inputoutput data can approximate the uncertain functions. The designed hybrid intelligent algorithm by embedding the trained neural network into genetic algorithm can optimize the general grey fuzzy programming problems. Finally, one numerical example is provided to illustrate the effectiveness of the model and the hybrid intelligent algorithm.