期刊文献+
共找到111篇文章
< 1 2 6 >
每页显示 20 50 100
VGWO: Variant Grey Wolf Optimizer with High Accuracy and Low Time Complexity
1
作者 Junqiang Jiang Zhifang Sun +3 位作者 Xiong Jiang Shengjie Jin Yinli Jiang Bo Fan 《Computers, Materials & Continua》 SCIE EI 2023年第11期1617-1644,共28页
The grey wolf optimizer(GWO)is a swarm-based intelligence optimization algorithm by simulating the steps of searching,encircling,and attacking prey in the process of wolf hunting.Along with its advantages of simple pr... The grey wolf optimizer(GWO)is a swarm-based intelligence optimization algorithm by simulating the steps of searching,encircling,and attacking prey in the process of wolf hunting.Along with its advantages of simple principle and few parameters setting,GWO bears drawbacks such as low solution accuracy and slow convergence speed.A few recent advanced GWOs are proposed to try to overcome these disadvantages.However,they are either difficult to apply to large-scale problems due to high time complexity or easily lead to early convergence.To solve the abovementioned issues,a high-accuracy variable grey wolf optimizer(VGWO)with low time complexity is proposed in this study.VGWO first uses the symmetrical wolf strategy to generate an initial population of individuals to lay the foundation for the global seek of the algorithm,and then inspired by the simulated annealing algorithm and the differential evolution algorithm,a mutation operation for generating a new mutant individual is performed on three wolves which are randomly selected in the current wolf individuals while after each iteration.A vectorized Manhattan distance calculation method is specifically designed to evaluate the probability of selecting the mutant individual based on its status in the current wolf population for the purpose of dynamically balancing global search and fast convergence capability of VGWO.A series of experiments are conducted on 19 benchmark functions from CEC2014 and CEC2020 and three real-world engineering cases.For 19 benchmark functions,VGWO’s optimization results place first in 80%of comparisons to the state-of-art GWOs and the CEC2020 competition winner.A further evaluation based on the Friedman test,VGWO also outperforms all other algorithms statistically in terms of robustness with a better average ranking value. 展开更多
关键词 Intelligence optimization algorithm grey wolf optimizer(gwo) manhattan distance symmetric coordinates
下载PDF
Optimizing Grey Wolf Optimization: A Novel Agents’ Positions Updating Technique for Enhanced Efficiency and Performance
2
作者 Mahmoud Khatab Mohamed El-Gamel +2 位作者 Ahmed I. Saleh Asmaa H. Rabie Atallah El-Shenawy 《Open Journal of Optimization》 2024年第1期21-30,共10页
Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of ... Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of the agents’ positions relative to the leader wolves. In this paper, we provide a brief overview of the Grey Wolf Optimization technique and its significance in solving complex optimization problems. Building upon the foundation of GWO, we introduce a novel technique for updating agents’ positions, which aims to enhance the algorithm’s effectiveness and efficiency. To evaluate the performance of our proposed approach, we conduct comprehensive experiments and compare the results with the original Grey Wolf Optimization technique. Our comparative analysis demonstrates that the proposed technique achieves superior optimization outcomes. These findings underscore the potential of our approach in addressing optimization challenges effectively and efficiently, making it a valuable contribution to the field of optimization algorithms. 展开更多
关键词 grey wolf optimization (gwo) Metaheuristic algorithm optimization Problems Agents’ Positions Leader Wolves optimal Fitness Values optimization Challenges
下载PDF
Grey Wolf Optimizer to Real Power Dispatch with Non-Linear Constraints
3
作者 G.R.Venkatakrishnan R.Rengaraj S.Salivahanan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第4期25-45,共21页
A new and efficient Grey Wolf Optimization(GWO)algorithm is implemented to solve real power economic dispatch(RPED)problems in this paper.The nonlinear RPED problem is one the most important and fundamental optimizati... A new and efficient Grey Wolf Optimization(GWO)algorithm is implemented to solve real power economic dispatch(RPED)problems in this paper.The nonlinear RPED problem is one the most important and fundamental optimization problem which reduces the total cost in generating real power without violating the constraints.Conventional methods can solve the ELD problem with good solution quality with assumptions assigned to fuel cost curves without which these methods lead to suboptimal or infeasible solutions.The behavior of grey wolves which is mimicked in the GWO algorithm are leadership hierarchy and hunting mechanism.The leadership hierarchy is simulated using four types of grey wolves.In addition,searching,encircling and attacking of prey are the social behaviors implemented in the hunting mechanism.The GWO algorithm has been applied to solve convex RPED problems considering the all possible constraints.The results obtained from GWO algorithm are compared with other state-ofthe-art algorithms available in the recent literatures.It is found that the GWO algorithm is able to provide better solution quality in terms of cost,convergence and robustness for the considered ELD problems. 展开更多
关键词 grey wolf optimization(gwo) constraints power generation DISPATCH EVOLUTIONARY computation computational COMPLEXITY algorithms
下载PDF
基于改进GWO-LightGBM的磨煤机故障预警方法研究 被引量:1
4
作者 陈思勤 周浩豪 茅大钧 《自动化仪表》 CAS 2024年第2期106-110,115,共6页
为提高燃煤电厂磨煤机运维效率、降低运维成本,对磨煤机故障预警进行了研究。创新性地提出一种基于改进灰狼优化(GWO)算法的轻量级梯度提升机(LightGBM)故障预警方法。通过建立LightGBM轴承温度预测模型获取磨煤机轴承温度阈值,并引入改... 为提高燃煤电厂磨煤机运维效率、降低运维成本,对磨煤机故障预警进行了研究。创新性地提出一种基于改进灰狼优化(GWO)算法的轻量级梯度提升机(LightGBM)故障预警方法。通过建立LightGBM轴承温度预测模型获取磨煤机轴承温度阈值,并引入改进GWO算法优化模型超参数,以提高算法效率和性能。试验结果表明,改进GWO-LightGBM算法相比支持向量机(SVM)等传统算法具有更高的精度和更优的泛化能力。通过实际故障案例证明,该方法能够提前2 h对磨煤机进行早期故障预警。该方法对燃煤电厂磨煤机安全运维具有指导意义。 展开更多
关键词 燃煤电厂 磨煤机 故障预警 改进灰狼优化算法 轻量级梯度提升机 滑动窗口法 Halton
下载PDF
局部阴影下基于GWO-P&O混合算法的光伏最大功率点跟踪
5
作者 赵峰 肖成锐 +1 位作者 陈小强 王英 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第1期64-71,共8页
针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提... 针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提出了基于GWO-P&O的混合优化最大功率点跟踪(Maximum power point tracking,MPPT)算法。首先,采用灰狼优化算法逐渐向光伏的全局最大功率点靠近。其次,在灰狼优化算法收敛后期引入P&O法,既保持了灰狼优化算法较高的稳态精度,又能以较快速度寻找到局部最大功率点。最后,在不同环境工况下,将所提出的GWO-P&O方法与传统GWO算法进行对比。结果表明,改进的GWO-P&O算法在保证良好稳态性能的同时,一定程度上提高了GWO算法后期跟踪最大功率时的收敛速度。 展开更多
关键词 灰狼优化算法 扰动观察法 局部遮阴 混合优化最大功率点跟踪算法 全局最大功率点
下载PDF
基于GWO-HMM的空中交通网络流系统态势预测研究
6
作者 张兆宁 杨刚 《中国民航大学学报》 CAS 2024年第4期50-55,共6页
针对空中交通流量管理部门如何更高效地实施流量管理的问题,本文将态势感知理论应用于空中交通网络流系统(ATNFS,air traffic network flow system),建立空中交通网络流系统的运行态势预测模型。首先,给出了空中交通网络流系统的态势感... 针对空中交通流量管理部门如何更高效地实施流量管理的问题,本文将态势感知理论应用于空中交通网络流系统(ATNFS,air traffic network flow system),建立空中交通网络流系统的运行态势预测模型。首先,给出了空中交通网络流系统的态势感知过程,从节点和航线的角度筛选出航线饱和度、不正常航班率、节点饱和度、节点延误架次比、节点航班取消率5个态势要素,使用态势值作为态势理解的指标;其次,分析隐马尔可夫模型(HMM,hidden Markov model)的优势与不足,建立了基于灰狼优化(GWO,grey wolf optimization)算法和改进隐马尔可夫模型的态势预测模型;最后,使用某空中交通网络流系统的实际运行数据进行算例验证。结果表明,改进后的预测模型相较于原本的隐马尔可夫预测模型精度更高,预测结果更准确。 展开更多
关键词 空中交通流量管理 空中交通网络流系统 隐马尔可夫模型(HMM) 灰狼优化(gwo)算法 态势感知 态势预测
下载PDF
Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection 被引量:1
7
作者 Hala AlShamlan Halah AlMazrua 《Computers, Materials & Continua》 SCIE EI 2024年第4期675-694,共20页
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec... In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment. 展开更多
关键词 Bio-inspired algorithms BIOINFORMATICS cancer classification evolutionary algorithm feature selection gene expression grey wolf optimizer harris hawks optimization k-nearest neighbor support vector machine
下载PDF
A Grey Wolf Optimization-Based Tilt Tri-rotor UAV Altitude Control in Transition Mode 被引量:2
8
作者 MA Yan WANG Yingxun +2 位作者 CAI Zhihao ZHAO Jiang LIU Ningjun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第2期186-200,共15页
To solve the problem of altitude control of a tilt tri-rotor unmanned aerial vehicle(UAV)in the transition mode,this study presents a grey wolf optimization(GWO)based neural network adaptive control scheme for a tilt ... To solve the problem of altitude control of a tilt tri-rotor unmanned aerial vehicle(UAV)in the transition mode,this study presents a grey wolf optimization(GWO)based neural network adaptive control scheme for a tilt trirotor UAV in the transition mode.Firstly,the nonlinear model of the tilt tri-rotor UAV is established.Secondly,the tilt tri-rotor UAV altitude controller and attitude controller are designed by a neural network adaptive control method,and the GWO algorithm is adopted to optimize the parameters of the neural network and the controllers.Thirdly,two altitude control strategies are designed in the transition mode.Finally,comparative simulations are carried out to demonstrate the effectiveness and robustness of the proposed control scheme. 展开更多
关键词 tilt tri-rotor unmanned aerial vehicle altitude control neural network adaptive control grey wolf optimization(gwo)
下载PDF
基于GWO-PSO算法的堆垛机混合作业优化研究
9
作者 贾欣裕 宁方华 +1 位作者 李仁旺 周恒 《物流工程与管理》 2024年第5期21-26,共6页
为减少堆垛机执行混合作业的运行时间,建立堆垛机运行时间最小的数学模型,并提出一种改进的GWO-PSO算法进行求解。首先,在初始化阶段,将灰狼个体随机分为若干群组,按照标准GWO算法进行独立寻优,推举产生首领狼王,然后采用PSO算法的位置... 为减少堆垛机执行混合作业的运行时间,建立堆垛机运行时间最小的数学模型,并提出一种改进的GWO-PSO算法进行求解。首先,在初始化阶段,将灰狼个体随机分为若干群组,按照标准GWO算法进行独立寻优,推举产生首领狼王,然后采用PSO算法的位置更新方式对寻优结果进行更新,保证了种群的多样性和算法的寻优速度,接着引入速度交换算子进行离散化处理,并通过设置阈值解决了算法易陷入局部最优的问题,最后通过实例仿真分析,验证了GWO-PSO算法的有效性。 展开更多
关键词 混合作业 灰狼优化算法 粒子群优化算法 gwo-PSO算法
下载PDF
基于CEEMDAN-IGWO-BP的供热管道泄漏孔径预测 被引量:4
10
作者 王阳 仪垂杰 +2 位作者 赵鹏 张强 刘尊民 《传感器与微系统》 CSCD 北大核心 2023年第1期135-139,共5页
针对供热管道微小泄漏状况的预测问题,提出了一种基于自适应噪声完备集合经验模态分解(CEEMDAN)以及改进灰狼优化(IGWO)算法优化反向传播(BP)神经网络的泄漏孔径预测方法。所提方法利用CEEMDAN以及能量矩对泄漏信号进行模态分解与特征提... 针对供热管道微小泄漏状况的预测问题,提出了一种基于自适应噪声完备集合经验模态分解(CEEMDAN)以及改进灰狼优化(IGWO)算法优化反向传播(BP)神经网络的泄漏孔径预测方法。所提方法利用CEEMDAN以及能量矩对泄漏信号进行模态分解与特征提取;为提高预测精度,提出IGWO算法。首先,对灰狼优化(GWO)算法的种群初始化方式以及控制参数与位置更新策略进行改进;然后,建立IGWO-BP预测模型,并利用实验室泄漏信号对预测模型进行验证。结果表明:所提预测模型可有效提高管道微小泄漏孔径的预测精度。 展开更多
关键词 供热管道 泄漏孔径预测 模态分解 灰狼优化算法 神经网络
下载PDF
Discrete Improved Grey Wolf Optimizer for Community Detection 被引量:1
11
作者 Mohammad H.Nadimi-Shahraki Ebrahim Moeini +1 位作者 Shokooh Taghian Seyedali Mirjalili 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第5期2331-2358,共28页
Detecting communities in real and complex networks is a highly contested topic in network analysis.Although many metaheuristic-based algorithms for community detection have been proposed,they still cannot effectively ... Detecting communities in real and complex networks is a highly contested topic in network analysis.Although many metaheuristic-based algorithms for community detection have been proposed,they still cannot effectively fulfill large-scale and real-world networks.Thus,this paper presents a new discrete version of the Improved Grey Wolf Optimizer(I-GWO)algorithm named DI-GWOCD for effectively detecting communities of different networks.In the proposed DI-GWOCD algorithm,I-GWO is first armed using a local search strategy to discover and improve nodes placed in improper communities and increase its ability to search for a better solution.Then a novel Binary Distance Vector(BDV)is introduced to calculate the wolves’distances and adapt I-GWO for solving the discrete community detection problem.The performance of the proposed DI-GWOCD was evaluated in terms of modularity,NMI,and the number of detected communities conducted by some well-known real-world network datasets.The experimental results were compared with the state-of-the-art algorithms and statistically analyzed using the Friedman and Wilcoxon tests.The comparison and the statistical analysis show that the proposed DI-GWOCD can detect the communities with higher quality than other comparative algorithms. 展开更多
关键词 Community detection Complex network optimIZATION Metaheuristic algorithms Swarm intelligence algorithms grey wolf optimizer algorithm
原文传递
基于GWO-ABC的混合算法研究
12
作者 冯严冰 钱锦 《邢台职业技术学院学报》 2023年第1期85-91,共7页
大多数种群优化算法面临的共同缺陷是全局搜索能力不足,易陷入局部最优解。文章基于灰狼优化算法和人工蜂群算法,引入混沌映射和OBL策略,提出了新型GWO-ABC混合优化算法。通过GWO-ABC算法优化了FOPID控制器的参数,仿真结果表明,该算法... 大多数种群优化算法面临的共同缺陷是全局搜索能力不足,易陷入局部最优解。文章基于灰狼优化算法和人工蜂群算法,引入混沌映射和OBL策略,提出了新型GWO-ABC混合优化算法。通过GWO-ABC算法优化了FOPID控制器的参数,仿真结果表明,该算法性能优于其它算法。 展开更多
关键词 灰狼优化算法 人工蜂群算法 gwo-ABC混合优化算法 FOPID控制器
下载PDF
Smart Fraud Detection in E-Transactions Using Synthetic Minority Oversampling and Binary Harris Hawks Optimization
13
作者 Chandana Gouri Tekkali Karthika Natarajan 《Computers, Materials & Continua》 SCIE EI 2023年第5期3171-3187,共17页
Fraud Transactions are haunting the economy of many individuals with several factors across the globe.This research focuses on developing a mechanism by integrating various optimized machine-learning algorithms to ens... Fraud Transactions are haunting the economy of many individuals with several factors across the globe.This research focuses on developing a mechanism by integrating various optimized machine-learning algorithms to ensure the security and integrity of digital transactions.This research proposes a novel methodology through three stages.Firstly,Synthetic Minority Oversampling Technique(SMOTE)is applied to get balanced data.Secondly,SMOTE is fed to the nature-inspired Meta Heuristic(MH)algorithm,namely Binary Harris Hawks Optimization(BinHHO),Binary Aquila Optimization(BAO),and Binary Grey Wolf Optimization(BGWO),for feature selection.BinHHO has performed well when compared with the other two.Thirdly,features from BinHHO are fed to the supervised learning algorithms to classify the transactions such as fraud and non-fraud.The efficiency of BinHHO is analyzed with other popular MH algorithms.The BinHHO has achieved the highest accuracy of 99.95%and demonstrates amore significant positive effect on the performance of the proposed model. 展开更多
关键词 Metaheuristic algorithms K-nearest-neighbour binary aquila optimization binary grey wolf optimization BinHHO optimization support vector machine
下载PDF
Hybridized Intelligent Neural Network Optimization Model for Forecasting Prices of Rubber in Malaysia
14
作者 Shehab Abdulhabib Alzaeemi Saratha Sathasivam +2 位作者 Majid Khan bin Majahar Ali K.G.Tay Muraly Velavan 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期1471-1491,共21页
Rubber producers,consumers,traders,and those who are involved in the rubber industry face major risks of rubber price fluctuations.As a result,decision-makers are required to make an accurate estimation of the price o... Rubber producers,consumers,traders,and those who are involved in the rubber industry face major risks of rubber price fluctuations.As a result,decision-makers are required to make an accurate estimation of the price of rubber.This paper aims to propose hybrid intelligent models,which can be utilized to forecast the price of rubber in Malaysia by employing monthly Malaysia’s rubber pricing data,spanning from January 2016 to March 2021.The projected hybrid model consists of different algorithms with the symbolic Radial Basis Functions Neural Network k-Satisfiability Logic Mining(RBFNN-kSAT).These algorithms,including Grey Wolf Optimization Algorithm,Artificial Bee Colony Algorithm,and Particle Swarm Optimization Algorithm were utilized in the forecasting data analysis.Several factors,which affect the monthly price of rubber,such as rubber production,total exports of rubber,total imports of rubber,stocks of rubber,currency exchange rate,and crude oil prices were also considered in the analysis.To evaluate the results of the introduced model,a comparison has been conducted for each model to identify the most optimum model for forecasting the price of rubber.The findings showed that GWO with RBFNN-kSAT represents the most accurate and efficient model compared with ABC with RBFNNkSAT and PSO with RBFNN-kSAT in forecasting the price of rubber.The GWO with RBFNN-kSAT obtained the greatest average accuracy(92%),with a better correlation coefficient R=0.983871 than ABC with RBFNN-kSAT and PSO with RBFNN-kSAT.Furthermore,the empirical results of this study provided several directions for policymakers to make the right decision in terms of devising proper measures in the industry to address frequent price changes so that the Malaysian rubber industry maintains dominance in the international markets. 展开更多
关键词 Rubber prices in Malaysia grey wolf optimization algorithm radial basis functions neural network k-satisfiability commodity prices
下载PDF
邻域粗糙集与GWO-SVM联合应用下的变压器故障诊断方法研究 被引量:1
15
作者 程荣森 《办公自动化》 2023年第24期10-12,共3页
文章根据域名生成算法(DGA)研究变压器故障数据和变压器故障类型之间的必然联系,将诊断模型优化和故障数据处理相互结合,全面提高变压器故障诊断的准确率。并通过研发变压器故障诊断系统,将两者进行整合,实施检测变压器运行过程,构建领... 文章根据域名生成算法(DGA)研究变压器故障数据和变压器故障类型之间的必然联系,将诊断模型优化和故障数据处理相互结合,全面提高变压器故障诊断的准确率。并通过研发变压器故障诊断系统,将两者进行整合,实施检测变压器运行过程,构建领域粗糙集约简模型,研究变压器故障数据比值与故障之间的关系,将比值数据作为故障诊断样本,及时发现变压器故障问题,采取合理解决方案,将变压器故障出现问题控制在合理范围。 展开更多
关键词 变压器故障诊断 油中溶解气体 邻域粗糙集(NRS) 灰狼优化器(gwo)算法 支持向量机(SVM)
下载PDF
改进灰狼算法优化GBDT在PM_(2.5)预测中的应用 被引量:2
16
作者 江雨燕 傅杰 +2 位作者 甘如美江 孙雨辰 王付宇 《安全与环境学报》 CAS CSCD 北大核心 2024年第4期1569-1580,共12页
针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局... 针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局搜索能力;利用粒子群算法模拟灰狼种群得出的最佳适应度以用于惩罚项改进灰狼算法中的头狼更新策略。使用改进算法优化的梯度提升树(Gradient Boosting Decision Trees,GBDT)模型对北京市大气污染物监测数据中PM_(2.5)质量浓度进行预测,采用3种评估函数对各模型以及混合模型预测效果得分进行评估。结果显示,本文改进的灰狼算法对梯度提升树的优化效果优于其他算法,均方根误差E RMS为6.65μg/m^(3),平均绝对值误差E MA为3.20μg/m^(3),拟合优度(R^(2))为99%,比传统灰狼算法优化结果的均方根误差减少了19.19μg/m^(3),平均绝对值误差降低了10.03μg/m^(3),拟合优度增加了9百分点;与霍尔顿序列和莱维飞行改进的(Levy Flight-Halton Sequence,LHGWO)相比,改进的灰狼算法预测得分的均方根误差降低了10.39μg/m^(3),平均绝对值误差减小了6.71μg/m^(3),拟合优度提高了5百分点。研究表明了预测模型优化的有效性,为未来城市改善空气质量提供了科学依据和技术支持。 展开更多
关键词 环境学 PM_(2.5)质量浓度预测 改进灰狼算法(gwo) 梯度提升树算法(GBDT) 莱维(Levy)飞行 霍尔顿序列(Halton Sequence) 粒子群算法(PSO)
下载PDF
变压器长圆形绕组振动仿真与机械故障诊断研究 被引量:1
17
作者 陈朝阳 杨文荣 +1 位作者 张雨蒙 石小晖 《传感器与微系统》 CSCD 北大核心 2024年第3期63-66,75,共5页
针对目前配电变压器长圆形绕组的故障诊断研究较少的问题,本文提出一种基于灰狼优化(GWO)算法的变压器长圆形绕组机械故障诊断的方法。首先,建立长圆形绕组的辐向和轴向振动数学模型;其次,建立变压器电磁—机械耦合有限元模型,计算长圆... 针对目前配电变压器长圆形绕组的故障诊断研究较少的问题,本文提出一种基于灰狼优化(GWO)算法的变压器长圆形绕组机械故障诊断的方法。首先,建立长圆形绕组的辐向和轴向振动数学模型;其次,建立变压器电磁—机械耦合有限元模型,计算长圆形绕组在正常、松动以及翘曲状态下的振动分布,选取R点作为特征值提取点;最后,对变压器样机进行正常、松动以及翘曲3种状态试验,获取R点的小波包能量特征,采用GWO算法优化支持向量机(SVM)参数对变压器长圆形绕组机械故障诊断,最终优化后的诊断综合准确率达到90%。 展开更多
关键词 配电变压器 长圆形绕组 有限元仿真 灰狼优化算法 故障诊断
下载PDF
节流槽结构参数对阀开启压力冲击及空化特性的影响研究
18
作者 陈远玲 欧阳崇钦 +3 位作者 彭卓 陈承宗 石浩 王梦乔 《振动与冲击》 EI CSCD 北大核心 2024年第7期50-56,66,共8页
液压控制阀阀芯节流槽的结构对阀的动态特性影响强烈,不良节流槽结构将导致极大的液压阀开启瞬间压力冲击。针对某型号负载敏感多路阀在甘蔗联合收割机的应用中出现啸叫和液压冲击的问题,结合动网格与RNG-k-ε湍流模型,对U+T型节流槽和... 液压控制阀阀芯节流槽的结构对阀的动态特性影响强烈,不良节流槽结构将导致极大的液压阀开启瞬间压力冲击。针对某型号负载敏感多路阀在甘蔗联合收割机的应用中出现啸叫和液压冲击的问题,结合动网格与RNG-k-ε湍流模型,对U+T型节流槽和V型节流槽的压力冲击及空化进行了对比分析,发现同等条件下V型槽的阀芯较U+T型槽的阀芯的压力冲击下降了19.37%,最大空化程度降低了43.7%。选取V型节流槽开展进一步研究,通过正交试验获取不同节流槽结构参数下的压力峰值;采用BP神经网络建立V型节流槽结构参数与压力冲击的代理模型,结合灰狼优化(GWO)算法得到节流槽结构参数的最优配置;依据优化结果制作阀芯并进行试验,结果显示,抑制压力冲击效果显著,系统压力超调下降至原来52.4%。 展开更多
关键词 流场仿真 BP代理模型 灰狼优化(gwo)算法 节流槽优化 冲击抑制
下载PDF
RCMNAAPE在旋转机械故障诊断中的应用
19
作者 储祥冬 戴礼军 +3 位作者 涂金洲 罗震寰 于震 秦磊 《机电工程》 CAS 北大核心 2024年第6期1039-1049,共11页
针对精细复合多尺度排列熵(RCMPE)无法充分提取旋转机械振动信号中的故障信息,从而导致旋转机械故障识别准确率不稳定这一缺陷,提出了一种基于精细复合多尺度归一化幅值感知排列熵(RCMNAAPE)、拉普拉斯分数(LS)和灰狼算法优化支持向量机... 针对精细复合多尺度排列熵(RCMPE)无法充分提取旋转机械振动信号中的故障信息,从而导致旋转机械故障识别准确率不稳定这一缺陷,提出了一种基于精细复合多尺度归一化幅值感知排列熵(RCMNAAPE)、拉普拉斯分数(LS)和灰狼算法优化支持向量机(GWO-SVM)的旋转机械故障诊断方法。首先,利用幅值感知排列熵替换了RCMPE中的排列熵,提出了RCMNAAPE,并将其用于提取旋转机械振动信号的故障特征生成特征样本;随后,采用了LS从原始的高维故障特征向量中筛选出较少的能够更准确描述故障状态的特征,构造敏感特征样本;最后,将低维的故障特征向量输入由灰狼算法优化的支持向量机中进行了训练和测试,完成了旋转机械样本的故障识别和分类,利用滚动轴承和齿轮箱故障数据集将RCMNAAPE-LS-GWO-SVM与其他故障诊断方法进行了对比分析,并开展了评估。研究结果表明:基于RCMNAAPE-LS-GWO-SVM的故障诊断方法能够有效识别旋转机械的各类故障,其识别准确率高于其他对比的故障诊断方法,其中滚动轴承故障的识别准确率达到99.33%,齿轮箱故障的识别准确率达到98.67%。虽然,该方法的特征提取效率不佳,平均特征提取时间分别为153.02 s和163.98 s,仅优于精细复合多尺度模糊熵(RCMFE),但其综合性能更加优异。 展开更多
关键词 故障识别准确率 滚动轴承 齿轮箱 精细复合多尺度归一化幅值感知排列熵 拉普拉斯分数 灰狼优化支持向量机
下载PDF
Medical Image Segmentation using PCNN based on Multi-feature Grey Wolf Optimizer Bionic Algorithm 被引量:7
20
作者 Xue Wang Zhanshan Li +2 位作者 Heng Kang Yongping Huang Di Gai 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第3期711-720,共10页
Medical image segmentation is a challenging task especially in multimodality medical image analysis.In this paper,an improved pulse coupled neural network based on multiple hybrid features grey wolf optimizer(MFGWO-PC... Medical image segmentation is a challenging task especially in multimodality medical image analysis.In this paper,an improved pulse coupled neural network based on multiple hybrid features grey wolf optimizer(MFGWO-PCNN)is proposed for multimodality medical image segmentation.Specifically,a two-stage medical image segmentation method based on bionic algorithm is presented,including image fusion and image segmentation.The image fusion stage fuses rich information from different modalities by utilizing a multimodality medical image fusion model based on maximum energy region.In the stage of image segmentation,an improved PCNN model based on MFGWO is proposed,which can adaptively set the parameters of PCNN according to the features of the image.Two modalities of FLAIR and TIC brain MRIs are applied to verify the effectiveness of the proposed MFGWO-PCNN algorithm.The experimental results demonstrate that the proposed method outperforms the other seven algorithms in subjective vision and objective evaluation indicators. 展开更多
关键词 grey wolf optimizer pulse coupled neural network bionic algorithm medical image segmentation
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部