期刊文献+
共找到769篇文章
< 1 2 39 >
每页显示 20 50 100
Enhancing rock fragmentation prediction in mining operations:A hybrid GWO-RF model with SHAP interpretability 被引量:1
1
作者 ZHANG Yu-lin QIU Yin-gui +2 位作者 ARMAGHANI Danial Jahed MONJEZI Masoud ZHOU Jian 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2916-2929,共14页
In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hy... In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hybrid predictive model named GWO-RF.This model combines the grey wolf optimization(GWO)algorithm with the random forest(RF)technique to predict the D_(80)value,a critical parameter in evaluating rock fragmentation quality.The study is conducted using a dataset from Sarcheshmeh Copper Mine,employing six different swarm sizes for the GWO-RF hybrid model construction.The GWO-RF model’s hyperparameters are systematically optimized within established bounds,and its performance is rigorously evaluated using multiple evaluation metrics.The results show that the GWO-RF hybrid model has higher predictive skills,exceeding traditional models in terms of accuracy.Furthermore,the interpretability of the GWO-RF model is enhanced through the utilization of SHapley Additive exPlanations(SHAP)values.The insights gained from this research contribute to optimizing blasting operations and rock fragmentation outcomes in the mining industry. 展开更多
关键词 BLASTING rock fragmentation random forest grey wolf optimization hybrid tree-based technique
下载PDF
Three-Dimensional Sound Source Location Algorithm for Subsea Leakage Using Hydrophone 被引量:1
2
作者 LI Hao-jie CAI Bao-ping +6 位作者 YUAN Xiao-bing KONG Xiang-di LIU Yong-hong Javed Akbar KHAN CHU Zheng-de YANG Chao TANG An-bang 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期326-337,共12页
Leakages from subsea oil and gas equipment cause substantial economic losses and damage to marine ecosystem,so it is essential to locate the source of the leak.However,due to the complexity and variability of the mari... Leakages from subsea oil and gas equipment cause substantial economic losses and damage to marine ecosystem,so it is essential to locate the source of the leak.However,due to the complexity and variability of the marine environment,the signals collected by hydrophone contain a variety of noises,which makes it challenging to extract useful signals for localization.To solve this problem,a hydrophone denoising algorithm is proposed based on variational modal decomposition(VMD)with grey wolf optimization.First,the average envelope entropy is used as the fitness function of the grey wolf optimizer to find the optimal solution for the parameters K andα.Afterward,the VMD algorithm decomposes the original signal parameters to obtain the intrinsic mode functions(IMFs).Subsequently,the number of interrelationships between each IMF and the original signal was calculated,the threshold value was set,and the noise signal was removed to calculate the time difference using the valid signal obtained by reconstruction.Finally,the arrival time difference is used to locate the origin of the leak.The localization accuracy of the method in finding leaks is investigated experimentally by constructing a simulated leak test rig,and the effectiveness and feasibility of the method are verified. 展开更多
关键词 grey wolf optimizer variational modal decomposition mean envelope entropy correlation coefficient time difference of arrival
下载PDF
Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection 被引量:1
3
作者 Hala AlShamlan Halah AlMazrua 《Computers, Materials & Continua》 SCIE EI 2024年第4期675-694,共20页
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec... In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment. 展开更多
关键词 Bio-inspired algorithms BIOINFORMATICS cancer classification evolutionary algorithm feature selection gene expression grey wolf optimizer harris hawks optimization k-nearest neighbor support vector machine
下载PDF
Significant genomic introgression from grey junglefowl(Gallus sonneratii)to domestic chickens(Gallus gallus domesticus)
4
作者 Xiurong Zhao Junhui Wen +10 位作者 Xinye Zhang Jinxin Zhang Tao Zhu Huie Wang Weifang Yang Guomin Cao Wenjie Xiong Yong Liu Changqing Qu Zhonghua Ning Lujiang Qu 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第4期1482-1493,共12页
Background Chicken is one of the most numerous and widely distributed species around the world,and many studies support the multiple ancestral origins of domestic chickens.The research regarding the yellow skin phenot... Background Chicken is one of the most numerous and widely distributed species around the world,and many studies support the multiple ancestral origins of domestic chickens.The research regarding the yellow skin phenotype in domestic chickens(regulated by BCO2)likely originating from the grey junglefowl serves as crucial evidence for demonstrating the multiple origins of chickens.However,beyond the BCO2 gene region,much remains unknown about the introgression from the grey junglefowl into domestic chickens.Therefore,in this study,based on wholegenome data of 149 samples including 4 species of wild junglefowls and 13 local domestic chicken breeds,we explored the introgression events from the grey junglefowl to domestic chickens.Results We successfully detected introgression regions besides BCO2,including two associated with growth trait(IGFBP2 and TKT),one associated with angiogenesis(TIMP3)and two members of the heat shock protein family(HSPB2 and CRYAB).Our findings suggest that the introgression from the grey junglefowl may impact the growth performance of chickens.Furthermore,we revealed introgression events from grey junglefowl at the BCO2 region in multiple domestic chicken breeds,indicating a phenomenon where the yellow skin phenotype likely underwent strong selection and was retained.Additionally,our haplotype analysis shed light on BCO2 introgression event from different sources of grey junglefowl into domestic chickens,possibly suggesting multiple genetic flows between the grey junglefowl and domestic chickens.Conclusions In summary,our findings provide evidences of the grey junglefowl contributing to the genetic diversity of domestic chickens,laying the foundation for a deeper understanding of the genetic composition within domestic chickens,and offering new perspectives on the impact of introgression on domestic chickens. 展开更多
关键词 BCO2 Domestic chickens Grey junglefowl INTROGRESSION
下载PDF
A hybrid machine learning optimization algorithm for multivariable pore pressure prediction
5
作者 Song Deng Hao-Yu Pan +8 位作者 Hai-Ge Wang Shou-Kun Xu Xiao-Peng Yan Chao-Wei Li Ming-Guo Peng Hao-Ping Peng Lin Shi Meng Cui Fei Zhao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期535-550,共16页
Pore pressure is essential data in drilling design,and its accurate prediction is necessary to ensure drilling safety and improve drilling efficiency.Traditional methods for predicting pore pressure are limited when f... Pore pressure is essential data in drilling design,and its accurate prediction is necessary to ensure drilling safety and improve drilling efficiency.Traditional methods for predicting pore pressure are limited when forming particular structures and lithology.In this paper,a machine learning algorithm and effective stress theorem are used to establish the transformation model between rock physical parameters and pore pressure.This study collects data from three wells.Well 1 had 881 data sets for model training,and Wells 2 and 3 had 538 and 464 data sets for model testing.In this paper,support vector machine(SVM),random forest(RF),extreme gradient boosting(XGB),and multilayer perceptron(MLP)are selected as the machine learning algorithms for pore pressure modeling.In addition,this paper uses the grey wolf optimization(GWO)algorithm,particle swarm optimization(PSO)algorithm,sparrow search algorithm(SSA),and bat algorithm(BA)to establish a hybrid machine learning optimization algorithm,and proposes an improved grey wolf optimization(IGWO)algorithm.The IGWO-MLP model obtained the minimum root mean square error(RMSE)by using the 5-fold cross-validation method for the training data.For the pore pressure data in Well 2 and Well 3,the coefficients of determination(R^(2))of SVM,RF,XGB,and MLP are 0.9930 and 0.9446,0.9943 and 0.9472,0.9945 and 0.9488,0.9949 and 0.9574.MLP achieves optimal performance on both training and test data,and the MLP model shows a high degree of generalization.It indicates that the IGWO-MLP is an excellent predictor of pore pressure and can be used to predict pore pressure. 展开更多
关键词 Pore pressure Grey wolf optimization Multilayer perceptron Effective stress Machine learning
下载PDF
Case Retrieval Strategy of Turning Process Based on Grey Relational Analysis
6
作者 Jianfeng Zhao Yunliang Huo +3 位作者 Ji Xiong Junbo Liu Zhixing Guo Qingxian Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1663-1678,共16页
To solve the problem of long response time when users obtain suitable cutting parameters through the Internet based platform,a case-based reasoning framework is proposed.Specifically,a Hamming distance and Euclidean d... To solve the problem of long response time when users obtain suitable cutting parameters through the Internet based platform,a case-based reasoning framework is proposed.Specifically,a Hamming distance and Euclidean distance combined method is designed to measure the similarity of case features which have both numeric and category properties.In addition,AHP(Analytic Hierarchy Process)and entropy weight method are integrated to provide features weight,where both user preferences and comprehensive impact of the index have been concerned.Grey relation analysis is used to obtain the similarity of a new problem and alternative cases.Finally,a platform is also developed on Visual Studio 2015,and a case study is demonstrated to verify the practicality and efficiency of the proposed method.This method can obtain cutting parameters which is suitable without iterative calculation.Compared with the traditional PSO(Particle swarm optimization algorithm)and GA(Genetic algorithm),it can obtain faster response speed.This method can provide ideas for selecting processing parameters in industrial production.While guaranteeing the characteristic information is similar,this approach can select processing parameters which is the most appropriate for the production process and a lot of time can be saved. 展开更多
关键词 CBR turning process grey relation AHP entropy weight
下载PDF
Evaluation and Influencing Factors on Particle Agglomeration in RAP
7
作者 唐伟 李宁 +4 位作者 ZHUANG Yuan ZHAN He YU Xin WU Wenxiu DING Gongying 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期60-68,共9页
Asphalt extraction test and scanning electron microscopy(SEM) were used for analysis of agglomerations of reclaimed asphalt pavement(RAP) particles. In order to quantify the agglomeration degree of RAP, the fineness m... Asphalt extraction test and scanning electron microscopy(SEM) were used for analysis of agglomerations of reclaimed asphalt pavement(RAP) particles. In order to quantify the agglomeration degree of RAP, the fineness modulus ratio(FMR) and the percentage loss index(PLI) were proposed. In addition, grey correlation analysis was conducted to discuss the relationship between particle agglomerations and RAP size,asphalt content(AC), and surface area. Two indexes indicate that the agglomeration degree increases in general as the RAP size reduces. This can be attributed to that particles are prone to agglomeration in the case of higher AC. Based on the SEM images and the material composition of RAP, the particle agglomeration in RAP can be classified into weak agglomeration and strong agglomeration. Grey correlation analysis shows that AC is the crucial factor affecting the agglomeration degree and RAP variability. In order to produce consistent and stable reclaimed mixtures, disposal measures of RAP are suggested to lower the AC of RAP. 展开更多
关键词 RAP particle agglomeration grey correlation analysis asphalt content
下载PDF
Characterization of alpine meadow surface crack and its correlation with root-soil properties
8
作者 WU Yuechen ZHU Haili +5 位作者 ZHANG Yu ZHANG Hailong LIU Guosong LIU Yabin LI Guorong HU Xiasong 《Journal of Arid Land》 SCIE CSCD 2024年第6期834-851,共18页
Quantifying surface cracks in alpine meadows is a prerequisite and a key aspect in the study of grassland crack development.Crack characterization indices are crucial for the quantitative characterization of complex c... Quantifying surface cracks in alpine meadows is a prerequisite and a key aspect in the study of grassland crack development.Crack characterization indices are crucial for the quantitative characterization of complex cracks,serving as vital factors in assessing the degree of cracking and the development morphology.So far,research on evaluating the degree of grassland degradation through crack characterization indices is rare,especially the quantitative analysis of the development of surface cracks in alpine meadows is relatively scarce.Therefore,based on the phenomenon of surface cracking during the degradation of alpine meadows in some regions of the Qinghai-Tibet Plateau,we selected the alpine meadow in the Huangcheng Mongolian Township,Menyuan Hui Autonomous County,Qinghai Province,China as the study area,used unmanned aerial vehicle(UAV)sensing technology to acquire low-altitude images of alpine meadow surface cracks at different degrees of degradation(light,medium,and heavy degradation),and analyzed the representative metrics characterizing the degree of crack development by interpreting the crack length,length density,branch angle,and burrow(rat hole)distribution density and combining them with in situ crack width and depth measurements.Finally,the correlations between the crack characterization indices and the soil and root parameters of sample plots at different degrees of degradation in the study area were analyzed using the grey relation analysis.The results revealed that with the increase of degradation,the physical and chemical properties of soil and the mechanical properties of root-soil composite changed significantly,the vegetation coverage reduced,and the root system aggregated in the surface layer of alpine meadow.As the degree of degradation increased,the fracture morphology developed from"linear"to"dendritic",and eventually to a complex and irregular"polygonal"pattern.The crack length,width,depth,and length density were identified as the crack characterization indices via analysis of variance.The results of grey relation analysis also revealed that the crack length,width,depth,and length density were all highly correlated with root length density,and as the degradation of alpine meadows intensified,the underground biomass increased dramatically,forming a dense layer of grass felt,which has a significant impact on the formation and expansion of cracks. 展开更多
关键词 alpine meadow grassland degradation grassland cracks crack characterization index crack morphology root length density grey relation analysis
下载PDF
An improved interval model updating method via adaptive Kriging models
9
作者 Sha WEI Yifeng CHEN +1 位作者 Hu DING Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期497-514,共18页
Interval model updating(IMU)methods have been widely used in uncertain model updating due to their low requirements for sample data.However,the surrogate model in IMU methods mostly adopts the one-time construction me... Interval model updating(IMU)methods have been widely used in uncertain model updating due to their low requirements for sample data.However,the surrogate model in IMU methods mostly adopts the one-time construction method.This makes the accuracy of the surrogate model highly dependent on the experience of users and affects the accuracy of IMU methods.Therefore,an improved IMU method via the adaptive Kriging models is proposed.This method transforms the objective function of the IMU problem into two deterministic global optimization problems about the upper bound and the interval diameter through universal grey numbers.These optimization problems are addressed through the adaptive Kriging models and the particle swarm optimization(PSO)method to quantify the uncertain parameters,and the IMU is accomplished.During the construction of these adaptive Kriging models,the sample space is gridded according to sensitivity information.Local sampling is then performed in key subspaces based on the maximum mean square error(MMSE)criterion.The interval division coefficient and random sampling coefficient are adaptively adjusted without human interference until the model meets accuracy requirements.The effectiveness of the proposed method is demonstrated by a numerical example of a three-degree-of-freedom mass-spring system and an experimental example of a butted cylindrical shell.The results show that the updated results of the interval model are in good agreement with the experimental results. 展开更多
关键词 interval model updating(IMU) non-probabilistic uncertainty adaptive Kriging model surrogate model grey number
下载PDF
An Effective Hybrid Model of ELM and Enhanced GWO for Estimating Compressive Strength of Metakaolin-Contained Cemented Materials
10
作者 Abidhan Bardhan Raushan Kumar Singh +1 位作者 Mohammed Alatiyyah Sulaiman Abdullah Alateyah 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1521-1555,共35页
This research proposes a highly effective soft computing paradigm for estimating the compressive strength(CS)of metakaolin-contained cemented materials.The proposed approach is a combination of an enhanced grey wolf o... This research proposes a highly effective soft computing paradigm for estimating the compressive strength(CS)of metakaolin-contained cemented materials.The proposed approach is a combination of an enhanced grey wolf optimizer(EGWO)and an extreme learning machine(ELM).EGWO is an augmented form of the classic grey wolf optimizer(GWO).Compared to standard GWO,EGWO has a better hunting mechanism and produces an optimal performance.The EGWO was used to optimize the ELM structure and a hybrid model,ELM-EGWO,was built.To train and validate the proposed ELM-EGWO model,a sum of 361 experimental results featuring five influencing factors was collected.Based on sensitivity analysis,three distinct cases of influencing parameters were considered to investigate the effect of influencing factors on predictive precision.Experimental consequences show that the constructed ELM-EGWO achieved the most accurate precision in both training(RMSE=0.0959)and testing(RMSE=0.0912)phases.The outcomes of the ELM-EGWO are significantly superior to those of deep neural networks(DNN),k-nearest neighbors(KNN),long short-term memory(LSTM),and other hybrid ELMs constructed with GWO,particle swarm optimization(PSO),harris hawks optimization(HHO),salp swarm algorithm(SSA),marine predators algorithm(MPA),and colony predation algorithm(CPA).The overall results demonstrate that the newly suggested ELM-EGWO has the potential to estimate the CS of metakaolin-contained cemented materials with a high degree of precision and robustness. 展开更多
关键词 Metakaolin-contained cemented materials compressive strength extreme learning machine grey wolf optimizer swarm intelligence uncertainty analysis artificial intelligence
下载PDF
A Hybrid Optimization Approach of Single Point Incremental Sheet Forming of AISI 316L Stainless Steel Using Grey Relation Analysis Coupled with Principal Component Analysiss
11
作者 A Visagan P Ganesh 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期160-166,共7页
We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were use... We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were used to develop double wall angle pyramid with aid of tungsten carbide tool. GRA coupled with PCA was used to plan the experiment conditions. Control factors such as Tool Diameter(TD), Step Depth(SD), Bottom Wall Angle(BWA), Feed Rate(FR) and Spindle Speed(SS) on Top Wall Angle(TWA) and Top Wall Angle Surface Roughness(TWASR) have been studied. Wall angle increases with increasing tool diameter due to large contact area between tool and workpiece. As the step depth, feed rate and spindle speed increase,TWASR decreases with increasing tool diameter. As the step depth increasing, the hydrostatic stress is raised causing severe cracks in the deformed surface. Hence it was concluded that the proposed hybrid method was suitable for optimizing the factors and response. 展开更多
关键词 single point incremental forming AISI 316L taguchi grey relation analysis principal component analysis surface roughness scanning electron microscopy
下载PDF
Explainable machine learning model for predicting molten steel temperature in the LF refining process
12
作者 Zicheng Xin Jiangshan Zhang +5 位作者 Kaixiang Peng Junguo Zhang Chunhui Zhang Jun Wu Bo Zhang Qing Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2657-2669,共13页
Accurate prediction of molten steel temperature in the ladle furnace(LF)refining process has an important influence on the quality of molten steel and the control of steelmaking cost.Extensive research on establishing... Accurate prediction of molten steel temperature in the ladle furnace(LF)refining process has an important influence on the quality of molten steel and the control of steelmaking cost.Extensive research on establishing models to predict molten steel temperature has been conducted.However,most researchers focus solely on improving the accuracy of the model,neglecting its explainability.The present study aims to develop a high-precision and explainable model with improved reliability and transparency.The eXtreme gradient boosting(XGBoost)and light gradient boosting machine(LGBM)were utilized,along with bayesian optimization and grey wolf optimiz-ation(GWO),to establish the prediction model.Different performance evaluation metrics and graphical representations were applied to compare the optimal XGBoost and LGBM models obtained through varying hyperparameter optimization methods with the other models.The findings indicated that the GWO-LGBM model outperformed other methods in predicting molten steel temperature,with a high pre-diction accuracy of 89.35%within the error range of±5°C.The model’s learning/decision process was revealed,and the influence degree of different variables on the molten steel temperature was clarified using the tree structure visualization and SHapley Additive exPlana-tions(SHAP)analysis.Consequently,the explainability of the optimal GWO-LGBM model was enhanced,providing reliable support for prediction results. 展开更多
关键词 ladle furnace refining molten steel temperature eXtreme gradient boosting light gradient boosting machine grey wolf op-timization SHapley Additive exPlanation
下载PDF
Energy-Saving Distributed Flexible Job Shop Scheduling Optimization with Dual Resource Constraints Based on Integrated Q-Learning Multi-Objective Grey Wolf Optimizer
13
作者 Hongliang Zhang Yi Chen +1 位作者 Yuteng Zhang Gongjie Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1459-1483,共25页
The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke... The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality. 展开更多
关键词 Distributed flexible job shop scheduling problem dual resource constraints energy-saving scheduling multi-objective grey wolf optimizer Q-LEARNING
下载PDF
Enhancing Hyper-Spectral Image Classification with Reinforcement Learning and Advanced Multi-Objective Binary Grey Wolf Optimization
14
作者 Mehrdad Shoeibi Mohammad Mehdi Sharifi Nevisi +3 位作者 Reza Salehi Diego Martín Zahra Halimi Sahba Baniasadi 《Computers, Materials & Continua》 SCIE EI 2024年第6期3469-3493,共25页
Hyperspectral(HS)image classification plays a crucial role in numerous areas including remote sensing(RS),agriculture,and the monitoring of the environment.Optimal band selection in HS images is crucial for improving ... Hyperspectral(HS)image classification plays a crucial role in numerous areas including remote sensing(RS),agriculture,and the monitoring of the environment.Optimal band selection in HS images is crucial for improving the efficiency and accuracy of image classification.This process involves selecting the most informative spectral bands,which leads to a reduction in data volume.Focusing on these key bands also enhances the accuracy of classification algorithms,as redundant or irrelevant bands,which can introduce noise and lower model performance,are excluded.In this paper,we propose an approach for HS image classification using deep Q learning(DQL)and a novel multi-objective binary grey wolf optimizer(MOBGWO).We investigate the MOBGWO for optimal band selection to further enhance the accuracy of HS image classification.In the suggested MOBGWO,a new sigmoid function is introduced as a transfer function to modify the wolves’position.The primary objective of this classification is to reduce the number of bands while maximizing classification accuracy.To evaluate the effectiveness of our approach,we conducted experiments on publicly available HS image datasets,including Pavia University,Washington Mall,and Indian Pines datasets.We compared the performance of our proposed method with several state-of-the-art deep learning(DL)and machine learning(ML)algorithms,including long short-term memory(LSTM),deep neural network(DNN),recurrent neural network(RNN),support vector machine(SVM),and random forest(RF).Our experimental results demonstrate that the Hybrid MOBGWO-DQL significantly improves classification accuracy compared to traditional optimization and DL techniques.MOBGWO-DQL shows greater accuracy in classifying most categories in both datasets used.For the Indian Pine dataset,the MOBGWO-DQL architecture achieved a kappa coefficient(KC)of 97.68%and an overall accuracy(OA)of 94.32%.This was accompanied by the lowest root mean square error(RMSE)of 0.94,indicating very precise predictions with minimal error.In the case of the Pavia University dataset,the MOBGWO-DQL model demonstrated outstanding performance with the highest KC of 98.72%and an impressive OA of 96.01%.It also recorded the lowest RMSE at 0.63,reinforcing its accuracy in predictions.The results clearly demonstrate that the proposed MOBGWO-DQL architecture not only reaches a highly accurate model more quickly but also maintains superior performance throughout the training process. 展开更多
关键词 Hyperspectral image classification reinforcement learning multi-objective binary grey wolf optimizer band selection
下载PDF
Influences of lithofacies on fluid mobility in mixed sedimentary rocks:Insights from NMR analysis of the middle Permian Lucaogou Formation,Junggar Basin
15
作者 Huricha Wu Yaohua Wang +3 位作者 Jingqiang Tan Xiao Ma Ruining Hu Wenhui Liu 《Energy Geoscience》 EI 2024年第4期108-124,共17页
The multi-source mixed sedimentation resulted in a unique series of mixed fine-grained sedimentary rocks evolved within the Permian Lucaogou Formation in the Jimusar Sag,located in the southeastern Junggar Basin,China... The multi-source mixed sedimentation resulted in a unique series of mixed fine-grained sedimentary rocks evolved within the Permian Lucaogou Formation in the Jimusar Sag,located in the southeastern Junggar Basin,China.The variety of lithofacies within this series resulted in pronounced heterogeneity of pore structures,complicating the analysis of fluid occurrence space and state within reservoirs.As a result,the impact of lithofacies on fluid mobility remains ambiguous.In this study,we employed qualitative methods,such as field emission scanning electron microscopy(FE-SEM)and thin section observation,and quantitative analyses,including X-ray diffraction(XRD),total organic carbon(TOC),vitrinite reflectance(Ro),high-pressure mercury intrusion(HPMI)porosimetry,and nuclear magnetic resonance(NMR),along with linear and grey correlation analyses.This approach helped delineate the effective pore characteristics and principal factors influencing movable fluids in the fine-grained mixed rocks of the Lucaogou Formation in the Jimusar Sag,Junggar Basin.The findings indicate the development of three fundamental lithologies within the Lucaogou Formation:fine sandstone,siltstone,and mudstone.Siltstones exhibit the highest movable fluid saturation(MFS),followed by fine sandstones and mudstones sequentially.Fluid mobility is predominantly governed by the content of brittle minerals,the sorting coefficient(Sc),effective pore connectivity(EPC),and the fractal dimension(D_(2)).High content of brittle minerals favors the preservation of intergranular pores and the generation of microcracks,thus offering more occurrence space for movable fluids.A moderate Sc indicates the presence of larger connecting throats between pores,enhancing fluid mobility.Elevated EPC suggests more interconnected pore throat spaces,facilitating fluid movement.A higher D_(2)implies a more intricate effective pore structure,increasing the surface area of the rough pores and thereby impeding fluid mobility.Ultimately,this study developed a conceptual model that illustrates fluid distribution patterns across different reservoirs in the Lucaogou Formation,incorporating sedimentary contexts.This model also serves as a theoretical framework for assessing fluid mobility and devising engineering strategies for hydrocarbon exploitation in mixed fine-grained sedimentary rocks. 展开更多
关键词 Multi-source mixed sedimentation Movable fluid Permian lucaogou formation Nuclear magnetic resonance Grey correlation analysis
下载PDF
A Study on Outlier Detection and Feature Engineering Strategies in Machine Learning for Heart Disease Prediction
16
作者 Varada Rajkumar Kukkala Surapaneni Phani Praveen +1 位作者 Naga Satya Koti Mani Kumar Tirumanadham Parvathaneni Naga Srinivasu 《Computer Systems Science & Engineering》 2024年第5期1085-1112,共28页
This paper investigates the application ofmachine learning to develop a response model to cardiovascular problems and the use of AdaBoost which incorporates an application of Outlier Detection methodologies namely;Z-S... This paper investigates the application ofmachine learning to develop a response model to cardiovascular problems and the use of AdaBoost which incorporates an application of Outlier Detection methodologies namely;Z-Score incorporated with GreyWolf Optimization(GWO)as well as Interquartile Range(IQR)coupled with Ant Colony Optimization(ACO).Using a performance index,it is shown that when compared with the Z-Score and GWO with AdaBoost,the IQR and ACO,with AdaBoost are not very accurate(89.0%vs.86.0%)and less discriminative(Area Under the Curve(AUC)score of 93.0%vs.91.0%).The Z-Score and GWO methods also outperformed the others in terms of precision,scoring 89.0%;and the recall was also found to be satisfactory,scoring 90.0%.Thus,the paper helps to reveal various specific benefits and drawbacks associated with different outlier detection and feature selection techniques,which can be important to consider in further improving various aspects of diagnostics in cardiovascular health.Collectively,these findings can enhance the knowledge of heart disease prediction and patient treatment using enhanced and innovativemachine learning(ML)techniques.These findings when combined improve patient therapy knowledge and cardiac disease prediction through the use of cutting-edge and improved machine learning approaches.This work lays the groundwork for more precise diagnosis models by highlighting the benefits of combining multiple optimization methodologies.Future studies should focus on maximizing patient outcomes and model efficacy through research on these combinations. 展开更多
关键词 Grey wolf optimization ant colony optimization Z-SCORE interquartile range(IQR) ADABOOST OUTLIER
下载PDF
Management of Strawberry Grey Mold Disease Using Biocontrol Agents and Plant Extracts
17
作者 P. Sakthi Priya Srushtideep Angidi +2 位作者 Uday Kumar Thera S. V. Nandeesha Thangaswamy Rajesh 《American Journal of Plant Sciences》 CAS 2024年第7期538-551,共14页
Strawberry (Fragaria × ananassa Duch.) is a significant global soft fruit crop, prized for its nutrient content and pleasant flavor. However, diseases, particularly grey mold caused by Botrytis cinerea Pers. Fr. ... Strawberry (Fragaria × ananassa Duch.) is a significant global soft fruit crop, prized for its nutrient content and pleasant flavor. However, diseases, particularly grey mold caused by Botrytis cinerea Pers. Fr. poses major constraints to strawberry production and productivity. Grey mold severely impacts fruit quality and quantity, diminishing market value. This study evaluated five B. cinerea isolates from various locations in the Ri-Bhoi district of Meghalaya. All isolates were pathogenic, with isolate SGM 2 identified as highly virulent. Host range studies showed the pathogen-producing symptoms in the fava bean pods, marigold, gerbera, and chrysanthemum flowers and in the fava bean, gerbera, and lettuce leaves. In vitro tests revealed that neem extract (15% w/v) achieved the highest mycelial growth inhibition at 76.66%, while black turmeric extract (5% w/v) had the lowest inhibition at 9.62%. Dual culture methods with bio-control agents indicated that Bacillus subtilis recorded the highest mean inhibition at 77.03%, while Pseudomonas fluorescens had the lowest at 20.36% against the two virulent isolates. Pot evaluations demonstrated that B. subtilis resulted in the lowest percent disease index at 20.59%, followed by neem extract at 23.31%, with the highest disease index in the control group at 42.51%. Additionally, B. subtilis significantly improved plant growth, yielding an average of 0.32 kg compared to 0.14 kg in the control. The promising results of B. subtilis and neem leaf extract from this study suggest their potential for eco-friendly managing grey mold in strawberries under field conditions. 展开更多
关键词 Strawberry Grey Mold BCA Plant Extracts Botrytis cinerea
下载PDF
Optimization of Agricultural Industrial Structure in Changping District of Beijing Based on Grey Relational Analysis
18
作者 Haosong LI Rao CHEN 《Asian Agricultural Research》 2024年第4期3-7,共5页
In the economic development of Beijing,although the share of the total amount of agricultural industry in the overall economy is relatively low,it has an important impact on the daily life of residents,social stabilit... In the economic development of Beijing,although the share of the total amount of agricultural industry in the overall economy is relatively low,it has an important impact on the daily life of residents,social stability and the development of other industries.Changping District,as an important agricultural production base of Beijing,its agricultural development has an indispensable strategic significance for the stability and growth of the entire regional economy.Therefore,it is very important to study the structure of agricultural industry in Changping District.Based on the detailed analysis of the agricultural industrial structure of Changping District,this paper uses the grey relation theory to analyze the different industries in the agricultural industrial structure of Changping District,including planting,forestry,animal husbandry,fishery and agricultural,forestry,service industries,in order to reveal the impact of these industries on the agricultural industrial structure of Changping District.Through this study,it comes up with specific and feasible suggestions for the optimization of agricultural industrial structure in Changping District,and provides valuable reference for the agricultural development of other areas in Beijing. 展开更多
关键词 GREY RELATION theory Changping DISTRICT AGRICULTURAL INDUSTRIAL structure
下载PDF
Spatiotemporal evolution and influencing factors of urban resilience in the Yellow River Basin,China
19
作者 JI Xiaomei NIE Zhilei +2 位作者 WANG Kaiyong XU Mingxian FANG Yuhao 《Regional Sustainability》 2024年第3期54-68,共15页
The Yellow River Basin of China is a key region that contains myriad interactions between human activities and natural environment.Industrialization and urbanization promote social-economic development,but they also h... The Yellow River Basin of China is a key region that contains myriad interactions between human activities and natural environment.Industrialization and urbanization promote social-economic development,but they also have generated a series of environmental and ecological issues in this basin.Previous researches have evaluated urban resilience at the national,regional,urban agglomeration,city,and prefecture levels,but not at the watershed level.To address this research gap and elevate the Yellow River Basin’s urban resilience level,we constructed an urban resilience evaluation index system from five dimensions:industrial resilience,social resilience,environmental resilience,technological resilience,and organizational resilience.The entropy weight method was used to comprehensively evaluate urban resilience in the Yellow River Basin.The exploratory spatial data analysis method was employed to study the spatiotemporal differences in urban resilience in the Yellow River Basin in 2010,2015,and 2020.Furthermore,the grey correlation analysis method was utilized to explore the influencing factors of these differences.The results of this study are as follows:(1)the overall level of urban resilience in the Yellow River Basin was relatively low but showed an increasing trend during 2010–2015,and significant spatial distribution differences were observed,with a higher resilience level in the eastern region and a low-medium resilience level in the western region;(2)the differences in urban resilience were noticeable,with industrial resilience and social resilience being relatively highly developed,whereas organizational resilience and environmental resilience were relatively weak;and(3)the correlation ranking of resilience influencing factors was as follows:science and technology level>administrative power>openness>market forces.This research can provide a basis for improving the resilience level of cities in the Yellow River Basin and contribute to the high-quality development of the region. 展开更多
关键词 Urban resilience Spatiotemporal evolution Entropy weight method Exploratory spatial data analysis method Grey correlation analysis method Yellow River Basin
下载PDF
Screening of Anti-inflammatory Active Ingredients from Gancao Qinlian Extract and Study of Its Efficacy
20
作者 Maixun ZHU Yang ZHANG +3 位作者 Yue XU Hongmei TANG Tao WU Yanda ZHANG 《Medicinal Plant》 2024年第4期4-10,共7页
[Objectives]To establish the chromatographic fingerprint of Gancao Qinlian Extracts(GQE)and reveal the possible material basis of the anti-inflammatory effect of GQE by the correlation analysis between the fingerprint... [Objectives]To establish the chromatographic fingerprint of Gancao Qinlian Extracts(GQE)and reveal the possible material basis of the anti-inflammatory effect of GQE by the correlation analysis between the fingerprint chromatographic peaks of different components of GQE and its anti-inflammatory activity.[Methods]Ultra-performance liquid chromatography(UPLC)was used to detect the different ingredients of GQE to establish its chromatographic fingerprint and analyze the differences among the three medicine components;LPS stimulated RAW264.7 cells to construct an inflammatory cell model.The NO secretion of cells was detected by the Griess method.ELISA was used to detect the changes in TNF-αand IL-10 contents.RT-qPCR tested the mRNA expression levels of TNF-αand IL-10.Grey relational analysis was carried out by combining fingerprint chromatographic peak data and anti-inflammatory activity data.[Results]The GQE fingerprint was established,34 fingerprint characteristic peaks were calibrated,and 33 related chromatographic peaks were screened out.The corresponding chromatographic peaks in the three components were obtained,and the content of the components was calculated;the anti-inflammatory results showed that the content of NO,TNF-α,and the expression of TNF-αmRNA in the high and medium-dose groups of GQE were significantly lower than those in the blank group(P<0.01).The NO content and TNF-αmRNA expression in the high-dose group of GQE I was considerably lower than those in the blank group(P<0.01).The secretion of NO,TNF-α,and the expression of TNF-αmRNA in the high,medium,and low dose groups of GQE II were significantly lower than those in the blank group(P<0.01);the results of grey relational analysis showed that the correlation degree of the three components was GQE II>GQE>GQE I,and the characteristic fingerprint peaks 12,15,22,23,28,31,33 may be closely related to the anti-inflammatory effect.[Conclusions]The best component of the anti-inflammatory effect in GQE is water-soluble component,and its main components are flavonoids and alkaloids.These components can alleviate cellular inflammatory damage by inhibiting the excessive secretion of NO and reducing the expression of TNF-αmRNA. 展开更多
关键词 Gancao Qinlian Extracts Anti-inflammatory activity FINGERPRINT Grey relational analysis
下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部