Distributed photovoltaic power (PV) is the main development model of distributed generation. It is necessary to research on dispatching and operation management with large-scale distributed PV connected. This paper an...Distributed photovoltaic power (PV) is the main development model of distributed generation. It is necessary to research on dispatching and operation management with large-scale distributed PV connected. This paper analyzes development status, technical requirement and dispatching and operation management situation of distributed PV in Germany and China. Then introduce the preparation of distributed PV dispatching and operation management criterion. Through summarizing the experiences and lessons of large-scale distributed PV development in Germany, it gives advice to the development of distributed PV dispatching and operation management in China.展开更多
针对MMC(modular multilevel converter)型VSC-HVDC(voltage source converter-high voltage direct current)在并网运行模式与孤岛运行模式相互切换过程中易于发生切换失败、冲击电流大的难题,将虚拟同步控制运用到MMC的运行模式切换...针对MMC(modular multilevel converter)型VSC-HVDC(voltage source converter-high voltage direct current)在并网运行模式与孤岛运行模式相互切换过程中易于发生切换失败、冲击电流大的难题,将虚拟同步控制运用到MMC的运行模式切换中。在虚拟同步控制和MMC基本原理的基础上,提出基于虚拟同步控制的MMC-HVDC(modular multilevel converter-high voltage direct current)无缝切换控制方法。引入的虚拟同步控制无需采用专门的同步控制电路,并网前可自动与电网同步;并网后能准确跟随电网频率,实现友好并网。当电网出现故障或需要检修时,MMC仍可孤岛运行,从而实现了运行模式的无缝切换。PSCAD/EMTDC平台下的仿真结果验证了所述控制策略的可行性和有效性。展开更多
文摘Distributed photovoltaic power (PV) is the main development model of distributed generation. It is necessary to research on dispatching and operation management with large-scale distributed PV connected. This paper analyzes development status, technical requirement and dispatching and operation management situation of distributed PV in Germany and China. Then introduce the preparation of distributed PV dispatching and operation management criterion. Through summarizing the experiences and lessons of large-scale distributed PV development in Germany, it gives advice to the development of distributed PV dispatching and operation management in China.
文摘针对MMC(modular multilevel converter)型VSC-HVDC(voltage source converter-high voltage direct current)在并网运行模式与孤岛运行模式相互切换过程中易于发生切换失败、冲击电流大的难题,将虚拟同步控制运用到MMC的运行模式切换中。在虚拟同步控制和MMC基本原理的基础上,提出基于虚拟同步控制的MMC-HVDC(modular multilevel converter-high voltage direct current)无缝切换控制方法。引入的虚拟同步控制无需采用专门的同步控制电路,并网前可自动与电网同步;并网后能准确跟随电网频率,实现友好并网。当电网出现故障或需要检修时,MMC仍可孤岛运行,从而实现了运行模式的无缝切换。PSCAD/EMTDC平台下的仿真结果验证了所述控制策略的可行性和有效性。
文摘现有工程运行数据显示,并网变流器(grid-connected converter,GCC)的动态特性与工作点密切相关。受新能源出力波动、负载投切等外部因素的影响,变流器工作点呈现随机时变特性。因此,分析整个工作区间中所有工作点的系统稳定性具有重要意义。传统阻抗/导纳分析方法可以有效分析GCC运行于特定工作点时的稳定性,但考虑系统所有可能工作点时则需重复分析,工作量大且难度较高。为解决这一难题,提出一种考虑工作点变量的多元建模方法。将工作点变量引入导纳模型,通过控制环路重构,建立GCC的多变量单输入单输出(single input single output,SISO)模型。所提模型直接包含工作点变量,因此可以有效分析变流器全工作区间动态特性。此外,综合考虑变流器最大传输限制和动态特性,提出一种基于安全运行域的稳定性分析方法,以实现多维工作区间中系统稳定性的直观表征。仿真和实验验证了所提多变量SISO模型和基于安全运行域的分析方法的正确性。所提模型和方法在分析电力电子装置运行极限、指导变流器设计和辅助功率器件发挥极限性能等工程场景中具有广泛应用潜力。