In this paper, we firstly derive the stability conditions of high-order staggered-grid schemes for the three-dimensional (3D) elastic wave equation in heterogeneous media based on the energy method. Moreover, the plan...In this paper, we firstly derive the stability conditions of high-order staggered-grid schemes for the three-dimensional (3D) elastic wave equation in heterogeneous media based on the energy method. Moreover, the plane wave analysis yields a sufficient and necessary stability condition by the von Neumann criterion in homogeneous case. Numerical computations for 3D wave simulation with point source excitation are given.展开更多
The semi-Lagrangian advection scheme is implemented on a new quasi-uniform overset (Yin-Yang) grid on the sphere. The Yin-Yang grid is a newly developed grid system in spherical geometry with two perpendicularly-ori...The semi-Lagrangian advection scheme is implemented on a new quasi-uniform overset (Yin-Yang) grid on the sphere. The Yin-Yang grid is a newly developed grid system in spherical geometry with two perpendicularly-oriented latitude-longitude grid components (called Yin and Yang respectively) that overlapp each other, and this effectively avoids the coordinate singularity and the grid convergence near the poles. In this overset grid, the way of transferring data between the Yin and Yang components is the key to maintaining the accuracy and robustness in numerical solutions. A numerical interpolation for boundary data exchange, which maintains the accuracy of the original advection scheme and is computationally efficient, is given in this paper. A standard test of the solid-body advection proposed by Williamson is carried out on the Yin-Yang grid. Numerical results show that the quasi-uniform Yin-Yang grid can get around the problems near the poles, and the numerical accuracy in the original semi-Lagrangian scheme is effectively maintained in the Yin-Yang grid.展开更多
This paper presents a methodology which is very useful to design shape-preserving advection finite difference scheme on general E-grid horizontal arrangement of variables through introducing a two-step shape-preservin...This paper presents a methodology which is very useful to design shape-preserving advection finite difference scheme on general E-grid horizontal arrangement of variables through introducing a two-step shape-preserving positive definite advection scheme in the moisture equation of the LASG-REM (LASG regional E-grid eta-coordinate forecast model). By trial-forecasting six local heavy raincases, the efficiency of the shape-preserving advection scheme in practical application has been examined. The LASG-REM with the shape-preserving advection scheme has a good forecasting ability for local precipitation.展开更多
This paper presents a simple approach for improving the performance of the weighted essentially nonoscillatory(WENO) finite volume scheme on non-uniform grids. This technique relies on the reformulation of the fifthor...This paper presents a simple approach for improving the performance of the weighted essentially nonoscillatory(WENO) finite volume scheme on non-uniform grids. This technique relies on the reformulation of the fifthorder WENO-JS(WENO scheme presented by Jiang and Shu in J. Comput. Phys. 126:202–228, 1995) scheme designed on uniform grids in terms of one cell-averaged value and its left and/or right interfacial values of the dependent variable.The effect of grid non-uniformity is taken into consideration by a proper interpolation of the interfacial values. On nonuniform grids, the proposed scheme is much more accurate than the original WENO-JS scheme, which was designed for uniform grids. When the grid is uniform, the resulting scheme reduces to the original WENO-JS scheme. In the meantime,the proposed scheme is computationally much more efficient than the fifth-order WENO scheme designed specifically for the non-uniform grids. A number of numerical test cases are simulated to verify the performance of the present scheme.展开更多
In most TVD schemes, the r-factors were proposed according to the cell-centered(CC) finite volume method(FVM) framework for the numerical approximation to the convective term. However, it is questionable whether t...In most TVD schemes, the r-factors were proposed according to the cell-centered(CC) finite volume method(FVM) framework for the numerical approximation to the convective term. However, it is questionable whether those r-factors would be appropriate and effective for the vertex-centered(VC) FVM. In the paper, we collected five kinds of r-factor formulae and found out that only three of those, respectively by Bruner(1996), Darwish and Moukalled(2003) and Cassuli and Zanolli(2005) can be formally extended to a context of the VC FVM. Numerical tests indicate that the TVD schemes and r-factors, after being extended and introduced to a context of the VC FVM, maintained their similar characteristics as in a context of the CC FVM. However, when the gradient-based r-factors and the SUPERBEE scheme were applied simultaneously, non-physical oscillations near the sharp step would appear. In the transient case, the oscillations were weaker in a context of the VC FVM than those in a context of the CC FVM, while the effect was reversed in the steady case. To eliminate disadvantages in the gradient-based r-factor formula, a new modification method by limiting values on the virtual node, namely Фu in the paper, was validated by the tests to effectively dissipate spurious oscillations.展开更多
An Eulerian flux-form advection scheme, called the Two-step Shape-Preserving Advection Scheme (TSPAS), was generalized and implemented on a spherical icosahedral hexagonal grid (also referred to as a geodesic grid...An Eulerian flux-form advection scheme, called the Two-step Shape-Preserving Advection Scheme (TSPAS), was generalized and implemented on a spherical icosahedral hexagonal grid (also referred to as a geodesic grid) to solve the transport equation. The C grid discretization was used for the spatial discretization. To implement TSPAS on an unstructured grid, the original finite-difference scheme was further generalized. The two-step integration utilizes a combination of two separate schemes (a low-order monotone scheme and a high-order scheme that typically cannot ensure monotonicity) to calculate the fluxes at the cell walls (one scheme corresponds to one cell wall). The choice between these two schemes for each edge depends on a pre-updated scalar value using slightly increased fluxes. After the determination of an appropriate scheme, the final integration at a target cell is achieved by summing the fluxes that are computed by the different schemes. The conservative and shape-preserving properties of the generalized scheme are demonstrated. Numerical experiments are conducted at several horizontal resolutions. TSPAS is compared with the Flux Corrected Transport (FCT) approach to demonstrate the differences between the two methods, and several transport tests are performed to examine the accuracy, efficiency and robustness of the two schemes.展开更多
A high-order upwind scheme has been developed to capture the vortex wake of a helicopter rotor in the hover based on chimera grids. In this paper, an improved fifth-order weighted essentially non-oscillatory (WENO) ...A high-order upwind scheme has been developed to capture the vortex wake of a helicopter rotor in the hover based on chimera grids. In this paper, an improved fifth-order weighted essentially non-oscillatory (WENO) scheme is adopted to interpolate the higher-order left and right states across a cell interface with the Roe Riemann solver updating inviscid flux, and is compared with the monotone upwind scheme for scalar conservation laws (MUSCL). For profitably capturing the wake and enforcing the period boundary condition, the computation regions of flows are discretized by using the struc- tured chimera grids composed of a fine rotor grid and a cylindrical background grid. In the background grid, the mesh cells located in the wake regions are refined after the so- lution reaches the approximate convergence. Considering the interpolation characteristic of the WENO scheme, three layers of the hole boundary and the interpolation boundary are searched. The performance of the schemes is investigated in a transonic flow and a subsonic flow around the hovering rotor. The results reveal that the present approach has great capabilities in capturing the vortex wake with high resolution, and the WENO scheme has much lower numerical dissipation in comparison with the MUSCL scheme.展开更多
In China, regions with abundant wind energy resources are generally located at the end of power grids. The power grid architecture in these regions is typically not sufficiently strong, and the energy structure is rel...In China, regions with abundant wind energy resources are generally located at the end of power grids. The power grid architecture in these regions is typically not sufficiently strong, and the energy structure is relatively simple. Thus, connecting large-capacity wind power units complicates the peak load regulation and stable operation of the power grids in these regions. Most wind turbines use power electronic converter technology, which affects the safety and stability of the power grid differently compared with conventional synchronous generators. Furthermore, fluctuations in wind power cause fluctuations in the output of wind farms, making it difficult to create and implement suitable power generation plans for wind farms. The generation technology and grid connection scheme for wind power and conventional thermal power generation differ considerably. Moreover, the active and reactive power control abilities of wind turbines are weaker than those of thermal power units, necessitating additional equipment to control wind turbines. Hence, to address the aforementioned issues with large-scale wind power generation, this study analyzes the differences between the grid connection and collection strategies for wind power bases and thermal power plants. Based on this analysis, the differences in the power control modes of wind power and thermal power are further investigated. Finally, the stability of different control modes is analyzed through simulation. The findings can be beneficial for the planning and development of large-scale wind power generation farms.展开更多
A depth-averaged 2-D numerical model for unsteady tidal flow in estuaries is established by use of the finite volume WENO scheme which maintains both uniform high order accuracy and an essentially non-oscillatory shoc...A depth-averaged 2-D numerical model for unsteady tidal flow in estuaries is established by use of the finite volume WENO scheme which maintains both uniform high order accuracy and an essentially non-oscillatory shock transition on unstructured triangular grid. The third order TVD Range-Kutta method is used for time discretization. The model has been firstly tested against four cases: 1) tidal forcing, 2) seiche oscillation, 3) wind setup in a closed bay, and 4) onedimensional dam-break water flow. The results obtained in the present study compare well with those obtained from the corresponding analytic solutions idealized for the above four cases. The model is then applied to the simulation of tidal circulation in the Yangpu Bay, and detailed model calibration and verification have been conducted with measured tidal current in the spring tide, middle tide, and neap tide. The overall performance of the model is in qualitative agreement with the data observed in 2005, and it can be used to calculate the flow in estuaries and coastal waters.展开更多
A global transport model is proposed in which a multimoment constrained finite volume (MCV) scheme is applied to a Yin-Yang overset grid. The MCV scheme defines 16 degrees of freedom (DOFs) within each element to ...A global transport model is proposed in which a multimoment constrained finite volume (MCV) scheme is applied to a Yin-Yang overset grid. The MCV scheme defines 16 degrees of freedom (DOFs) within each element to build a 2D cubic reconstruction polynomial. The time evolution equations for DOFs are derived from constraint conditions on moments of line-integrated averages (LIA), point values (PV), and values of first-order derivatives (DV). The Yin-Yang grid eliminates polar singularities and results in a quasi-uniform mesh. A limiting projection is designed to remove nonphysical oscillations around discontinuities. Our model was tested against widely used benchmarks; the competitive results reveal that the model is accurate and promising for developing general circulation models.展开更多
Forward modeling of elastic wave propagation in porous media has great importance for understanding and interpreting the influences of rock properties on characteristics of seismic wavefield. However,the finite-differ...Forward modeling of elastic wave propagation in porous media has great importance for understanding and interpreting the influences of rock properties on characteristics of seismic wavefield. However,the finite-difference forward-modeling method is usually implemented with global spatial grid-size and time-step; it consumes large amounts of computational cost when small-scaled oil/gas-bearing structures or large velocity-contrast exist underground. To overcome this handicap,combined with variable grid-size and time-step,this paper developed a staggered-grid finite-difference scheme for elastic wave modeling in porous media. Variable finite-difference coefficients and wavefield interpolation were used to realize the transition of wave propagation between regions of different grid-size. The accuracy and efficiency of the algorithm were shown by numerical examples. The proposed method is advanced with low computational cost in elastic wave simulation for heterogeneous oil/gas reservoirs.展开更多
A new numerical method named as basic function method is proposed. It can directly discretize differential operators on unstructured grids. By expanding the basic function to approach the exact function, the central a...A new numerical method named as basic function method is proposed. It can directly discretize differential operators on unstructured grids. By expanding the basic function to approach the exact function, the central and upwind schemes of derivative are constructed. By using the second-order polynomial as a basic function and applying the flux splitting method and the combination of central and upwind schemes to suppress non-physical fluctuation near shock waves, a second-order basic function scheme of polynomial type is proposed to solve inviscid compressible flows numerically. Numerical results of typical examples for two-dimensional inviscid compressible transonic and supersonic steady flows indicate that the new scheme has high accuracy and high resolution for shock waves. Combined with the adaptive remeshing technique, satisfactory results can be obtained.展开更多
Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical(H-M) interaction of fluid flow and deformation induced by structures built above and under sat...Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical(H-M) interaction of fluid flow and deformation induced by structures built above and under saturated ground, i.e. circular footing and deep tunnel. However, the technique is only conditionally stable and requires small time steps, portending its inefficiency for simulating large-scale H-M problems. To improve its efficiency, the unconditionally stable alternating direction explicit(ADE)scheme could be used to solve the flow problem. The standard ADE scheme, however, is only moderately accurate and is restricted to uniform grids and plane strain flow conditions. This paper aims to remove these drawbacks by developing a novel high-order ADE scheme capable of solving flow problems in nonuniform grids and under axisymmetric conditions. The new scheme is derived by performing a fourthorder finite difference(FD) approximation to the spatial derivatives of the axisymmetric fluid-diffusion equation in a non-uniform grid configuration. The implicit Crank-Nicolson technique is then applied to the resulting approximation, and the subsequent equation is split into two alternating direction sweeps,giving rise to a new axisymmetric ADE scheme. The pore pressure solutions from the new scheme are then sequentially coupled with an existing geomechanical simulator in the computer code fast Lagrangian analysis of continua(FLAC). This coupling procedure is called the sequentially-explicit coupling technique based on the fourth-order axisymmetric ADE scheme or SEA-4-AXI. Application of SEA-4-AXI for solving axisymmetric consolidation of a circular footing and of advancing tunnel in deep saturated ground shows that SEA-4-AXI reduces computer runtime up to 42%-50% that of FLAC’s basic scheme without numerical instability. In addition, it produces high numerical accuracy of the H-M solutions with average percentage difference of only 0.5%-1.8%.展开更多
文摘In this paper, we firstly derive the stability conditions of high-order staggered-grid schemes for the three-dimensional (3D) elastic wave equation in heterogeneous media based on the energy method. Moreover, the plane wave analysis yields a sufficient and necessary stability condition by the von Neumann criterion in homogeneous case. Numerical computations for 3D wave simulation with point source excitation are given.
基金This paper is sponsored by the National Natural Science Foundation of China (No. 40575050) the National Key Program for Developing Basic Reseach ("973") (No. 2004CB418306).
文摘The semi-Lagrangian advection scheme is implemented on a new quasi-uniform overset (Yin-Yang) grid on the sphere. The Yin-Yang grid is a newly developed grid system in spherical geometry with two perpendicularly-oriented latitude-longitude grid components (called Yin and Yang respectively) that overlapp each other, and this effectively avoids the coordinate singularity and the grid convergence near the poles. In this overset grid, the way of transferring data between the Yin and Yang components is the key to maintaining the accuracy and robustness in numerical solutions. A numerical interpolation for boundary data exchange, which maintains the accuracy of the original advection scheme and is computationally efficient, is given in this paper. A standard test of the solid-body advection proposed by Williamson is carried out on the Yin-Yang grid. Numerical results show that the quasi-uniform Yin-Yang grid can get around the problems near the poles, and the numerical accuracy in the original semi-Lagrangian scheme is effectively maintained in the Yin-Yang grid.
文摘This paper presents a methodology which is very useful to design shape-preserving advection finite difference scheme on general E-grid horizontal arrangement of variables through introducing a two-step shape-preserving positive definite advection scheme in the moisture equation of the LASG-REM (LASG regional E-grid eta-coordinate forecast model). By trial-forecasting six local heavy raincases, the efficiency of the shape-preserving advection scheme in practical application has been examined. The LASG-REM with the shape-preserving advection scheme has a good forecasting ability for local precipitation.
基金supported by the National Natural Science Foundation of China (Grant 11672160)the National Key Research and Development Program of China (Grant 2016YF A0401200)
文摘This paper presents a simple approach for improving the performance of the weighted essentially nonoscillatory(WENO) finite volume scheme on non-uniform grids. This technique relies on the reformulation of the fifthorder WENO-JS(WENO scheme presented by Jiang and Shu in J. Comput. Phys. 126:202–228, 1995) scheme designed on uniform grids in terms of one cell-averaged value and its left and/or right interfacial values of the dependent variable.The effect of grid non-uniformity is taken into consideration by a proper interpolation of the interfacial values. On nonuniform grids, the proposed scheme is much more accurate than the original WENO-JS scheme, which was designed for uniform grids. When the grid is uniform, the resulting scheme reduces to the original WENO-JS scheme. In the meantime,the proposed scheme is computationally much more efficient than the fifth-order WENO scheme designed specifically for the non-uniform grids. A number of numerical test cases are simulated to verify the performance of the present scheme.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41306078 and 41301414)the National Engineering Research Center for Inland Waterway Regulation and Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education Program(Grant No.SLK2016B03)the Key Laboratory of the Inland Waterway Regulation of the Ministry of Transportation Program(Grant No.NHHD-201514)
文摘In most TVD schemes, the r-factors were proposed according to the cell-centered(CC) finite volume method(FVM) framework for the numerical approximation to the convective term. However, it is questionable whether those r-factors would be appropriate and effective for the vertex-centered(VC) FVM. In the paper, we collected five kinds of r-factor formulae and found out that only three of those, respectively by Bruner(1996), Darwish and Moukalled(2003) and Cassuli and Zanolli(2005) can be formally extended to a context of the VC FVM. Numerical tests indicate that the TVD schemes and r-factors, after being extended and introduced to a context of the VC FVM, maintained their similar characteristics as in a context of the CC FVM. However, when the gradient-based r-factors and the SUPERBEE scheme were applied simultaneously, non-physical oscillations near the sharp step would appear. In the transient case, the oscillations were weaker in a context of the VC FVM than those in a context of the CC FVM, while the effect was reversed in the steady case. To eliminate disadvantages in the gradient-based r-factor formula, a new modification method by limiting values on the virtual node, namely Фu in the paper, was validated by the tests to effectively dissipate spurious oscillations.
基金supported by the National Natural Science Foundation of China(Grant No.41505066)the Basic Scientific Research and Operation Foundation of Chinese Academy Meteorological Sciences(Grant Nos.2015Z002,2015Y005)the National Research and Development Key Program:Global Change and Mitigation Strategies(No.2016YFA0602101)
文摘An Eulerian flux-form advection scheme, called the Two-step Shape-Preserving Advection Scheme (TSPAS), was generalized and implemented on a spherical icosahedral hexagonal grid (also referred to as a geodesic grid) to solve the transport equation. The C grid discretization was used for the spatial discretization. To implement TSPAS on an unstructured grid, the original finite-difference scheme was further generalized. The two-step integration utilizes a combination of two separate schemes (a low-order monotone scheme and a high-order scheme that typically cannot ensure monotonicity) to calculate the fluxes at the cell walls (one scheme corresponds to one cell wall). The choice between these two schemes for each edge depends on a pre-updated scalar value using slightly increased fluxes. After the determination of an appropriate scheme, the final integration at a target cell is achieved by summing the fluxes that are computed by the different schemes. The conservative and shape-preserving properties of the generalized scheme are demonstrated. Numerical experiments are conducted at several horizontal resolutions. TSPAS is compared with the Flux Corrected Transport (FCT) approach to demonstrate the differences between the two methods, and several transport tests are performed to examine the accuracy, efficiency and robustness of the two schemes.
基金supported by the National Natural Science Foundation of China(No.10802046)
文摘A high-order upwind scheme has been developed to capture the vortex wake of a helicopter rotor in the hover based on chimera grids. In this paper, an improved fifth-order weighted essentially non-oscillatory (WENO) scheme is adopted to interpolate the higher-order left and right states across a cell interface with the Roe Riemann solver updating inviscid flux, and is compared with the monotone upwind scheme for scalar conservation laws (MUSCL). For profitably capturing the wake and enforcing the period boundary condition, the computation regions of flows are discretized by using the struc- tured chimera grids composed of a fine rotor grid and a cylindrical background grid. In the background grid, the mesh cells located in the wake regions are refined after the so- lution reaches the approximate convergence. Considering the interpolation characteristic of the WENO scheme, three layers of the hole boundary and the interpolation boundary are searched. The performance of the schemes is investigated in a transonic flow and a subsonic flow around the hovering rotor. The results reveal that the present approach has great capabilities in capturing the vortex wake with high resolution, and the WENO scheme has much lower numerical dissipation in comparison with the MUSCL scheme.
基金This work was supported by National Key Research and Development Program of China(2018YFB0904000).
文摘In China, regions with abundant wind energy resources are generally located at the end of power grids. The power grid architecture in these regions is typically not sufficiently strong, and the energy structure is relatively simple. Thus, connecting large-capacity wind power units complicates the peak load regulation and stable operation of the power grids in these regions. Most wind turbines use power electronic converter technology, which affects the safety and stability of the power grid differently compared with conventional synchronous generators. Furthermore, fluctuations in wind power cause fluctuations in the output of wind farms, making it difficult to create and implement suitable power generation plans for wind farms. The generation technology and grid connection scheme for wind power and conventional thermal power generation differ considerably. Moreover, the active and reactive power control abilities of wind turbines are weaker than those of thermal power units, necessitating additional equipment to control wind turbines. Hence, to address the aforementioned issues with large-scale wind power generation, this study analyzes the differences between the grid connection and collection strategies for wind power bases and thermal power plants. Based on this analysis, the differences in the power control modes of wind power and thermal power are further investigated. Finally, the stability of different control modes is analyzed through simulation. The findings can be beneficial for the planning and development of large-scale wind power generation farms.
基金This work was supported by Open Research Fund Programof State Key Laboratory of Water Resources and Hydropow-er Engineering Science ( Grant No. 2005C011)National Natural Science Foundation of China ( Grant No.50479038)
文摘A depth-averaged 2-D numerical model for unsteady tidal flow in estuaries is established by use of the finite volume WENO scheme which maintains both uniform high order accuracy and an essentially non-oscillatory shock transition on unstructured triangular grid. The third order TVD Range-Kutta method is used for time discretization. The model has been firstly tested against four cases: 1) tidal forcing, 2) seiche oscillation, 3) wind setup in a closed bay, and 4) onedimensional dam-break water flow. The results obtained in the present study compare well with those obtained from the corresponding analytic solutions idealized for the above four cases. The model is then applied to the simulation of tidal circulation in the Yangpu Bay, and detailed model calibration and verification have been conducted with measured tidal current in the spring tide, middle tide, and neap tide. The overall performance of the model is in qualitative agreement with the data observed in 2005, and it can be used to calculate the flow in estuaries and coastal waters.
基金supported by National Key Technology R&D Program of China (Grant No. 2012BAC22B01)Natural Science Foundation of China (Grant Nos. 10902116, 40805045, and 41175095)Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science (Grant No. 24560187)
文摘A global transport model is proposed in which a multimoment constrained finite volume (MCV) scheme is applied to a Yin-Yang overset grid. The MCV scheme defines 16 degrees of freedom (DOFs) within each element to build a 2D cubic reconstruction polynomial. The time evolution equations for DOFs are derived from constraint conditions on moments of line-integrated averages (LIA), point values (PV), and values of first-order derivatives (DV). The Yin-Yang grid eliminates polar singularities and results in a quasi-uniform mesh. A limiting projection is designed to remove nonphysical oscillations around discontinuities. Our model was tested against widely used benchmarks; the competitive results reveal that the model is accurate and promising for developing general circulation models.
基金supported by the National Basic Research Program of China (No. 2013CB228604)the National Science and Technology Major Project (No. 2011ZX05030-004-002,2011ZX05019-003)the National Natural Science Foundation (No. 41004050)
文摘Forward modeling of elastic wave propagation in porous media has great importance for understanding and interpreting the influences of rock properties on characteristics of seismic wavefield. However,the finite-difference forward-modeling method is usually implemented with global spatial grid-size and time-step; it consumes large amounts of computational cost when small-scaled oil/gas-bearing structures or large velocity-contrast exist underground. To overcome this handicap,combined with variable grid-size and time-step,this paper developed a staggered-grid finite-difference scheme for elastic wave modeling in porous media. Variable finite-difference coefficients and wavefield interpolation were used to realize the transition of wave propagation between regions of different grid-size. The accuracy and efficiency of the algorithm were shown by numerical examples. The proposed method is advanced with low computational cost in elastic wave simulation for heterogeneous oil/gas reservoirs.
基金supported by the National Natural Science Foundation of China (No. 19889210)
文摘A new numerical method named as basic function method is proposed. It can directly discretize differential operators on unstructured grids. By expanding the basic function to approach the exact function, the central and upwind schemes of derivative are constructed. By using the second-order polynomial as a basic function and applying the flux splitting method and the combination of central and upwind schemes to suppress non-physical fluctuation near shock waves, a second-order basic function scheme of polynomial type is proposed to solve inviscid compressible flows numerically. Numerical results of typical examples for two-dimensional inviscid compressible transonic and supersonic steady flows indicate that the new scheme has high accuracy and high resolution for shock waves. Combined with the adaptive remeshing technique, satisfactory results can be obtained.
基金the support from the University Transportation Center for Underground Transportation Infrastructure at the Colorado School of Mines for partially funding this research under Grant No. 69A3551747118 of the Fixing America's Surface Transportation Act (FAST Act) of U.S. DoT FY2016
文摘Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical(H-M) interaction of fluid flow and deformation induced by structures built above and under saturated ground, i.e. circular footing and deep tunnel. However, the technique is only conditionally stable and requires small time steps, portending its inefficiency for simulating large-scale H-M problems. To improve its efficiency, the unconditionally stable alternating direction explicit(ADE)scheme could be used to solve the flow problem. The standard ADE scheme, however, is only moderately accurate and is restricted to uniform grids and plane strain flow conditions. This paper aims to remove these drawbacks by developing a novel high-order ADE scheme capable of solving flow problems in nonuniform grids and under axisymmetric conditions. The new scheme is derived by performing a fourthorder finite difference(FD) approximation to the spatial derivatives of the axisymmetric fluid-diffusion equation in a non-uniform grid configuration. The implicit Crank-Nicolson technique is then applied to the resulting approximation, and the subsequent equation is split into two alternating direction sweeps,giving rise to a new axisymmetric ADE scheme. The pore pressure solutions from the new scheme are then sequentially coupled with an existing geomechanical simulator in the computer code fast Lagrangian analysis of continua(FLAC). This coupling procedure is called the sequentially-explicit coupling technique based on the fourth-order axisymmetric ADE scheme or SEA-4-AXI. Application of SEA-4-AXI for solving axisymmetric consolidation of a circular footing and of advancing tunnel in deep saturated ground shows that SEA-4-AXI reduces computer runtime up to 42%-50% that of FLAC’s basic scheme without numerical instability. In addition, it produces high numerical accuracy of the H-M solutions with average percentage difference of only 0.5%-1.8%.