Groebner bases is an important concept in polynomial ideals. In this paper the method of Groebner bases is applied to solving spatial Burmester problem for the first time, and the symbolic “triangular” Groebner base...Groebner bases is an important concept in polynomial ideals. In this paper the method of Groebner bases is applied to solving spatial Burmester problem for the first time, and the symbolic “triangular” Groebner bases, i.e. the closed form solution for the problem is obtained. An example of the synthesis of rigid body guidance of a spatial 5 s s mechanism which can realize spatial Burmester points is given to demonstrate the efficiency of the method.展开更多
A new method for the mechanical elementary geometry theorem proving is presented by using Groebner bases of polynomial ideals. It has two main advantages over the approach proposed in literature: (i) It is complete an...A new method for the mechanical elementary geometry theorem proving is presented by using Groebner bases of polynomial ideals. It has two main advantages over the approach proposed in literature: (i) It is complete and not a refutational procedure; (ii) The subcases of the geometry statements which are not generally true can be differentiated clearly.展开更多
A method for determining symbolic and all numerical solutions in design optimization based on monotonicity analysis and solving polynomial systems is presented in this paper. Groebner Bases of the algebraic system equ...A method for determining symbolic and all numerical solutions in design optimization based on monotonicity analysis and solving polynomial systems is presented in this paper. Groebner Bases of the algebraic system equivalent to the subproblem of the design optimization is taken as the symbolic (analytical) expression of the optimum solution for the symbolic optimization, i.e. the problem with symbolic coefficients. A method based on substituting and eliminating for determining Groebner Bases is also proposed, and method for finding all numerical optimum solutions is discussed. Finally an example is given, demonstrating the strategy and efficiency of the method.展开更多
This paper is based on the relations between projection Riccati equations and Weierstrass elliptic equation, combined with the Groebner bases in the symbolic computation.Then the novel method for constructing the Weie...This paper is based on the relations between projection Riccati equations and Weierstrass elliptic equation, combined with the Groebner bases in the symbolic computation.Then the novel method for constructing the Weierstrass elliptic solutions to the nonlinear evolution equations is given by using the above relations.展开更多
文摘Groebner bases is an important concept in polynomial ideals. In this paper the method of Groebner bases is applied to solving spatial Burmester problem for the first time, and the symbolic “triangular” Groebner bases, i.e. the closed form solution for the problem is obtained. An example of the synthesis of rigid body guidance of a spatial 5 s s mechanism which can realize spatial Burmester points is given to demonstrate the efficiency of the method.
文摘A new method for the mechanical elementary geometry theorem proving is presented by using Groebner bases of polynomial ideals. It has two main advantages over the approach proposed in literature: (i) It is complete and not a refutational procedure; (ii) The subcases of the geometry statements which are not generally true can be differentiated clearly.
文摘A method for determining symbolic and all numerical solutions in design optimization based on monotonicity analysis and solving polynomial systems is presented in this paper. Groebner Bases of the algebraic system equivalent to the subproblem of the design optimization is taken as the symbolic (analytical) expression of the optimum solution for the symbolic optimization, i.e. the problem with symbolic coefficients. A method based on substituting and eliminating for determining Groebner Bases is also proposed, and method for finding all numerical optimum solutions is discussed. Finally an example is given, demonstrating the strategy and efficiency of the method.
基金supported by the Open Project of Key Laboratory of Mathematics Mechanization,CAS under Grant No.KLMM0602
文摘This paper is based on the relations between projection Riccati equations and Weierstrass elliptic equation, combined with the Groebner bases in the symbolic computation.Then the novel method for constructing the Weierstrass elliptic solutions to the nonlinear evolution equations is given by using the above relations.