Let R be a ring with an identity element.R∈IBN means that R<sup>m</sup>■R<sup>n</sup> implies m=n,R ∈IBN<sub>1</sub> means that R<sup>m</sup> ■R<sup>n</sup&...Let R be a ring with an identity element.R∈IBN means that R<sup>m</sup>■R<sup>n</sup> implies m=n,R ∈IBN<sub>1</sub> means that R<sup>m</sup> ■R<sup>n</sup>⊕K implies m≥n,and R ∈IBN<sub>2</sub> means that R<sup>m</sup>■R<sup>m</sup>⊕K implies K=0.In this paper we give some characteristic properties of IBN<sub>1</sub> and IBN<sub>2</sub>,with orderings o the Grothendieck groups.In addition,we obtain the following results:(1)If R ∈IBM<sub>1</sub> and all finitely generated projective left R-modules are stably free,then the Grothendieck group K<sub>o</sub>(R)is a totally ordered abelian group.(2)If the pre-ordering of the Grothendieck group K<sub>o</sub>(R)of a ring R is a partial ordering,then R ∈IBM<sub>1</sub> or K<sub>o</sub>(R)=0.展开更多
We introduce the zero-divisor graph for an abelian regular ring and show that if R,S are abelian regular, then (K0(R),[R])≌(K0(S),[S]) if and only if they have isomorphic reduced zero-divisor graphs. It is shown that...We introduce the zero-divisor graph for an abelian regular ring and show that if R,S are abelian regular, then (K0(R),[R])≌(K0(S),[S]) if and only if they have isomorphic reduced zero-divisor graphs. It is shown that the maximal right quotient ring of a potent semiprimitive normal ring is abelian regular, moreover, the zero-divisor graph of such a ring is studied.展开更多
基金Supported by National Nature Science Foundation of China.
文摘Let R be a ring with an identity element.R∈IBN means that R<sup>m</sup>■R<sup>n</sup> implies m=n,R ∈IBN<sub>1</sub> means that R<sup>m</sup> ■R<sup>n</sup>⊕K implies m≥n,and R ∈IBN<sub>2</sub> means that R<sup>m</sup>■R<sup>m</sup>⊕K implies K=0.In this paper we give some characteristic properties of IBN<sub>1</sub> and IBN<sub>2</sub>,with orderings o the Grothendieck groups.In addition,we obtain the following results:(1)If R ∈IBM<sub>1</sub> and all finitely generated projective left R-modules are stably free,then the Grothendieck group K<sub>o</sub>(R)is a totally ordered abelian group.(2)If the pre-ordering of the Grothendieck group K<sub>o</sub>(R)of a ring R is a partial ordering,then R ∈IBM<sub>1</sub> or K<sub>o</sub>(R)=0.
基金Supported by the Projects of National Nature Science Foundation of China:Mathematical Tianyuan Foundation(11126156)the Collaborative Project of Theoretical Physics(11047030)
基金Partially supported by the NSF (10071035) of China.
文摘We introduce the zero-divisor graph for an abelian regular ring and show that if R,S are abelian regular, then (K0(R),[R])≌(K0(S),[S]) if and only if they have isomorphic reduced zero-divisor graphs. It is shown that the maximal right quotient ring of a potent semiprimitive normal ring is abelian regular, moreover, the zero-divisor graph of such a ring is studied.