In the special theory of relativity, massive particles can travel at neither the speed of light c nor faster. Meanwhile, since the photon was quantized, many have thought of it as a point particle. How pointed? The id...In the special theory of relativity, massive particles can travel at neither the speed of light c nor faster. Meanwhile, since the photon was quantized, many have thought of it as a point particle. How pointed? The idea could be a mathematical device or physical simplification. By contrast, the preceding notion of wave-group duality has two velocities: a group velocity vg and a phase velocity vp. In light vp = vg = c;but it follows from special relativity that, in massive particles, vp > c. The phase velocity is the product of the two best measured variables, and so their product constitutes internal motion that travels, verifiably, faster than light. How does vp then appear in Minkowski space? For light, the spatio-temporal Lorentz invariant metric is s2=c2t2−x2−y2−z2, the same in whatever frame it is viewed. The space is divided into 3 parts: firstly a cone, symmetric about the vertical axis ct > 0 that represents the world line of a stationary particle while the conical surface at s = 0 represents the locus for light rays that travel at the speed of light c. Since no real thing travels faster than the speed of light c, the surface is also a horizon for what can be seen by an observer starting from the origin at time t = 0. Secondly, an inverted cone represents, equivalently, time past. Thirdly, outside the cones, inaccessible space. The phase velocity vp, group velocity vg and speed of light are all equal in free space, vp = vg = c, constant. By contrast, for particles, where causality is due to particle interactions having rest mass mo > 0, we have to employ the Klein-Gordon equation with s2=c2t2−x2−y2−z2+mo2c2. Now special relativity requires a complication: vp.vg = c2 where vg c and therefore vp > c. In the volume outside the cones, causality due to light interactions cannot extend beyond the cones. However, since vp > c and even vp >> c when wavelength λ is long, extreme phase velocities are then limited in their causal effects by the particle uncertainty σ, i.e. to vgt ± σ/ω, where ω is the particle angular frequency. This is the first time the phase range has been described for a massive particle.展开更多
In this paper, the superluminal group velocity in a coaxial photonic crystal is studied. The simulation of the effective refraction index in coaxial photonic crystal is performed. The group velocity is calculated base...In this paper, the superluminal group velocity in a coaxial photonic crystal is studied. The simulation of the effective refraction index in coaxial photonic crystal is performed. The group velocity is calculated based on the transmission line equations and compared with experimental results.展开更多
It is still argued whether we measure phase or group velocities using acoustic logging tools. In this paper, three kinds of models are used to investigate this problem by theoretical analyses and numerical simulations...It is still argued whether we measure phase or group velocities using acoustic logging tools. In this paper, three kinds of models are used to investigate this problem by theoretical analyses and numerical simulations. First, we use the plane-wave superposition model containing two plane waves with different velocities and able to change the values of phase velocity and group velocity. The numerical results show that whether phase velocity is higher or lower than group velocity, using the slowness-time coherence (STC) method we can only get phase velocities. Second, according to the results of the dispersion analysis and branch-cut integration, in a rigid boundary borehole model the results of dispersion curves and the waveforms of the first-order mode show that the velocities obtained by the STC method are phase velocities while group velocities obtained by arrival time picking. Finally, dipole logging in a slow formation model is investigated using dispersion analysis and real-axis integration. The results of dispersion curves and full wave trains show similar conclusions as the borehole model with rigid boundary conditions.展开更多
This paper studies dispersion of a G-type earthquake wave under the influence of a suppressed rigid boundary. Inside the Earth, the density and rigidity of the crustal layer and the mantle of the Earth vary exponentia...This paper studies dispersion of a G-type earthquake wave under the influence of a suppressed rigid boundary. Inside the Earth, the density and rigidity of the crustal layer and the mantle of the Earth vary exponentially and periodically along the depth. The displacements of the wave are found in the individual medium followed by a dispersion equation using a suitable analytic approach and a boundary condition. The prominent effect of inhomogeneity contained in the media, the rigid boundary plane, and the initial stress on the phase and group velocities is shown graphically.展开更多
The influence of group velocity dispersion(GVD) on the self-focusing of femtosecond laser pulses is investigated by numerically solving the extended nonlinear Schr?dinger equation. By introducing the GVD length LGV...The influence of group velocity dispersion(GVD) on the self-focusing of femtosecond laser pulses is investigated by numerically solving the extended nonlinear Schr?dinger equation. By introducing the GVD length LGVDinto the semi-empirical, self-focusing formula proposed by Marburger, a revised one is proposed, which can not only well explain the influence of GVD on the collapse distance, but also is in good agreement with the numerical results, making the self-focusing formula applicable for more cases.展开更多
The slow light propagation in a line waveguide in the two-dimensional triangular photonic crystal has been numerically studied, based on which a wideband photonic crystal waveguide with low group-velocity and low disp...The slow light propagation in a line waveguide in the two-dimensional triangular photonic crystal has been numerically studied, based on which a wideband photonic crystal waveguide with low group-velocity and low dispersion is proposed. The numerical simulation analysis shows that it is possible to maximize the group index and minimize the group-velocity dispersion in wide bandwidth by increasing the radius of the basic air hole and changing the position of the first two rows of air holes in photonic crystal waveguides. Such a photonic crystal waveguide exhibits low group velocity and low group-velocity dispersion over a broad wavelength range. A larger group index-bandwidth product is achieved in this type of waveguide structure. The numerically computed results present the normalized bandwidth as 0.32%, 0.48% and 0.642% corresponding to the group index of 85, 58 and 45, respectively.展开更多
Two concepts of phenomenological optics of homogeneous, anisotropic and dispersive media are compared, the younger and more general concept of media with spatial dispersion and the older concept of (bi)-anisotropic me...Two concepts of phenomenological optics of homogeneous, anisotropic and dispersive media are compared, the younger and more general concept of media with spatial dispersion and the older concept of (bi)-anisotropic media with material tensors for electric and magnetic induction which only depend on the frequency. The general algebraic form of the polarization vectors for the electric field and their one-dimensional projection operators is discussed without the degenerate cases of optic axis for which they become two-dimensional projection operators. Group velocity and diffraction coefficients in an approximate equation for the slowly varying amplitudes of beam solutions are calculated. As special case a polariton permittivity for isotropic media with frequency dispersion but without losses is discussed for the usual passive case and for the active case (occupation inversion of two energy levels that goes in direction of laser theory) and the group velocity is calculated. For this active case, regions of frequency and wave vector with group velocities greater than that of light in vacuum were found. This is not fully understood and due to large diffraction is likely only to realize in guided resonator form. The notion of “negative refraction” is shortly discussed but we did not find agreement with its assessment in the original paper.展开更多
文摘In the special theory of relativity, massive particles can travel at neither the speed of light c nor faster. Meanwhile, since the photon was quantized, many have thought of it as a point particle. How pointed? The idea could be a mathematical device or physical simplification. By contrast, the preceding notion of wave-group duality has two velocities: a group velocity vg and a phase velocity vp. In light vp = vg = c;but it follows from special relativity that, in massive particles, vp > c. The phase velocity is the product of the two best measured variables, and so their product constitutes internal motion that travels, verifiably, faster than light. How does vp then appear in Minkowski space? For light, the spatio-temporal Lorentz invariant metric is s2=c2t2−x2−y2−z2, the same in whatever frame it is viewed. The space is divided into 3 parts: firstly a cone, symmetric about the vertical axis ct > 0 that represents the world line of a stationary particle while the conical surface at s = 0 represents the locus for light rays that travel at the speed of light c. Since no real thing travels faster than the speed of light c, the surface is also a horizon for what can be seen by an observer starting from the origin at time t = 0. Secondly, an inverted cone represents, equivalently, time past. Thirdly, outside the cones, inaccessible space. The phase velocity vp, group velocity vg and speed of light are all equal in free space, vp = vg = c, constant. By contrast, for particles, where causality is due to particle interactions having rest mass mo > 0, we have to employ the Klein-Gordon equation with s2=c2t2−x2−y2−z2+mo2c2. Now special relativity requires a complication: vp.vg = c2 where vg c and therefore vp > c. In the volume outside the cones, causality due to light interactions cannot extend beyond the cones. However, since vp > c and even vp >> c when wavelength λ is long, extreme phase velocities are then limited in their causal effects by the particle uncertainty σ, i.e. to vgt ± σ/ω, where ω is the particle angular frequency. This is the first time the phase range has been described for a massive particle.
文摘In this paper, the superluminal group velocity in a coaxial photonic crystal is studied. The simulation of the effective refraction index in coaxial photonic crystal is performed. The group velocity is calculated based on the transmission line equations and compared with experimental results.
基金supported by the National Natural Science Foundation of China (Grant No. 40774099, 10874202 and 11134011)National 863 Program of China (Grant No. 2008AA06Z205)
文摘It is still argued whether we measure phase or group velocities using acoustic logging tools. In this paper, three kinds of models are used to investigate this problem by theoretical analyses and numerical simulations. First, we use the plane-wave superposition model containing two plane waves with different velocities and able to change the values of phase velocity and group velocity. The numerical results show that whether phase velocity is higher or lower than group velocity, using the slowness-time coherence (STC) method we can only get phase velocities. Second, according to the results of the dispersion analysis and branch-cut integration, in a rigid boundary borehole model the results of dispersion curves and the waveforms of the first-order mode show that the velocities obtained by the STC method are phase velocities while group velocities obtained by arrival time picking. Finally, dipole logging in a slow formation model is investigated using dispersion analysis and real-axis integration. The results of dispersion curves and full wave trains show similar conclusions as the borehole model with rigid boundary conditions.
基金supported by the National Natural Science Foundation of China(No.11471087)the China Postdoctoral Science Foundation(No.2013M540270)+2 种基金the Heilongjiang Postdoctoral Foundation(No.LBH-Z13056)the Support Plan for the Young College Academic Backbone of Heilongjiang Province(No.1252G020)the Fundamental Research Funds for the Central Universities
文摘This paper studies dispersion of a G-type earthquake wave under the influence of a suppressed rigid boundary. Inside the Earth, the density and rigidity of the crustal layer and the mantle of the Earth vary exponentially and periodically along the depth. The displacements of the wave are found in the individual medium followed by a dispersion equation using a suitable analytic approach and a boundary condition. The prominent effect of inhomogeneity contained in the media, the rigid boundary plane, and the initial stress on the phase and group velocities is shown graphically.
基金supported by the National Basic Research Program of China(No.2013CB922200)the National Natural Science Foundation of China(No.11474129)+1 种基金the Research Fund for the Doctoral Program of Higher Education in China(No.20130061110021)the Project 2015091,which is supported by the Graduate Innovation Fund of Jilin University
文摘The influence of group velocity dispersion(GVD) on the self-focusing of femtosecond laser pulses is investigated by numerically solving the extended nonlinear Schr?dinger equation. By introducing the GVD length LGVDinto the semi-empirical, self-focusing formula proposed by Marburger, a revised one is proposed, which can not only well explain the influence of GVD on the collapse distance, but also is in good agreement with the numerical results, making the self-focusing formula applicable for more cases.
文摘The slow light propagation in a line waveguide in the two-dimensional triangular photonic crystal has been numerically studied, based on which a wideband photonic crystal waveguide with low group-velocity and low dispersion is proposed. The numerical simulation analysis shows that it is possible to maximize the group index and minimize the group-velocity dispersion in wide bandwidth by increasing the radius of the basic air hole and changing the position of the first two rows of air holes in photonic crystal waveguides. Such a photonic crystal waveguide exhibits low group velocity and low group-velocity dispersion over a broad wavelength range. A larger group index-bandwidth product is achieved in this type of waveguide structure. The numerically computed results present the normalized bandwidth as 0.32%, 0.48% and 0.642% corresponding to the group index of 85, 58 and 45, respectively.
文摘Two concepts of phenomenological optics of homogeneous, anisotropic and dispersive media are compared, the younger and more general concept of media with spatial dispersion and the older concept of (bi)-anisotropic media with material tensors for electric and magnetic induction which only depend on the frequency. The general algebraic form of the polarization vectors for the electric field and their one-dimensional projection operators is discussed without the degenerate cases of optic axis for which they become two-dimensional projection operators. Group velocity and diffraction coefficients in an approximate equation for the slowly varying amplitudes of beam solutions are calculated. As special case a polariton permittivity for isotropic media with frequency dispersion but without losses is discussed for the usual passive case and for the active case (occupation inversion of two energy levels that goes in direction of laser theory) and the group velocity is calculated. For this active case, regions of frequency and wave vector with group velocities greater than that of light in vacuum were found. This is not fully understood and due to large diffraction is likely only to realize in guided resonator form. The notion of “negative refraction” is shortly discussed but we did not find agreement with its assessment in the original paper.