期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
STATISTICAL INFERENCE FOR A BIVARIATE EXPONENTIAL DISTRIBUTION BASED ON GROUPED DATA
1
作者 YE CINAN(Department of Applied Mathematics, Naming University of Science & Tech.nology, Naming210014.) 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1996年第3期285-294,共10页
Consider the bivariate exponential distribution due to Marshall and Olkin[2], whose survival function is F(x, g) = exp[-λ1x-λ2y-λ12 max(x, y)] (x 0,y 0)with unknown Parameters λ1 > 0, λ2 > 0 and λ12 0.Base... Consider the bivariate exponential distribution due to Marshall and Olkin[2], whose survival function is F(x, g) = exp[-λ1x-λ2y-λ12 max(x, y)] (x 0,y 0)with unknown Parameters λ1 > 0, λ2 > 0 and λ12 0.Based on grouped data, a newestimator for λ1, λ2 and λ12 is derived and its asymptotic properties are discussed.Besides, some test procedures of equal marginals and independence are given. Asimulation result is given, too. 展开更多
关键词 Bivariate exponential distribution parameter estimation grouped data asymptoticproperty.
下载PDF
Modeling viscosity of methane,nitrogen,and hydrocarbon gas mixtures at ultra-high pressures and temperatures using group method of data handling and gene expression programming techniques 被引量:1
2
作者 Farzaneh Rezaei Saeed Jafari +1 位作者 Abdolhossein Hemmati-Sarapardeh Amir H.Mohammadi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第4期431-445,共15页
Accurate gas viscosity determination is an important issue in the oil and gas industries.Experimental approaches for gas viscosity measurement are timeconsuming,expensive and hardly possible at high pressures and high... Accurate gas viscosity determination is an important issue in the oil and gas industries.Experimental approaches for gas viscosity measurement are timeconsuming,expensive and hardly possible at high pressures and high temperatures(HPHT).In this study,a number of correlations were developed to estimate gas viscosity by the use of group method of data handling(GMDH)type neural network and gene expression programming(GEP)techniques using a large data set containing more than 3000 experimental data points for methane,nitrogen,and hydrocarbon gas mixtures.It is worth mentioning that unlike many of viscosity correlations,the proposed ones in this study could compute gas viscosity at pressures ranging between 34 and 172 MPa and temperatures between 310 and 1300 K.Also,a comparison was performed between the results of these established models and the results of ten wellknown models reported in the literature.Average absolute relative errors of GMDH models were obtained 4.23%,0.64%,and 0.61%for hydrocarbon gas mixtures,methane,and nitrogen,respectively.In addition,graphical analyses indicate that the GMDH can predict gas viscosity with higher accuracy than GEP at HPHT conditions.Also,using leverage technique,valid,suspected and outlier data points were determined.Finally,trends of gas viscosity models at different conditions were evaluated. 展开更多
关键词 Gas Viscosity High pressure high temperature Group method of data handling Gene expression programming
下载PDF
Hourly traffic flow forecasting using a new hybrid modelling method 被引量:9
3
作者 LIU Hui ZHANG Xin-yu +2 位作者 YANG Yu-xiang LI Yan-fei YU Cheng-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1389-1402,共14页
Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department t... Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department to have sufficient time to formulate corresponding traffic flow control measures.In hence,it is meaningful to establish an accurate short-term traffic flow method and provide reference for peak traffic flow warning.This paper proposed a new hybrid model for traffic flow forecasting,which is composed of the variational mode decomposition(VMD)method,the group method of data handling(GMDH)neural network,bi-directional long and short term memory(BILSTM)network and ELMAN network,and is optimized by the imperialist competitive algorithm(ICA)method.To illustrate the performance of the proposed model,there are several comparative experiments between the proposed model and other models.The experiment results show that 1)BILSTM network,GMDH network and ELMAN network have better predictive performance than other single models;2)VMD can significantly improve the predictive performance of the ICA-GMDH-BILSTM-ELMAN model.The effect of VMD method is better than that of EEMD method and FEEMD method.To conclude,the proposed model which is made up of the VMD method,the ICA method,the BILSTM network,the GMDH network and the ELMAN network has excellent predictive ability for traffic flow series. 展开更多
关键词 traffic flow forecasting intelligent transportation system imperialist competitive algorithm variational mode decomposition group method of data handling bi-directional long and short term memory ELMAN
下载PDF
Real-Time and Intelligent Flood Forecasting Using UAV-Assisted Wireless Sensor Network 被引量:1
4
作者 Shidrokh Goudarzi Seyed Ahmad Soleymani +6 位作者 Mohammad Hossein Anisi Domenico Ciuonzo Nazri Kama Salwani Abdullah Mohammad Abdollahi Azgomi Zenon Chaczko Azri Azmi 《Computers, Materials & Continua》 SCIE EI 2022年第1期715-738,共24页
The Wireless Sensor Network(WSN)is a promising technology that could be used to monitor rivers’water levels for early warning flood detection in the 5G context.However,during a flood,sensor nodes may be washed up or ... The Wireless Sensor Network(WSN)is a promising technology that could be used to monitor rivers’water levels for early warning flood detection in the 5G context.However,during a flood,sensor nodes may be washed up or become faulty,which seriously affects network connectivity.To address this issue,Unmanned Aerial Vehicles(UAVs)could be integrated with WSN as routers or data mules to provide reliable data collection and flood prediction.In light of this,we propose a fault-tolerant multi-level framework comprised of a WSN and a UAV to monitor river levels.The framework is capable to provide seamless data collection by handling the disconnections caused by the failed nodes during a flood.Besides,an algorithm hybridized with Group Method Data Handling(GMDH)and Particle Swarm Optimization(PSO)is proposed to predict forthcoming floods in an intelligent collaborative environment.The proposed water-level prediction model is trained based on the real dataset obtained fromthe Selangor River inMalaysia.The performance of the work in comparison with other models has been also evaluated and numerical results based on different metrics such as coefficient of determination(R2),correlation coefficient(R),RootMean Square Error(RMSE),Mean Absolute Percentage Error(MAPE),and BIAS are provided. 展开更多
关键词 Unmanned aerial vehicles wireless sensor networks group method data handling particle swarm optimization river flow prediction
下载PDF
ASYMPTOTIC PROPERTIES OF MLE FOR WEIBULL DISTRIBUTION WITH GROUPED DATA
5
作者 XUEHongqi SONGLixin 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2002年第2期176-186,共11页
Abstract. A grouped data model for Weibull distribution is considered. Under mild con-ditions, the maximum likelihood estimators(MLE) are shown to be identifiable, stronglyconsistent, asymptotically normal, and satisf... Abstract. A grouped data model for Weibull distribution is considered. Under mild con-ditions, the maximum likelihood estimators(MLE) are shown to be identifiable, stronglyconsistent, asymptotically normal, and satisfy the law of iterated logarithm. Newton iter-ation algorithm is also considered, which converges to the unique solution of the likelihoodequation. Moreover, we extend these results to a random case. 展开更多
关键词 grouped data MLE Weibull distribution identifiable strongly consistent asymptotically normal the law of iterated logarithm Newton iteration arithmetic.
原文传递
Best compromising crashworthiness design of automotive S-rail using TOPSIS and modified NSGAⅡ 被引量:6
6
作者 Abolfazl Khalkhali 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期121-133,共13页
In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Mo... In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Modified non-dominated sorting genetic algorithm II(NSGA II) was used for multi-objective optimization of automotive S-rail considering absorbed energy(E), peak crushing force(Fmax) and mass of the structure(W) as three conflicting objective functions. In the multi-objective optimization problem(MOP), E and Fmax are defined by polynomial models extracted using the software GEvo M based on train and test data obtained from numerical simulation of quasi-static crushing of the S-rail using ABAQUS. Finally, the nearest to ideal point(NIP)method and technique for ordering preferences by similarity to ideal solution(TOPSIS) method are used to find the some trade-off optimum design points from all non-dominated optimum design points represented by the Pareto fronts. Results represent that the optimum design point obtained from TOPSIS method exhibits better trade-off in comparison with that of optimum design point obtained from NIP method. 展开更多
关键词 automotive S-rail crashworthiness technique for ordering preferences by similarity to ideal solution(TOPSIS) method group method of data handling(GMDH) algorithm multi-objective optimization modified non-dominated sorting genetic algorithm(NSGA II) Pareto front
下载PDF
Parameters estimation and application of generalized exponential distribution under grouped and right-censored data
7
作者 Yuzhu TIAN Maozai TIAN Ping CHEN 《Frontiers of Mathematics in China》 CSCD 2023年第3期165-174,共10页
Generalized exponential distribution is a class of important distribution in lifedata analysis,especially in some skewed lifedata.The Parameter estimation problem for generalized exponential distribution model with gr... Generalized exponential distribution is a class of important distribution in lifedata analysis,especially in some skewed lifedata.The Parameter estimation problem for generalized exponential distribution model with grouped and right-censored data is considered.The maximum likelihood estimators are obtained using the EM algorithm.Some simulations are carried out to illustrate that the proposed algorithm is effective for the model.Finally,a set of medicine data is analyzed by generalized exponential distribution. 展开更多
关键词 Generalized exponential distribution grouped and right-censored data EM algorithm
原文传递
Estimation of dynamic stress spectrum distribution in structural fatigue test
8
作者 Guangjin Xue Kai Li +3 位作者 Wu Pan Qiang Li Bingjie Wang Shouguang Sun 《Theoretical & Applied Mechanics Letters》 CAS 2013年第2期51-56,共6页
The determination of structural dynamic stress spectrum distribution is of great signifi- cance in the structural fatigue strength evaluation as well as reliability design. In previous empirical data processing method... The determination of structural dynamic stress spectrum distribution is of great signifi- cance in the structural fatigue strength evaluation as well as reliability design. In previous empirical data processing methods, the data grouping and distribution fitting were excessively coarse and contained distinctive defects. This paper proposed an effective approach to statistically group actual measured dynamic stress data and validly extrapolate the combined distribution to fit the dynamic stress spectrum distribution. This approach has been verified its effectiveness through chi-square test, stress spectrum extrapolation and damage calculation in dynamic stress study. 展开更多
关键词 data grouping combined distribution damage calculation maximum value estimation stress spectrum extrapolation
下载PDF
Global Solar Radiation Maps of Saudi Arabia
9
作者 M. Mohandes S. Rehman 《Journal of Energy and Power Engineering》 2010年第12期57-63,共7页
This paper uses Abductive network to predict global solar radiation in any location in the Kingdom of Saudi Arabia (KSA) based on sunshine duration, month number, latitude, longitude, and altitude of the location. R... This paper uses Abductive network to predict global solar radiation in any location in the Kingdom of Saudi Arabia (KSA) based on sunshine duration, month number, latitude, longitude, and altitude of the location. Results indicate good agreement between measured and predicted GSR values for each of the 35 locations with known GSR values. Finally, the data from all available stations are used to train an abductive network to estimate the GSR values anywhere in the Kingdom based on latitude and longitude. GSR values are estimated using the developed method at 25 additional locations throughout the kingdom and used with the measured data from the 35 available measurement stations to draw a comprehensive contour map of GSR values for KSA. 展开更多
关键词 Abductory induction mechanism (AIM) group method of data handling (GMDH) solar radiation map renewable energy.
下载PDF
Predicting beach profile evolution with group method data handling-type neural networks on beaches with seawalls 被引量:1
10
作者 M.A.LASHTEH NESHAEI M.A.MEHRDAD +1 位作者 N.ABEDIMAHZOON N.ASADOLLAHI 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2013年第2期117-126,共10页
A major goal of coastal engineering is to develop models for the reliable prediction of short-and longterm near shore evolution.The most successful coastal models are numerical models,which allow flexibility in the ch... A major goal of coastal engineering is to develop models for the reliable prediction of short-and longterm near shore evolution.The most successful coastal models are numerical models,which allow flexibility in the choice of initial and boundary conditions.In the present study,evolutionary algorithms(EAs)are employed for multi-objective Pareto optimum design of group method data handling(GMDH)-type neural networks that have been used for bed evolution modeling in the surf zone for reflective beaches,based on the irregular wave experiments performed at the Hydraulic Laboratory of Imperial College(London,UK).The input parameters used for such modeling are significant wave height,wave period,wave action duration,reflection coefficient,distance from shoreline and sand size.In this way,EAs with an encoding scheme are presented for evolutionary design of the generalized GMDH-type neural networks,in which the connectivity configurations in such networks are not limited to adjacent layers.Also,multi-objective EAs with a diversity preserving mechanism are used for Pareto optimization of such GMDH-type neural networks.The most important objectives of GMDH-type neural networks that are considered in this study are training error(TE),prediction error(PE),and number of neurons(N).Different pairs of these objective functions are selected for two-objective optimization processes.Therefore,optimal Pareto fronts of such models are obtained in each case,which exhibit the trade-offs between the corresponding pair of the objectives and,thus,provide different non-dominated optimal choices of GMDH-type neural network model for beach profile evolution.The results showed that the present model has been successfully used to optimally prediction of beach profile evolution on beaches with seawalls. 展开更多
关键词 beach profile evolution genetic algorithms group method of data handling PARETO reflective beaches
原文传递
Efficient Processing of Skyline Group Queries over a Data Stream 被引量:1
11
作者 Xi Guo Hailing Li +2 位作者 Aziguli Wulamu Yonghong Xie Yajing Fu 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2016年第1期29-39,共11页
In this paper, we study the skyline group problem over a data stream. An object can dominate another object if it is not worse than the other object on all attributes and is better than the other object on at least on... In this paper, we study the skyline group problem over a data stream. An object can dominate another object if it is not worse than the other object on all attributes and is better than the other object on at least one attribute. If an object cannot be dominated by any other object, it is a skyline object. The skyline group problem involves finding k-item groups that cannot be dominated by any other k-item group. Existing algorithms designed to find skyline groups can only process static data. However, data changes as a stream with time in many applications,and algorithms should be designed to support skyline group queries on dynamic data. In this paper, we propose new algorithms to find skyline groups over a data stream. We use data structures, namely a hash table, dominance graph, and matrix, to store dominance information and update results incrementally. We conduct experiments on synthetic datasets to evaluate the performance of the proposed algorithms. The experimental results show that our algorithms can efficiently find skyline groups over a data stream. 展开更多
关键词 skyline skyline group data streams query processing
原文传递
White-box machine-learning models for accurate interfacial tension prediction in hydrogen-brine mixtures
12
作者 Qichao Lv Jinglei Xue +5 位作者 Xiaochen Li Farzaneh Rezaei Aydin Larestani Saeid Norouzi-Apourvari Hadi Abdollahi Abdolhossein Hemmati-Sarapardeh 《Clean Energy》 EI CSCD 2024年第5期252-264,共13页
The severity of climate change and global warming necessitates the need for a transition from traditional hydrocarbon-based energy sources to renewable energy sources.One intrinsic challenge with renewable energy sour... The severity of climate change and global warming necessitates the need for a transition from traditional hydrocarbon-based energy sources to renewable energy sources.One intrinsic challenge with renewable energy sources is their intermittent nature,which can be addressed by transforming excess energy into hydrogen and storing it safely for future use.To securely store hydrogen underground,a comprehensive knowledge of the interactions between hydrogen and residing fluids is required.Interfacial tension is an important variable influenced by cushion gases such as CO_(2) and CH4.This research developed explicit correlations for approximating the interfacial tension of a hydrogen–brine mixture using two advanced machine-learning techniques:gene expression programming and the group method of data handling.The interfacial tension of a hydrogen–brine mixture was considered to be heavily influenced by temperature,pressure,water salinity,and the average critical temperature of the gas mixture.The results indicated a higher performance of the group method of data handling-based correlation,showing an average absolute relative error of 4.53%.Subsequently,Pearson,Spearman,and Kendall methods were used to assess the influence of individual input variables on the outputs of the correlations.Analysis showed that the temperature and the average critical temperature of the gas mixture had considerable inverse impacts on the estimated interfacial tension values.Finally,the reliability of the gathered databank and the scope of application for the proposed correlations were verified using the leverage approach by illustrating 97.6%of the gathered data within the valid range of the Williams plot. 展开更多
关键词 underground hydrogen storage interfacial tension cushion gas correlation gene expression programming group method of data handling
原文传递
Developing a robust correlation for prediction of sweet and sour gas hydrate formation temperature 被引量:1
13
作者 Mohammad Mesbah Samaneh Habibnia +2 位作者 Shahin Ahmadi Amir Hossein Saeedi Dehaghani Sareh Bayat 《Petroleum》 EI CSCD 2022年第2期204-209,共6页
There are numerous correlations and thermodynamic models for predicting the natural gas hydrate formation condition but still the lack of a simple and unifying general model that addresses a broad ranges of gas mixtur... There are numerous correlations and thermodynamic models for predicting the natural gas hydrate formation condition but still the lack of a simple and unifying general model that addresses a broad ranges of gas mixture.This study was aimed to develop a user-friendly universal correlation based on hybrid group method of data handling(GMDH)for prediction of hydrate formation temperature of a wide range of natural gas mixtures including sweet and sour gas.To establish the hybrid GMDH,the total experimental data of 343 were obtained from open articles.The selection of input variables was based on the hydrate structure formed by each gas species.The modeling resulted in a strong algorithm since the squared correlation coefficient(R2)and root mean square error(RMSE)were 0.9721 and 1.2152,respectively.In comparison to some conventional correlation,this model represented not only the outstanding statistical parameters but also its absolute superiority over others.In particular,the result was encouraging for sour gases concentrated at H2S to the extent that the model outstrips all available thermodynamic models and correlations.Leverage statistical approach was applied on datasets to the discovery of the defected and doubtful experimental data and suitability of the model.According to this algorithm,approximately all the data points were in the proper range of the model and the proposed hybrid GMDH model was statistically reliable. 展开更多
关键词 Hydrate formation temperature HFT Wide range of natural gas mixtures Unified correlation Group method of data handling GMDH Outlier detection
原文传递
PARAMETER ESTIMATION OF EXPONENTIAL DISTRIBUTION
14
作者 XUHaiyan FEIHeliang 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2005年第1期86-94,共9页
Because of the importance of grouped data, many scholars have been devoted to the study of this kind of data. But, few documents have been concerned with the thresh-old parameter. In this paper, we assume that the thr... Because of the importance of grouped data, many scholars have been devoted to the study of this kind of data. But, few documents have been concerned with the thresh-old parameter. In this paper, we assume that the threshold parameter is smaller than the first observing point. Then, on the basis of the two-parameter exponential distribution, the maximum likelihood estimations of both parameters are given, the sufficient and necessary conditions for their existence and uniqueness are argued, and the asymptotic properties of the estimations are also presented, according to which approximate confidence intervals of the parameters are derived. At the same time, the estimation of the parameters is generalized, and some methods are introduced to get explicit expressions of these generalized estimations. Also, a special case where the first failure time of the units is observed is considered. 展开更多
关键词 exponential distribution grouped data maximum likelihood estimate (MLE) asymptotic property interval estimation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部