Generalized exponential distribution is a class of important distribution in lifedata analysis,especially in some skewed lifedata.The Parameter estimation problem for generalized exponential distribution model with gr...Generalized exponential distribution is a class of important distribution in lifedata analysis,especially in some skewed lifedata.The Parameter estimation problem for generalized exponential distribution model with grouped and right-censored data is considered.The maximum likelihood estimators are obtained using the EM algorithm.Some simulations are carried out to illustrate that the proposed algorithm is effective for the model.Finally,a set of medicine data is analyzed by generalized exponential distribution.展开更多
Consider the bivariate exponential distribution due to Marshall and Olkin[2], whose survival function is F(x, g) = exp[-λ1x-λ2y-λ12 max(x, y)] (x 0,y 0)with unknown Parameters λ1 > 0, λ2 > 0 and λ12 0.Base...Consider the bivariate exponential distribution due to Marshall and Olkin[2], whose survival function is F(x, g) = exp[-λ1x-λ2y-λ12 max(x, y)] (x 0,y 0)with unknown Parameters λ1 > 0, λ2 > 0 and λ12 0.Based on grouped data, a newestimator for λ1, λ2 and λ12 is derived and its asymptotic properties are discussed.Besides, some test procedures of equal marginals and independence are given. Asimulation result is given, too.展开更多
To bridge the performance gap between original probability data association (PDA) algorithm and the optimum maximum a posterior (MAP) algorithm for multi-input multi-output (MIMO) detection, a grouped PDA (GP-...To bridge the performance gap between original probability data association (PDA) algorithm and the optimum maximum a posterior (MAP) algorithm for multi-input multi-output (MIMO) detection, a grouped PDA (GP-PDA) detection algorithm is proposed. The proposed GP-PDA method divides all the transmit antennas into groups, and then updates the symbol probabilities group by group using PDA computations. In each group, joint a posterior probability (APP) is computed to obtain the APP of a single symbol in this group, like the MAP algorithm. Such new algorithm combines the characters of MAP and PDA. MAP and original PDA algorithm can be regarded as a special case of the proposed GP-PDA. Simulations show that the proposed GP-PDA provides a performance and complexity trade, off between original PDA and MAP algorithm.展开更多
In this paper, the weighted Kolmogrov-Smirnov, Cramer von-Miss and the Anderson Darling test statistics are considered as goodness of fit tests for the generalized Rayleigh interval grouped data. An extensive simulati...In this paper, the weighted Kolmogrov-Smirnov, Cramer von-Miss and the Anderson Darling test statistics are considered as goodness of fit tests for the generalized Rayleigh interval grouped data. An extensive simulation process is conducted to evaluate their controlling of type 1 error and their power functions. Generally, the weighted Kolmogrov-Smirnov test statistics show a relatively better performance than both, the Cramer von-Miss and the Anderson Darling test statistics. For large sample values, the Anderson Darling test statistics cannot control type 1 error but for relatively small sample values it indicates a better performance than the Cramer von-Miss test statistics. Best selection of the test statistics and highlights for future studies are also explored.展开更多
A new method of multi sensor location data fusion is proposed.The method is based on group consensus approach, which constructs group utility function (or its density) based on uncertainty of each sensor, and the loc...A new method of multi sensor location data fusion is proposed.The method is based on group consensus approach, which constructs group utility function (or its density) based on uncertainty of each sensor, and the location estimation is obtained based on the group utility function (or its density). The simulation results show that the method is better than those of mean and median estimation, and outlier and sensor failure can not affect the location estimation.展开更多
Accurate and reliable nuclear data libraries are essential for calculation and design of advanced nuclea systems. A 1200 fine group nuclear data library Hybrid Evaluated Nuclear Data Library/Fine Group(HENDL/FG with n...Accurate and reliable nuclear data libraries are essential for calculation and design of advanced nuclea systems. A 1200 fine group nuclear data library Hybrid Evaluated Nuclear Data Library/Fine Group(HENDL/FG with neutrons of up to 150 Me V has been developed to improve the accuracy of neutronics calculations and anal ysis. Corrections of Doppler, resonance self-shielding, and thermal upscatter effects were done for HENDL/FG Shielding and critical safety benchmarks were performed to test the accuracy and reliability of the library. The dis crepancy between calculated and measured nuclea parameters fell into a reasonable range.展开更多
This paper proposes the solution of tasks set required for autonomous robotic group behavior optimization during the mission on a distributed area in a cluttered hazardous terrain.The navigation scheme uses the benefi...This paper proposes the solution of tasks set required for autonomous robotic group behavior optimization during the mission on a distributed area in a cluttered hazardous terrain.The navigation scheme uses the benefits of the original real-time technical vision system(TVS)based on a dynamic triangulation principle.The method uses TVS output data with fuzzy logic rules processing for resolution stabilization.Based on previous researches,the dynamic communication network model is modified to implement the propagation of information with a feedback method for more stable data exchange inside the robotic group.According to the comparative analysis of approximation methods,in this paper authors are proposing to use two-steps post-processing path planning aiming to get a smooth and energy-saving trajectory.The article provides a wide range of studies and computational experiment results for different scenarios for evaluation of common cloud point influence on robotic motion planning.展开更多
Machine-type communication (MTC) devices provide a broad range of data collection especially on the massive data generated environments such as urban, industrials and event-enabled areas. In dense deployments, the dat...Machine-type communication (MTC) devices provide a broad range of data collection especially on the massive data generated environments such as urban, industrials and event-enabled areas. In dense deployments, the data collected at the closest locations between the MTC devices are spatially correlated. In this paper, we propose a k-means grouping technique to combine all MTC devices based on spatially correlated. The MTC devices collect the data on the event-based area and then transmit to the centralized aggregator for processing and computing. With the limitation of computational resources at the centralized aggregator, some grouped MTC devices data offloaded to the nearby base station collocated with the mobile edge-computing server. As a sensing capability adopted on MTC devices, we use a power exponential function model to compute a correlation coefficient existing between the MTC devices. Based on this framework, we compare the energy consumption when all data processed locally at centralized aggregator or offloaded at mobile edge computing server with optimal solution obtained by the brute force method. Then, the simulation results revealed that the proposed k-means grouping technique reduce the energy consumption at centralized aggregator while satisfying the required completion time.展开更多
Accurate gas viscosity determination is an important issue in the oil and gas industries.Experimental approaches for gas viscosity measurement are timeconsuming,expensive and hardly possible at high pressures and high...Accurate gas viscosity determination is an important issue in the oil and gas industries.Experimental approaches for gas viscosity measurement are timeconsuming,expensive and hardly possible at high pressures and high temperatures(HPHT).In this study,a number of correlations were developed to estimate gas viscosity by the use of group method of data handling(GMDH)type neural network and gene expression programming(GEP)techniques using a large data set containing more than 3000 experimental data points for methane,nitrogen,and hydrocarbon gas mixtures.It is worth mentioning that unlike many of viscosity correlations,the proposed ones in this study could compute gas viscosity at pressures ranging between 34 and 172 MPa and temperatures between 310 and 1300 K.Also,a comparison was performed between the results of these established models and the results of ten wellknown models reported in the literature.Average absolute relative errors of GMDH models were obtained 4.23%,0.64%,and 0.61%for hydrocarbon gas mixtures,methane,and nitrogen,respectively.In addition,graphical analyses indicate that the GMDH can predict gas viscosity with higher accuracy than GEP at HPHT conditions.Also,using leverage technique,valid,suspected and outlier data points were determined.Finally,trends of gas viscosity models at different conditions were evaluated.展开更多
This paper proposes the use of Group Method of Data Handling (GMDH) technique for modeling Magneto-Rheological (MR) dampers in the context of system identification. GMDH is a multilayer network of quadratic neurons th...This paper proposes the use of Group Method of Data Handling (GMDH) technique for modeling Magneto-Rheological (MR) dampers in the context of system identification. GMDH is a multilayer network of quadratic neurons that offers an effective solution to modeling non-linear systems. As such, we propose the use of GMDH to approximate the forward and inverse dynamic behaviors of MR dampers. We also introduce two enhanced GMDH-based solutions. Firstly, a two-tier architecture is proposed whereby an enhanced GMD model is generated by the aid of a feedback scheme. Secondly, stepwise regression is used as a feature selection method prior to GMDH modeling. The proposed enhancements to GMDH are found to offer improved prediction results in terms of reducing the root-mean-squared error by around 40%.展开更多
Along with the increase of wearable medical device,the privacy leakage problem in the process of transmission between these edge medical devices.The blockchain-enabled Internet of Medical Things(BIoMT)has been develop...Along with the increase of wearable medical device,the privacy leakage problem in the process of transmission between these edge medical devices.The blockchain-enabled Internet of Medical Things(BIoMT)has been developed to reform traditional centralized medical system in recent years.This paper first introduces a data anonymous authentication model to protect user privacy and medical data in BIoMT.Then,a proxy group signature(PGS)scheme has been proposed based on lattice assumption.This scheme can well satisfy the anonymous authentication demand for the proposed model,and provide anti-quantum attack security for BIoMT in the future general quantum computer age.Moreover,the security analysis shows this PGS scheme is secure against the dynamical-almost-full anonymous and traceability.The efficiency comparison shows the proposed model and PGS scheme is more efficient and practical.展开更多
文摘Generalized exponential distribution is a class of important distribution in lifedata analysis,especially in some skewed lifedata.The Parameter estimation problem for generalized exponential distribution model with grouped and right-censored data is considered.The maximum likelihood estimators are obtained using the EM algorithm.Some simulations are carried out to illustrate that the proposed algorithm is effective for the model.Finally,a set of medicine data is analyzed by generalized exponential distribution.
文摘Consider the bivariate exponential distribution due to Marshall and Olkin[2], whose survival function is F(x, g) = exp[-λ1x-λ2y-λ12 max(x, y)] (x 0,y 0)with unknown Parameters λ1 > 0, λ2 > 0 and λ12 0.Based on grouped data, a newestimator for λ1, λ2 and λ12 is derived and its asymptotic properties are discussed.Besides, some test procedures of equal marginals and independence are given. Asimulation result is given, too.
基金Sponsored by the National Natural Science Foundation of China(60572120)
文摘To bridge the performance gap between original probability data association (PDA) algorithm and the optimum maximum a posterior (MAP) algorithm for multi-input multi-output (MIMO) detection, a grouped PDA (GP-PDA) detection algorithm is proposed. The proposed GP-PDA method divides all the transmit antennas into groups, and then updates the symbol probabilities group by group using PDA computations. In each group, joint a posterior probability (APP) is computed to obtain the APP of a single symbol in this group, like the MAP algorithm. Such new algorithm combines the characters of MAP and PDA. MAP and original PDA algorithm can be regarded as a special case of the proposed GP-PDA. Simulations show that the proposed GP-PDA provides a performance and complexity trade, off between original PDA and MAP algorithm.
文摘In this paper, the weighted Kolmogrov-Smirnov, Cramer von-Miss and the Anderson Darling test statistics are considered as goodness of fit tests for the generalized Rayleigh interval grouped data. An extensive simulation process is conducted to evaluate their controlling of type 1 error and their power functions. Generally, the weighted Kolmogrov-Smirnov test statistics show a relatively better performance than both, the Cramer von-Miss and the Anderson Darling test statistics. For large sample values, the Anderson Darling test statistics cannot control type 1 error but for relatively small sample values it indicates a better performance than the Cramer von-Miss test statistics. Best selection of the test statistics and highlights for future studies are also explored.
文摘A new method of multi sensor location data fusion is proposed.The method is based on group consensus approach, which constructs group utility function (or its density) based on uncertainty of each sensor, and the location estimation is obtained based on the group utility function (or its density). The simulation results show that the method is better than those of mean and median estimation, and outlier and sensor failure can not affect the location estimation.
基金supported by the Natural Science Foundation of China(Nos.11405204 11305205 and 10675123)Special Program for Informatization of Chinese Academy of Sciences(No.XXH12504-1-09)the National Special Program for ITER(No.2014GB1120001)
文摘Accurate and reliable nuclear data libraries are essential for calculation and design of advanced nuclea systems. A 1200 fine group nuclear data library Hybrid Evaluated Nuclear Data Library/Fine Group(HENDL/FG with neutrons of up to 150 Me V has been developed to improve the accuracy of neutronics calculations and anal ysis. Corrections of Doppler, resonance self-shielding, and thermal upscatter effects were done for HENDL/FG Shielding and critical safety benchmarks were performed to test the accuracy and reliability of the library. The dis crepancy between calculated and measured nuclea parameters fell into a reasonable range.
文摘This paper proposes the solution of tasks set required for autonomous robotic group behavior optimization during the mission on a distributed area in a cluttered hazardous terrain.The navigation scheme uses the benefits of the original real-time technical vision system(TVS)based on a dynamic triangulation principle.The method uses TVS output data with fuzzy logic rules processing for resolution stabilization.Based on previous researches,the dynamic communication network model is modified to implement the propagation of information with a feedback method for more stable data exchange inside the robotic group.According to the comparative analysis of approximation methods,in this paper authors are proposing to use two-steps post-processing path planning aiming to get a smooth and energy-saving trajectory.The article provides a wide range of studies and computational experiment results for different scenarios for evaluation of common cloud point influence on robotic motion planning.
文摘Machine-type communication (MTC) devices provide a broad range of data collection especially on the massive data generated environments such as urban, industrials and event-enabled areas. In dense deployments, the data collected at the closest locations between the MTC devices are spatially correlated. In this paper, we propose a k-means grouping technique to combine all MTC devices based on spatially correlated. The MTC devices collect the data on the event-based area and then transmit to the centralized aggregator for processing and computing. With the limitation of computational resources at the centralized aggregator, some grouped MTC devices data offloaded to the nearby base station collocated with the mobile edge-computing server. As a sensing capability adopted on MTC devices, we use a power exponential function model to compute a correlation coefficient existing between the MTC devices. Based on this framework, we compare the energy consumption when all data processed locally at centralized aggregator or offloaded at mobile edge computing server with optimal solution obtained by the brute force method. Then, the simulation results revealed that the proposed k-means grouping technique reduce the energy consumption at centralized aggregator while satisfying the required completion time.
文摘Accurate gas viscosity determination is an important issue in the oil and gas industries.Experimental approaches for gas viscosity measurement are timeconsuming,expensive and hardly possible at high pressures and high temperatures(HPHT).In this study,a number of correlations were developed to estimate gas viscosity by the use of group method of data handling(GMDH)type neural network and gene expression programming(GEP)techniques using a large data set containing more than 3000 experimental data points for methane,nitrogen,and hydrocarbon gas mixtures.It is worth mentioning that unlike many of viscosity correlations,the proposed ones in this study could compute gas viscosity at pressures ranging between 34 and 172 MPa and temperatures between 310 and 1300 K.Also,a comparison was performed between the results of these established models and the results of ten wellknown models reported in the literature.Average absolute relative errors of GMDH models were obtained 4.23%,0.64%,and 0.61%for hydrocarbon gas mixtures,methane,and nitrogen,respectively.In addition,graphical analyses indicate that the GMDH can predict gas viscosity with higher accuracy than GEP at HPHT conditions.Also,using leverage technique,valid,suspected and outlier data points were determined.Finally,trends of gas viscosity models at different conditions were evaluated.
文摘This paper proposes the use of Group Method of Data Handling (GMDH) technique for modeling Magneto-Rheological (MR) dampers in the context of system identification. GMDH is a multilayer network of quadratic neurons that offers an effective solution to modeling non-linear systems. As such, we propose the use of GMDH to approximate the forward and inverse dynamic behaviors of MR dampers. We also introduce two enhanced GMDH-based solutions. Firstly, a two-tier architecture is proposed whereby an enhanced GMD model is generated by the aid of a feedback scheme. Secondly, stepwise regression is used as a feature selection method prior to GMDH modeling. The proposed enhancements to GMDH are found to offer improved prediction results in terms of reducing the root-mean-squared error by around 40%.
基金This work was supported by the National Natural Science Foundation of China under Grants 92046001,61962009the Doctor Scientific Research Fund of Zhengzhou University of Light Industry under Grant 2021BSJJ033Key Scientific Research Project of Colleges and Universities in Henan Province(CN)under Grant No.22A413010。
文摘Along with the increase of wearable medical device,the privacy leakage problem in the process of transmission between these edge medical devices.The blockchain-enabled Internet of Medical Things(BIoMT)has been developed to reform traditional centralized medical system in recent years.This paper first introduces a data anonymous authentication model to protect user privacy and medical data in BIoMT.Then,a proxy group signature(PGS)scheme has been proposed based on lattice assumption.This scheme can well satisfy the anonymous authentication demand for the proposed model,and provide anti-quantum attack security for BIoMT in the future general quantum computer age.Moreover,the security analysis shows this PGS scheme is secure against the dynamical-almost-full anonymous and traceability.The efficiency comparison shows the proposed model and PGS scheme is more efficient and practical.