期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An Analysis of Two-Dimensional Image Data Using a Grouping Estimator
1
作者 Kazumitsu Nawata 《Open Journal of Statistics》 2022年第1期33-48,共16页
Machine learning methods, one type of methods used in artificial intelligence, are now widely used to analyze two-dimensional (2D) images in various fields. In these analyses, estimating the boundary between two regio... Machine learning methods, one type of methods used in artificial intelligence, are now widely used to analyze two-dimensional (2D) images in various fields. In these analyses, estimating the boundary between two regions is basic but important. If the model contains stochastic factors such as random observation errors, determining the boundary is not easy. When the probability distributions are mis-specified, ordinal methods such as probit and logit maximum likelihood estimators (MLE) have large biases. The grouping estimator is a semiparametric estimator based on the grouping of data that does not require specific probability distributions. For 2D images, the grouping is simple. Monte Carlo experiments show that the grouping estimator clearly improves the probit MLE in many cases. The grouping estimator essentially makes the resolution density lower, and the present findings imply that methods using low-resolution image analyses might not be the proper ones in high-density image analyses. It is necessary to combine and compare the results of high- and low-resolution image analyses. The grouping estimator may provide theoretical justifications for such analysis. 展开更多
关键词 Two-Dimensional Image Analysis High-Resolution and Low-Resolution Im-ages Semiparametric Estimator Machine Learning grouping Estimator
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部