Application of pressured grouting method (PGM) in pile engineering can tackle problems encountered during construction of bored piles. Bearing capacity of piles can be increased through compaction of subsoils around p...Application of pressured grouting method (PGM) in pile engineering can tackle problems encountered during construction of bored piles. Bearing capacity of piles can be increased through compaction of subsoils around piles. This paper reports research efforts of this technique by the pile research team in Southwest Jiaotong University in last decade with respect to the construction process, test findings, and primary research conclusions. The social-economical benefits of this method and application market in pile engineering are also analyzed.展开更多
The pressure grouting pile of driven tube can improve the load bearing capacity of the single pile from the mechanism of pressure grouting pile of driven tube.On the basis of analyzing the mechanism,the authors design...The pressure grouting pile of driven tube can improve the load bearing capacity of the single pile from the mechanism of pressure grouting pile of driven tube.On the basis of analyzing the mechanism,the authors designed the machines and tools of pressure grouting,determined the operating manufacture and technology parameter on the pressure grouting secondly.The result shows that the pressure grouting pile of driven tube not only changes the pile type but also reduce the length of the pile and its engineering cost,it enhances the load bearing capacity of single pile an the same time.展开更多
Pullout resistance of a soil nail is a critical parameter in design and analysis for geotechnical engineers. Due to the complexity of field conditions, the pullout behaviour of cement grouted soil nail in field is not...Pullout resistance of a soil nail is a critical parameter in design and analysis for geotechnical engineers. Due to the complexity of field conditions, the pullout behaviour of cement grouted soil nail in field is not well investigated. In this work, a number of field pullout tests of pressure grouted soil nails were conducted to estimate the pullout resistance of soil nails. The effective bond lengths of field soil nails were accurately controlled by a new grouting packer system. Typical field test results and the related comparison with typical laboratory test results reveal that the apparent coefficient of friction (ACF) decreases with the increase of overburden soil pressure when grouting pressure is constant, but increases almost linearly with the increase of grouting pressure when overburden pressure (soil depth) is unchanged. Water contents of soil samples at soil nail surfaces show obvious reductions compared with the results of soil samples from drillholes. After soil nails were completely pulled out of the ground, surface conditions of the soil nails and surrounding soil were examined. It is found that the water content values of the soil at the soil/nail interfaces decrease substantially compared with those of soil samples extracted from drillholes. In addition, all soil nails expand significantly in the diametrical direction after being pulled out of ground, indicating that the pressurized cement grout compacts the soil and penetrates into soil voids, leading to a corresponding shift of failure surface into surrounding soil mass significantly.展开更多
Water inrush and mud gushing are one of the biggest hazards in tunnel construction. Unfavorable geological sections can be observed in almost all railway tunnels under construction or to be constructed, and vary in ex...Water inrush and mud gushing are one of the biggest hazards in tunnel construction. Unfavorable geological sections can be observed in almost all railway tunnels under construction or to be constructed, and vary in extent. Furthermore, due to the different heights of mountains and the lengths of tunnels, the locations of the unfavorable geological sections cannot be fully determined before construction, which increases the risk of water inrush and mud gushing. Based on numerous cases of water inrush and mud gushing in railway tunnels, the paper tries to classify water inrush and mud gushing in railway tunnels in view of the conditions of the surrounding rocks and meteorological factors associated with tunnel excavation. In addition, the causes of water inrush and mud gushing in combination of macroand micromechanisms are summarized, and site-specifc treatment method is put forward. The treatment methods include choosing a method of advance geological forecast according to risk degrees of different sections in the tunnel, determining the items of predictions, and choosing the appropriate methods, i.e. draining-oriented method, blocking-oriented method or draining-and-blocking method. The treatment technologies of railway water inrush and mud gushing are also summarized, including energy relief and pressure relief technology, advance grouting technology, and advance jet grouting technology associated with their key technical features and applicable conditions. The results in terms of treatment methods can provide reference to the prevention and treatment of tunnel water inrush and mud gushing.展开更多
Abstract.Similarity solution is investigated for the synchronous grouting of shield tunnel under the vertical non-axisymmetric displacement boundary condition in the paper.The synchronous grouting process of shield tu...Abstract.Similarity solution is investigated for the synchronous grouting of shield tunnel under the vertical non-axisymmetric displacement boundary condition in the paper.The synchronous grouting process of shield tunnel was simplified as the cylindrical expansion problem,which was based on the mechanism between the slurry and stratum of the synchronous grouting.The stress harmonic function on the horizontal and vertical ground surfaces is improved.Based on the virtual image technique,stress function solutions and Boussinesq’s solution,elastic solution under the vertical non-axisymmetric displacement boundary condition on the vertical surface was proposed for synchronous grouting problems of shield tunnel.In addition,the maximum grouting pressure was also obtained to control the vertical displacement of horizontal ground surface.The validity of the proposed approach was proved by the numerical method.It can be known fromthe parameter analysis that larger vertical displacement of the horizontal ground surface was induced by smaller tunnel depth,smaller tunnel excavation radius,shorter limb distance,larger expansion pressure and smaller elastic modulus of soils.展开更多
文摘Application of pressured grouting method (PGM) in pile engineering can tackle problems encountered during construction of bored piles. Bearing capacity of piles can be increased through compaction of subsoils around piles. This paper reports research efforts of this technique by the pile research team in Southwest Jiaotong University in last decade with respect to the construction process, test findings, and primary research conclusions. The social-economical benefits of this method and application market in pile engineering are also analyzed.
文摘The pressure grouting pile of driven tube can improve the load bearing capacity of the single pile from the mechanism of pressure grouting pile of driven tube.On the basis of analyzing the mechanism,the authors designed the machines and tools of pressure grouting,determined the operating manufacture and technology parameter on the pressure grouting secondly.The result shows that the pressure grouting pile of driven tube not only changes the pile type but also reduce the length of the pile and its engineering cost,it enhances the load bearing capacity of single pile an the same time.
基金Foundation item: Project(NTF 12015) supported by the Scientific Research Foundation for Talent of Shantou University, China Project(PolyU 5320107E) supported by the Research Grants Committee General Research Fund, China
文摘Pullout resistance of a soil nail is a critical parameter in design and analysis for geotechnical engineers. Due to the complexity of field conditions, the pullout behaviour of cement grouted soil nail in field is not well investigated. In this work, a number of field pullout tests of pressure grouted soil nails were conducted to estimate the pullout resistance of soil nails. The effective bond lengths of field soil nails were accurately controlled by a new grouting packer system. Typical field test results and the related comparison with typical laboratory test results reveal that the apparent coefficient of friction (ACF) decreases with the increase of overburden soil pressure when grouting pressure is constant, but increases almost linearly with the increase of grouting pressure when overburden pressure (soil depth) is unchanged. Water contents of soil samples at soil nail surfaces show obvious reductions compared with the results of soil samples from drillholes. After soil nails were completely pulled out of the ground, surface conditions of the soil nails and surrounding soil were examined. It is found that the water content values of the soil at the soil/nail interfaces decrease substantially compared with those of soil samples extracted from drillholes. In addition, all soil nails expand significantly in the diametrical direction after being pulled out of ground, indicating that the pressurized cement grout compacts the soil and penetrates into soil voids, leading to a corresponding shift of failure surface into surrounding soil mass significantly.
文摘Water inrush and mud gushing are one of the biggest hazards in tunnel construction. Unfavorable geological sections can be observed in almost all railway tunnels under construction or to be constructed, and vary in extent. Furthermore, due to the different heights of mountains and the lengths of tunnels, the locations of the unfavorable geological sections cannot be fully determined before construction, which increases the risk of water inrush and mud gushing. Based on numerous cases of water inrush and mud gushing in railway tunnels, the paper tries to classify water inrush and mud gushing in railway tunnels in view of the conditions of the surrounding rocks and meteorological factors associated with tunnel excavation. In addition, the causes of water inrush and mud gushing in combination of macroand micromechanisms are summarized, and site-specifc treatment method is put forward. The treatment methods include choosing a method of advance geological forecast according to risk degrees of different sections in the tunnel, determining the items of predictions, and choosing the appropriate methods, i.e. draining-oriented method, blocking-oriented method or draining-and-blocking method. The treatment technologies of railway water inrush and mud gushing are also summarized, including energy relief and pressure relief technology, advance grouting technology, and advance jet grouting technology associated with their key technical features and applicable conditions. The results in terms of treatment methods can provide reference to the prevention and treatment of tunnel water inrush and mud gushing.
基金The authors are grateful to the Traffic Technology Fund of Guizhou Province of China(No.2014-122-005)the National Natural Science Foundation of China(Grant No.51208523).
文摘Abstract.Similarity solution is investigated for the synchronous grouting of shield tunnel under the vertical non-axisymmetric displacement boundary condition in the paper.The synchronous grouting process of shield tunnel was simplified as the cylindrical expansion problem,which was based on the mechanism between the slurry and stratum of the synchronous grouting.The stress harmonic function on the horizontal and vertical ground surfaces is improved.Based on the virtual image technique,stress function solutions and Boussinesq’s solution,elastic solution under the vertical non-axisymmetric displacement boundary condition on the vertical surface was proposed for synchronous grouting problems of shield tunnel.In addition,the maximum grouting pressure was also obtained to control the vertical displacement of horizontal ground surface.The validity of the proposed approach was proved by the numerical method.It can be known fromthe parameter analysis that larger vertical displacement of the horizontal ground surface was induced by smaller tunnel depth,smaller tunnel excavation radius,shorter limb distance,larger expansion pressure and smaller elastic modulus of soils.