The thermal fatigue behavior of a single crystal superalloy SRR99 was investigated. Specimens with V-type notch were tested at the peak temperatures of 900, 1000, and 1100℃. The crack growth curves as a function of t...The thermal fatigue behavior of a single crystal superalloy SRR99 was investigated. Specimens with V-type notch were tested at the peak temperatures of 900, 1000, and 1100℃. The crack growth curves as a function of the number of cycles were plotted. With the increase of peak temperature, the crack initiation life was shortened dramatically. Through optical microscopy (OM) and scanning electron microscopy (SEM) observation, it was found that multiple small cracks nucleated at the notch tip region but only one or two of them continued to develop in the following thermal cycles. The primary cracks generally propagated along a preferential direction. Microstructure changes after thermal fatigue were also discussed on the basis of SEM observation.展开更多
An experiment was conducted to observe the inhibitory effects of the leaf extracts derived from Albizia lebbeck (L.) Benth. On germination and growth behavior of some popular agricultural crops (receptor) of Bangl...An experiment was conducted to observe the inhibitory effects of the leaf extracts derived from Albizia lebbeck (L.) Benth. On germination and growth behavior of some popular agricultural crops (receptor) of Bangladesh. Experiments were set on sterilized petridishes with a photoperiod of 24 h at room temperature of 27-30℃. The effects of the different concentrations of aqueous extracts were compared to distil water (control.). The aqueous extracts of leaf caused significant inhibitory effect on germination, root and shoot elongation and development of lateral roots of receptor plants. Bioassays indicated that the inhibitory effect was proportional to the concentrations of the extracts and higher concentration (50%-100%) had the stronger inhibitory effect whereas the lower concentration (10%-25%) showed stimulatory effect in some cases. The study also revealed that, inhibitory effect was much pronounced in root and lateral root development rather than germination and shoot growth.展开更多
The growth behaviors of short through cracks (0.2 < △a < 2.2mm) and long cracks are compared using CT type specimens in aluminum-lithium alloy 8090 T651. It is found that the short cracks grow much more than lo...The growth behaviors of short through cracks (0.2 < △a < 2.2mm) and long cracks are compared using CT type specimens in aluminum-lithium alloy 8090 T651. It is found that the short cracks grow much more than long ones and are observed to grow at the stress intensity ranges far below the long crack threshold. The distinction of growth bahavior between short and long cracks is attributed to the difference of their crack closure effect. The growth behavior of short cracks can be rationalized with that of long ones in terms of effective stress intensity ranges. The upper demarcation value of short through cracks for aluminum-lithium alloy 8090 is presented.展开更多
The Qilian Mountain permafrost area located in the northern of Qinghai-Tibet Plateau is a favorable place for natural gas hydrate formation and enrichment,due to its well-developed fractures and abundant gas sources.U...The Qilian Mountain permafrost area located in the northern of Qinghai-Tibet Plateau is a favorable place for natural gas hydrate formation and enrichment,due to its well-developed fractures and abundant gas sources.Understanding the formation and distribution of multi-component gas hydrates in fractures is crucial in accurately evaluating the hydrate reservoir resources in this area.The hydrate formation experiments were carried out using the core samples drilled from hydrate-bearing sediments in Qilian Mountain permafrost area and the multi-component gas with similar composition to natural gas hydrates in Qilian Mountain permafrost area.The formation and distribution characteristics of multi-component gas hydrates in core samples were observed in situ by X-ray Computed Tomography(X-CT)under high pressure and low temperature conditions.Results show that hydrates are mainly formed and distributed in the fractures with good connectivity.The ratios of volume of hydrates formed in fractures to the volume of fractures are about 96.8%and 60.67%in two different core samples.This indicates that the fracture surface may act as a favorable reaction site for hydrate formation in core samples.Based on the field geological data and the experimental results,it is preliminarily estimated that the inventory of methane stored in the fractured gas hydrate in Qilian Mountain permafrost area is about 8.67×1013 m3,with a resource abundance of 8.67×108 m3/km2.This study demonstrates the great resource potential of fractured gas hydrate and also provides a new way to further understand the prospect of natural gas hydrate and other oil and gas resources in Qilian Mountain permafrost area.展开更多
Hybrid organic–inorganic perovskite thin films have attracted much attention in optoelectronic and information fields because of their intriguing properties. Due to quantum confinement effects, ultrathin films in nm ...Hybrid organic–inorganic perovskite thin films have attracted much attention in optoelectronic and information fields because of their intriguing properties. Due to quantum confinement effects, ultrathin films in nm scale usually show special properties. Here, we report on the growth of methylammonium lead iodide(MAPbI_(3)) ultrathin films via co-deposition of PbI_2 and CH_3NH_3I(MAI) on chemical-vapor-deposition-grown monolayer MoS_(2) as well as the corresponding photoluminescence(PL) properties at different growing stages. Atomic force microscopy and scanning electron microscopy measurements reveal the MoS_(2) tuned growth of MAPbI_(3) in a Stranski–Krastanov mode. PL and Kelvin probe force microscopy results confirm that MAPbI_(3) /MoS_(2) heterostructures have a type-Ⅱ energy level alignment at the interface. Temperaturedependent PL measurements on layered MAPbI_(3) (at the initial stage) and on MAPbI_(3) crystals in averaged size of 500 nm(at the later stage) show rather different temperature dependence as well as the phase transitions from tetragonal to orthorhombic at 120 and 150 K, respectively. Our findings are useful in fabricating MAPbI_(3) /transition-metal dichalcogenide based innovative devices for wider optoelectronic applications.展开更多
ZrC coatings were deposited on graphite substrates by low pressure chemical vapor deposition(LPCVD) with the Br2-Zr-C3H6-H2-Ar system. The effects of deposition time on the microstructures and growth behavior of ZrC...ZrC coatings were deposited on graphite substrates by low pressure chemical vapor deposition(LPCVD) with the Br2-Zr-C3H6-H2-Ar system. The effects of deposition time on the microstructures and growth behavior of ZrC coatings were investigated. ZrC coating grew in an island-layer mode. The formation of coating was dominated by the nucleation of ZrC in the initial 20 minutes, and the rapid nucleation generated a fine-grained structure of ZrC coating. When the deposition time was over 30 min, the growth of coating was dominated by that of crystals, giving a column-arranged structure. Energy dispersive X-ray spectroscopy showed that the molar ratio of carbon to zirconium was near 1:1 in ZrC coating, and X-ray photoelectron spectroscopy showed that ZrC was the main phase in coatings, accompanied by about 2.5mol% ZrO2 minor phase.展开更多
The thin film properties of organic semiconductors are very important to the device performance.Herein,non-planar vanadyl phthalocyanine(VOPc)thin films grown on rigid substrates of indium tin oxide,silicon dioxide,an...The thin film properties of organic semiconductors are very important to the device performance.Herein,non-planar vanadyl phthalocyanine(VOPc)thin films grown on rigid substrates of indium tin oxide,silicon dioxide,and flexible substrate of kapton by organic molecular beam deposition under vacuum conditions are systematically studied via atomic force microscopy and x-ray diffraction.The results clearly reveal that the morphology and grain size are strongly dependent on the substrate temperature during the process of film deposition.Meanwhile,the VOPc films with the structure of phase I or phase II can be modulated via in situ annealing and post-annealing temperature.Furthermore,the crystalline structure and molecular orientation of vapor-deposited VOPc can be controlled using molecular template layer 3,4,9,10-perylenetetracarboxylic dianhydride(PTCDA),the VOPc film of which exhibits the phase I structure.The deep understanding of growth mechanism of non-planar VOPc film provides valuable information for controlling structure-property relationship and accelerates the application in electronic and optoelectronic devices.展开更多
The growth behavior at the early stage of bainitic transformation was investigated using optical microscopy,X-ray diffraction analysis and transmission electronic microscopy.The bainite was obtained by isothermal tran...The growth behavior at the early stage of bainitic transformation was investigated using optical microscopy,X-ray diffraction analysis and transmission electronic microscopy.The bainite was obtained by isothermal transformation at 200 ℃ only for a short time in a high carbon silicon-containing steel after austenitization at 200 ℃ only for 20 min.Transmission electronic microscopy shows that the bainite appears in the form of plates with a width of about 30 nm,and that the interface of the bainite leading tip is wedge shaped.X-ray diffraction analysis reveals that the bainite plates consist of single ferrite phase,with absence of carbides.The results confirm the occurrence of the moiré which suggests the existence of austenite grain boundaries at the bainite leading tip.Both the lateral growth and longitudinal growth of bainite have weak ability to traverse the lattice-distortion strain fields and austenite grain boundary.The austenite grain boundary impedes the longitudinal growth of the bainite plate,i.e.,the growth of bainite plate stops at the austenite grain boundary.The longitudinal growth of bainite associated with the features of shear mechanism can not completely be in accordance with that of martensitic transformation.展开更多
The step edges and intrinsic atomic structure of single-crystal substrate play a critical role in determining the growth pathways of transition metal dichalcogenide(TMD)grains,particularly whether the TMDs will grow i...The step edges and intrinsic atomic structure of single-crystal substrate play a critical role in determining the growth pathways of transition metal dichalcogenide(TMD)grains,particularly whether the TMDs will grow into wafer-scale single-crystal or anisotropic nanoribbons.Hereby,we investigate the growth behaviours of the MoS_(2)nanograins on(0001)and()sapphire substrates.On one hand,the step edges formed on the(0001)surface after thermal treatment are found to promote the macroscopic aggregation of MoS_(2)nanograins and to form unidirectional large triangular islands along with the<>steps in the annealing process,while on the pristine(0001)surface,the MoS_(2)nanograins grow into a random network-like pattern.Moreover,oxygen treatment on the substrate can further enhance the growth of MoS_(2)nanograins.Transmission electron microscopy and fast Fourier transform patterns reveal that the substrate could modulate the orientation of MoS_(2)nanograins during their growing process.On the other hand,the MoS_(2)nanograins on the surface could self-assemble into one-dimensional nanoribbons due to the strong structural anisotropy of the substrate.In addition,the ratio of Raman intensities for peaks that correspond to the and A1g phonon modes shows a linear relationship with the grain size due to the change of the“phonon confinement”.Moreover,new peaks located at 226 and 280 cm−1 can be observed in the off-resonant and resonant Raman spectra for the MoS_(2)nanograin samples,respectively,which can be attributed to the scatterings from the edges of as-fabricated MoS_(2)nanostructures.展开更多
As an emerging class of semiconducting transition metal dichalcogenides(TMDCs),two-dimensional(2D)rhenium dichalcogenides(ReX_(2),X=S or Se)have recently aroused great research interest due to their unique anisotropic...As an emerging class of semiconducting transition metal dichalcogenides(TMDCs),two-dimensional(2D)rhenium dichalcogenides(ReX_(2),X=S or Se)have recently aroused great research interest due to their unique anisotropic structure(1T′phase),and the related novel properties and applications.Recently,many efforts have been devoted to the controllable syntheses of high-quality monolayer or few-layer ReX_(2)flakes/films by chemical vapor deposition(CVD),wherein the metallic Au foil is found to be a unique substrate,due to the relatively strong interfacial coupling between monolayer ReX_(2)and Au.And the conductive nature of Au enables in situ characterizations of the as-grown ReX_(2)samples,which is essential for exploring the fundamental properties and internal growth mechanisms.Hereby,this review focuses on the recent progresses on the CVD syntheses and in situ characterizations of high-quality monolayer ReX_(2)flakes/films and their heterostructures with graphene on Au foils.The effects of Au foils on improving the crystal quality and inducing the growth of monolayer ReX_(2)single crystals are intensively addressed.The crystallinity,domain morphology,atomic and electronic structures,as well as the growth behaviors of monolayer ReX_(2)flakes/films and graphene/ReX_(2)heterostructures on Au revealed by in situ characterization techniques are also highlighted.As contrasts,the growth behaviors of monolayer or few-layer ReX_(2)on insulating substrates are also discussed.Besides,the potential applications of 2D ReX_(2)in new-generation electronic,optoelectronic devices,and energy-related fields are also introduced.Finally,future research directions are also prospected for propelling the practical applications of 2D ReX_(2)materials in more versatile fields.展开更多
Setosphaeria turcica,an essential phytopathogenic fungus,is the primary cause of serious yield losses in corn; however,its pathogenic mechanism is poorly understood.We cloned STK2,a newly discovered mitogen-activated ...Setosphaeria turcica,an essential phytopathogenic fungus,is the primary cause of serious yield losses in corn; however,its pathogenic mechanism is poorly understood.We cloned STK2,a newly discovered mitogen-activated protein kinase gene with a deduced amino acid sequence that is 96% identical to MAK2 from Phaeosphaeria nodorum,56% identical to KSS1 and 57% identical to FUS3 from Saccharomyces cerevisiae.To deduce Stk2 function in S.turcica and to identify the genetic relationship between STK2 and KSS1/FUS3 from S.cerevisiae,a restructured vector containing the open reading frame of STK2 was transformed into a fus3/kss1 double deletion mutant of S.cerevisiae.The results show that the STK2 complementary strain clearly formed pseudohyphae and ascospores,and the strain grew on the surface of the medium after rinsing with sterile water and the characteristics of the complementary strain was the same as the wild-type strain.Moreover,STK2 complemented the function of KSS1 in filamentation and invasive growth,as well as the mating behavior of FUS3 in S.cerevisiae,however,its exact functions in S.turcica will be studied in the future research.展开更多
The importance of nutrient provisions and weaning methods for calves has been well established over the past few years,while as increasing interest has focused on contribution of animal behavior and their overall perf...The importance of nutrient provisions and weaning methods for calves has been well established over the past few years,while as increasing interest has focused on contribution of animal behavior and their overall performance in production regimes.The present study investigated the effects of feeding methods and space allowance on growth performance,individual and social behaviors in Holstein calves.Twenty-four Chinese Holstein male and female calves were allocated to either an individual or group of 6 and fed either with a bucket or a teat.Milk replacer,calf starter,and Chinese wildrye were offered during the experiment.A fecal index used in the present study was defined as the total fecal scores/total number of calves in each treatment.The results showed that there was no significant difference among the 4 treatments in terms of feed intake,body weight,average daily gain,and fecal index.For the feeding behaviors,the ingesting milk time and ingesting milk rate were significantly affected by space allowance,while the feeding methods showed a significant influence on the bunting behavior of the calves.There was no significant difference among the 4 treatments in terms of licking fixtures,self-grooming,and lying down behaviors,irrespective of the feeding method or space allowance.However,sucking an empty bucket or the teat was significantly affected by the feeding method.Several selected group behaviors were examined in the present study,and similar values for sniffing the other calves,social grooming,and cross-sucking behaviors were observed.Overall,the present study demonstrated that different feeding methods and space allowances had a significant effect on the feeding behavior of calves,while the feed intake,growth performance,health condition,individual and group social behaviors were not significantly influenced.Furthermore,under intensified production systems,Holstein calves raised in a group may obtain a similar production performance,thus reducing management input and profitability compared with those kept individually.However,there may be competition during the feeding period.展开更多
Green-lipped mussel, Perna viridis is a warm water mussel species that is distributed widely in the Indo-Pacific regions. It is a commercially important species and has demonstrated a great culture potential in tropic...Green-lipped mussel, Perna viridis is a warm water mussel species that is distributed widely in the Indo-Pacific regions. It is a commercially important species and has demonstrated a great culture potential in tropical countries. The feeding behavior of P. viridis is influenced by both seston concentration and its nutritional values. It is shown the mussels exhibit higher ingestion rate when the organic content of the seston is higher. Interestingly, several studies have reported that P. viridis can demonstrate selective feeding behavior towards phytoplankton. Short term studies have shown that the P. viridis exhibits preferentially ingestion of dinoflagellates, while long term studies show that the P. viridis has a higher growth rate during diatom blooms. Nevertheless, spawning of P. viridis is induced by high primary productivity at relatively high sea water temperature. In the temperate countries, spawning is seasonal but normally occurs in summer. In the tropical countries, however, the P. viridis has been shown to spawn all year-round with two peaks which coincide with monsoon seasons. The site selection is critically important when considering the green mussel culture. Feasibility study for P. viridis farming is normally carried out first in order to evaluate the environmental conditions of the site. This paper attempts to review the current knowledge of biology, selective feeding behaviour, growth, reproductive and the aquaculture site selection methods for green-lipped mussel.展开更多
The influence of hydrogen embrittlement on the fatigue behaviors of AISI 304 stainless steel is investigated. The fatigue endurance limits of the untreated and hydrogen-embrittled materials were almost the same at 400...The influence of hydrogen embrittlement on the fatigue behaviors of AISI 304 stainless steel is investigated. The fatigue endurance limits of the untreated and hydrogen-embrittled materials were almost the same at 400 MPa, and hydrogen embrittlement had little influence even though the sample contained about 8.1 times more hydrogen. Thus, the sensitivity of hydrogen gas in this material is very low. A surface crack initiation, growth, coalescence, and micro ridge model is proposed in this study. Slip line formation?⇒microcrack formation?⇒increases in the crack width, and blunting of the crack tip as it grows?⇒formation of many slip lines because of deformation in the shear direction?⇒growth of the crack in the shear direction, forming micro ridges, coalescence with adjacent cracks ⇒?continuous initiation, growth, coalescence, and ridge formation of surface cracks and specimen breakage.展开更多
During the process that implant materials are used for bone replacement,the cell responses to implant materials determine the long-term stability of bone replacement.The microstructure of implant materials is consider...During the process that implant materials are used for bone replacement,the cell responses to implant materials determine the long-term stability of bone replacement.The microstructure of implant materials is considered as a critical factor that influences the cell responses.Carbon/Carbon composites(C/C composites) are novel implant materials,but there are few reports on the effect of their microstructure,especially the carbon matrixes and holes,on cell behavior.In this paper,C/C composites with different carbon matrixes are prepared by chemical vapor infiltration and pressure impregnation carbonization technique,respectively.The structure of holes is analyzed.The cell responses to C/C composites with different carbon matrixes are evaluated with MG63 osteoblast-like cells.The morphologies of MG63 osteoblast-like cells on the surface of C/C composites,especially in the holes are assessed by scanning electron microscope,and cell proliferation behavior is evaluated by 3-[4,5-dimethylthiozol-2-yl]-2,5-diphenyltetrazolium bromide(MTT) assay. The results show that MG63 osteoblast-like cells have a lamellar morphology with similar sizes and spreading areas as well as the same proliferation behaviors for C/C composites with different carbon matrixes.Carbon matrix shows unapparent influence on the cell growth behavior.Besides,MG63 osteoblast-like cells have various interactions with the holes of C/C composites.The cells stride over the holes with 6~8μm in size,and connect with each other or grow along the curvature wall of the holes with a size of 30-40μm;the cells present three-dimensional morphologies inside the holes and display circular shapes along the ridge of the holes.Diverse cell-material interactions are found according to the size and position of the holes,which provides theoretical foundation for the microstructure design of clinical C/C composites.展开更多
Tetrapod-shaped ZnO microcrystals in forms of whiskers and microrods have been grown in the same crucible by thermal evaporation of Zn/C mixtures at a temperature of 930℃ in air without using any catalyst. The tetrap...Tetrapod-shaped ZnO microcrystals in forms of whiskers and microrods have been grown in the same crucible by thermal evaporation of Zn/C mixtures at a temperature of 930℃ in air without using any catalyst. The tetrapod-shaped ZnO microrods were capped by hexagonal pyramids. It is for the first time observed that the tetrapod-shaped ZnO whiskers and microrods have quite different morphologies, and this is believed to be a result of different growth behaviors associated with these two forms of ZnO microcrystals. The octa-twin model has been used to discuss their growth behaviors. Photoluminescence properties of these two forms of tetrapod-shaped ZnO microcrystals have been investigated using different excitation wavelengths. Both of the two forms of ZnO microcrystals showed strong green emission and weak ultraviolet emission behaviors. The excitation spectrum of the tetrapod-shaped ZnO whiskers showed a strong excitation peak at 395 nm, which was not observed for the tetrapod-shaped ZnO microrods.展开更多
Objective: To observe the ordered growth behavior of human urinary bladder cancer cell line (BIU) under culture in vitro. Methods: The suspension of BIU cells was spread locally in a culture container. When the cells ...Objective: To observe the ordered growth behavior of human urinary bladder cancer cell line (BIU) under culture in vitro. Methods: The suspension of BIU cells was spread locally in a culture container. When the cells grew a-long the wall to form a cellular colony, macroscopic and microscopic observations complemented with measurements of the parameters including expanding diameter, expanding rate, cell shape. average cell density, average cell size. dehydrogenase activity and sensitivity to pH were conducted dynamically. Results: During cell culture, obvious laminar characteristics appeared in localized growing BIU cell colonies and there was difference between the cells of different zones in shape, size, density, dehydrogenase activity and sensitivity to pH. Conclusion: Space closing and bio-dissipation result in self-organization of BIU cells with ordered growth behavior. The present experiment offers a simple, controllable model for the study of wavy growth of human cells.展开更多
Previous studies suggested that pigs prefer lower environmental temperatures during nighttime compared to daytime. So reducing nocturnal temperature in nursery barns may not jeopardize performance or welfare of pigs, ...Previous studies suggested that pigs prefer lower environmental temperatures during nighttime compared to daytime. So reducing nocturnal temperature in nursery barns may not jeopardize performance or welfare of pigs, but can save energy for heating the barn. A study was conducted to investigate growth performance and behavioral response of nursery pigs to reduced nocturnal temperature. This study was conducted in four replicates, each utilizing 270 newly weaned pigs and lasting for 5 wk. Temperature setpoint in the control room (CON) was started at 30℃ and decreased by 2℃ per week. In the treatment room (RNT), temperature setpoint was maintained same as in CON between 7:00 h and 19:00 h, and reduced by 8~C between 19:00 h and 7:00 h starting from d 5. Growth performance (15 pens/room, 9 pigs/pen, BW=(6.3±0.61) kg) was monitored for 5 wk, and behaviors in 6 pens in each room were video-recorded for 24 h 3 d after being exposed to the experimental temperature. Instantaneous scan sampling was performed to determine time budgets for standing, sitting, eating, drinking, belly nosing, three postures of lying, and huddling. Two focal pigs were continuously viewed to record duration and occurrence of eating and drinking. Reduced nocturnal temperature did not affect the growth performance of the pigs, time spent standing, sitting, total lying and eating or duration and frequencies of eating and drinking (all P〉0.10). However, RNT increased time spent lying sternal (83 vs. 72%, P〈0.001) and number of pigs that were huddling (70 vs. 50% of lying pigs, P〈0.001), and decreased time spent lying laterally (0.8 vs. 4.6%, P〈0.001), lying half laterally (5.3 vs. 11.0%, P〈0.001), and belly nosing (0.9 vs. 1.7%, P=0.01) during nighttime. These results indicate that nursery pigs adopted the posture of lying sternal and huddled together to reduce heat loss from their body surface to maintain thermal balance and growth performance in RNT. Such mild reduction in nocturnal temperature in the nursery barn can save energy for heating the barn without negative effects on performance and behavior of nursery pigs.展开更多
Self-feeding device is extensively used in aquaculture farms, but for salmonids the individual feeding behavior has seldom been continuously observed. In this article, the individual self-feeding behavior of 10 rainbo...Self-feeding device is extensively used in aquaculture farms, but for salmonids the individual feeding behavior has seldom been continuously observed. In this article, the individual self-feeding behavior of 10 rainbow trout was continuously monitored with a PIT tag record for 50 days with three replicates. The?sh fell into three categories according to their feeding behavior, i.e. high triggering ?sh(trigger behavior more than 25% of the group, HT), low triggering ?sh(1%–25%, LT) and zero triggering ?sh(less than1%). The results showed that in a group of 10 individual 1–2 HT ?sh accounted for most of the self-feeding behavior(78.19%–89.14%), which was far more than they could consume. The trigger frequency of the?sh was signi?cantly correlated with the initial body weight( P <0.01), however, no signi?cant dif ference in growth rate among the HT, LT, and ZT ?sh was observed( P >0.05). Cosinor analysis showed that the two HT ?sh in the same group had similar acrophase. Though some of the HT ?sh could be active for 50 d, there were also HT ?sh decreased triggering behavior around 40 d and the high trigger status was then replaced by other ?sh, which was ?rst discovered in salimonds. Interestingly, the growth of the group was not af fected by the alternation triggering ?sh. These results provide evidence that in the self-feeding system the HT ?sh didn't gain much advantage by their frequent self-feeding behavior, and high trigger status of the HT ?sh is not only an individual character but also driven by the demand of the group. In the self-feeding system, the critical individual should be closely monitored.展开更多
文摘The thermal fatigue behavior of a single crystal superalloy SRR99 was investigated. Specimens with V-type notch were tested at the peak temperatures of 900, 1000, and 1100℃. The crack growth curves as a function of the number of cycles were plotted. With the increase of peak temperature, the crack initiation life was shortened dramatically. Through optical microscopy (OM) and scanning electron microscopy (SEM) observation, it was found that multiple small cracks nucleated at the notch tip region but only one or two of them continued to develop in the following thermal cycles. The primary cracks generally propagated along a preferential direction. Microstructure changes after thermal fatigue were also discussed on the basis of SEM observation.
文摘An experiment was conducted to observe the inhibitory effects of the leaf extracts derived from Albizia lebbeck (L.) Benth. On germination and growth behavior of some popular agricultural crops (receptor) of Bangladesh. Experiments were set on sterilized petridishes with a photoperiod of 24 h at room temperature of 27-30℃. The effects of the different concentrations of aqueous extracts were compared to distil water (control.). The aqueous extracts of leaf caused significant inhibitory effect on germination, root and shoot elongation and development of lateral roots of receptor plants. Bioassays indicated that the inhibitory effect was proportional to the concentrations of the extracts and higher concentration (50%-100%) had the stronger inhibitory effect whereas the lower concentration (10%-25%) showed stimulatory effect in some cases. The study also revealed that, inhibitory effect was much pronounced in root and lateral root development rather than germination and shoot growth.
文摘The growth behaviors of short through cracks (0.2 < △a < 2.2mm) and long cracks are compared using CT type specimens in aluminum-lithium alloy 8090 T651. It is found that the short cracks grow much more than long ones and are observed to grow at the stress intensity ranges far below the long crack threshold. The distinction of growth bahavior between short and long cracks is attributed to the difference of their crack closure effect. The growth behavior of short cracks can be rationalized with that of long ones in terms of effective stress intensity ranges. The upper demarcation value of short through cracks for aluminum-lithium alloy 8090 is presented.
基金the financial support of the National Natural Science Foundation of China(42176212,41976074 and 41302034)the Marine S&T Fund of Shandong Province for Laoshan Laboratory(2021QNLM020002)the Marine Geological Survey Program(DD20221704)。
文摘The Qilian Mountain permafrost area located in the northern of Qinghai-Tibet Plateau is a favorable place for natural gas hydrate formation and enrichment,due to its well-developed fractures and abundant gas sources.Understanding the formation and distribution of multi-component gas hydrates in fractures is crucial in accurately evaluating the hydrate reservoir resources in this area.The hydrate formation experiments were carried out using the core samples drilled from hydrate-bearing sediments in Qilian Mountain permafrost area and the multi-component gas with similar composition to natural gas hydrates in Qilian Mountain permafrost area.The formation and distribution characteristics of multi-component gas hydrates in core samples were observed in situ by X-ray Computed Tomography(X-CT)under high pressure and low temperature conditions.Results show that hydrates are mainly formed and distributed in the fractures with good connectivity.The ratios of volume of hydrates formed in fractures to the volume of fractures are about 96.8%and 60.67%in two different core samples.This indicates that the fracture surface may act as a favorable reaction site for hydrate formation in core samples.Based on the field geological data and the experimental results,it is preliminarily estimated that the inventory of methane stored in the fractured gas hydrate in Qilian Mountain permafrost area is about 8.67×1013 m3,with a resource abundance of 8.67×108 m3/km2.This study demonstrates the great resource potential of fractured gas hydrate and also provides a new way to further understand the prospect of natural gas hydrate and other oil and gas resources in Qilian Mountain permafrost area.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11874427 and 11804395)the Fundamental Research Funds for the Central Universities of Central South University (Grant No.2020zzts377)。
文摘Hybrid organic–inorganic perovskite thin films have attracted much attention in optoelectronic and information fields because of their intriguing properties. Due to quantum confinement effects, ultrathin films in nm scale usually show special properties. Here, we report on the growth of methylammonium lead iodide(MAPbI_(3)) ultrathin films via co-deposition of PbI_2 and CH_3NH_3I(MAI) on chemical-vapor-deposition-grown monolayer MoS_(2) as well as the corresponding photoluminescence(PL) properties at different growing stages. Atomic force microscopy and scanning electron microscopy measurements reveal the MoS_(2) tuned growth of MAPbI_(3) in a Stranski–Krastanov mode. PL and Kelvin probe force microscopy results confirm that MAPbI_(3) /MoS_(2) heterostructures have a type-Ⅱ energy level alignment at the interface. Temperaturedependent PL measurements on layered MAPbI_(3) (at the initial stage) and on MAPbI_(3) crystals in averaged size of 500 nm(at the later stage) show rather different temperature dependence as well as the phase transitions from tetragonal to orthorhombic at 120 and 150 K, respectively. Our findings are useful in fabricating MAPbI_(3) /transition-metal dichalcogenide based innovative devices for wider optoelectronic applications.
基金Founded by the National Natural Science Foundation of China(No.91216302)the National Program on Key Basic Research Project of the People's Republic of China(No.2015CB655200)
文摘ZrC coatings were deposited on graphite substrates by low pressure chemical vapor deposition(LPCVD) with the Br2-Zr-C3H6-H2-Ar system. The effects of deposition time on the microstructures and growth behavior of ZrC coatings were investigated. ZrC coating grew in an island-layer mode. The formation of coating was dominated by the nucleation of ZrC in the initial 20 minutes, and the rapid nucleation generated a fine-grained structure of ZrC coating. When the deposition time was over 30 min, the growth of coating was dominated by that of crystals, giving a column-arranged structure. Energy dispersive X-ray spectroscopy showed that the molar ratio of carbon to zirconium was near 1:1 in ZrC coating, and X-ray photoelectron spectroscopy showed that ZrC was the main phase in coatings, accompanied by about 2.5mol% ZrO2 minor phase.
基金Project supported by the National Natural Science Foundation of China(Grant No.51673214)the National Key Research and Development Program of China(Grant No.2017YFA0206600)
文摘The thin film properties of organic semiconductors are very important to the device performance.Herein,non-planar vanadyl phthalocyanine(VOPc)thin films grown on rigid substrates of indium tin oxide,silicon dioxide,and flexible substrate of kapton by organic molecular beam deposition under vacuum conditions are systematically studied via atomic force microscopy and x-ray diffraction.The results clearly reveal that the morphology and grain size are strongly dependent on the substrate temperature during the process of film deposition.Meanwhile,the VOPc films with the structure of phase I or phase II can be modulated via in situ annealing and post-annealing temperature.Furthermore,the crystalline structure and molecular orientation of vapor-deposited VOPc can be controlled using molecular template layer 3,4,9,10-perylenetetracarboxylic dianhydride(PTCDA),the VOPc film of which exhibits the phase I structure.The deep understanding of growth mechanism of non-planar VOPc film provides valuable information for controlling structure-property relationship and accelerates the application in electronic and optoelectronic devices.
基金Item Sponsored by Tianjin Momentous Technology Supporting Program Foundation of China(11ZCKFGX20500)
文摘The growth behavior at the early stage of bainitic transformation was investigated using optical microscopy,X-ray diffraction analysis and transmission electronic microscopy.The bainite was obtained by isothermal transformation at 200 ℃ only for a short time in a high carbon silicon-containing steel after austenitization at 200 ℃ only for 20 min.Transmission electronic microscopy shows that the bainite appears in the form of plates with a width of about 30 nm,and that the interface of the bainite leading tip is wedge shaped.X-ray diffraction analysis reveals that the bainite plates consist of single ferrite phase,with absence of carbides.The results confirm the occurrence of the moiré which suggests the existence of austenite grain boundaries at the bainite leading tip.Both the lateral growth and longitudinal growth of bainite have weak ability to traverse the lattice-distortion strain fields and austenite grain boundary.The austenite grain boundary impedes the longitudinal growth of the bainite plate,i.e.,the growth of bainite plate stops at the austenite grain boundary.The longitudinal growth of bainite associated with the features of shear mechanism can not completely be in accordance with that of martensitic transformation.
基金the financial support from the Australian Research Council Discovery Program(No.DP190103661).
文摘The step edges and intrinsic atomic structure of single-crystal substrate play a critical role in determining the growth pathways of transition metal dichalcogenide(TMD)grains,particularly whether the TMDs will grow into wafer-scale single-crystal or anisotropic nanoribbons.Hereby,we investigate the growth behaviours of the MoS_(2)nanograins on(0001)and()sapphire substrates.On one hand,the step edges formed on the(0001)surface after thermal treatment are found to promote the macroscopic aggregation of MoS_(2)nanograins and to form unidirectional large triangular islands along with the<>steps in the annealing process,while on the pristine(0001)surface,the MoS_(2)nanograins grow into a random network-like pattern.Moreover,oxygen treatment on the substrate can further enhance the growth of MoS_(2)nanograins.Transmission electron microscopy and fast Fourier transform patterns reveal that the substrate could modulate the orientation of MoS_(2)nanograins during their growing process.On the other hand,the MoS_(2)nanograins on the surface could self-assemble into one-dimensional nanoribbons due to the strong structural anisotropy of the substrate.In addition,the ratio of Raman intensities for peaks that correspond to the and A1g phonon modes shows a linear relationship with the grain size due to the change of the“phonon confinement”.Moreover,new peaks located at 226 and 280 cm−1 can be observed in the off-resonant and resonant Raman spectra for the MoS_(2)nanograin samples,respectively,which can be attributed to the scatterings from the edges of as-fabricated MoS_(2)nanostructures.
基金supported by the National Key Research and Development Program of China(No.2018YFA0703700)the National Natural Science Foundation of China(Nos.51925201,51991344,51991340,and 52021006)the Open Research Fund Program of the State Key Laboratory of Low Dimensional Quantum Physics(No.KF202011).
文摘As an emerging class of semiconducting transition metal dichalcogenides(TMDCs),two-dimensional(2D)rhenium dichalcogenides(ReX_(2),X=S or Se)have recently aroused great research interest due to their unique anisotropic structure(1T′phase),and the related novel properties and applications.Recently,many efforts have been devoted to the controllable syntheses of high-quality monolayer or few-layer ReX_(2)flakes/films by chemical vapor deposition(CVD),wherein the metallic Au foil is found to be a unique substrate,due to the relatively strong interfacial coupling between monolayer ReX_(2)and Au.And the conductive nature of Au enables in situ characterizations of the as-grown ReX_(2)samples,which is essential for exploring the fundamental properties and internal growth mechanisms.Hereby,this review focuses on the recent progresses on the CVD syntheses and in situ characterizations of high-quality monolayer ReX_(2)flakes/films and their heterostructures with graphene on Au foils.The effects of Au foils on improving the crystal quality and inducing the growth of monolayer ReX_(2)single crystals are intensively addressed.The crystallinity,domain morphology,atomic and electronic structures,as well as the growth behaviors of monolayer ReX_(2)flakes/films and graphene/ReX_(2)heterostructures on Au revealed by in situ characterization techniques are also highlighted.As contrasts,the growth behaviors of monolayer or few-layer ReX_(2)on insulating substrates are also discussed.Besides,the potential applications of 2D ReX_(2)in new-generation electronic,optoelectronic devices,and energy-related fields are also introduced.Finally,future research directions are also prospected for propelling the practical applications of 2D ReX_(2)materials in more versatile fields.
基金supported by the National Natural Science Foundation of China(30471126 and 31171805)
文摘Setosphaeria turcica,an essential phytopathogenic fungus,is the primary cause of serious yield losses in corn; however,its pathogenic mechanism is poorly understood.We cloned STK2,a newly discovered mitogen-activated protein kinase gene with a deduced amino acid sequence that is 96% identical to MAK2 from Phaeosphaeria nodorum,56% identical to KSS1 and 57% identical to FUS3 from Saccharomyces cerevisiae.To deduce Stk2 function in S.turcica and to identify the genetic relationship between STK2 and KSS1/FUS3 from S.cerevisiae,a restructured vector containing the open reading frame of STK2 was transformed into a fus3/kss1 double deletion mutant of S.cerevisiae.The results show that the STK2 complementary strain clearly formed pseudohyphae and ascospores,and the strain grew on the surface of the medium after rinsing with sterile water and the characteristics of the complementary strain was the same as the wild-type strain.Moreover,STK2 complemented the function of KSS1 in filamentation and invasive growth,as well as the mating behavior of FUS3 in S.cerevisiae,however,its exact functions in S.turcica will be studied in the future research.
基金supported by the Earmarked Fund for Beijing Dairy Industry Innovation Consortium of Agriculture Research System (BAIC06-2016)the Beijing Key Laboratory for Dairy Cow Nutrition, the National Key Technology R&D Program of China (2012BAD12B06)the Key Laboratory of Feed Biotechnology, the Ministry of Agriculture of the People’s Republic of China
文摘The importance of nutrient provisions and weaning methods for calves has been well established over the past few years,while as increasing interest has focused on contribution of animal behavior and their overall performance in production regimes.The present study investigated the effects of feeding methods and space allowance on growth performance,individual and social behaviors in Holstein calves.Twenty-four Chinese Holstein male and female calves were allocated to either an individual or group of 6 and fed either with a bucket or a teat.Milk replacer,calf starter,and Chinese wildrye were offered during the experiment.A fecal index used in the present study was defined as the total fecal scores/total number of calves in each treatment.The results showed that there was no significant difference among the 4 treatments in terms of feed intake,body weight,average daily gain,and fecal index.For the feeding behaviors,the ingesting milk time and ingesting milk rate were significantly affected by space allowance,while the feeding methods showed a significant influence on the bunting behavior of the calves.There was no significant difference among the 4 treatments in terms of licking fixtures,self-grooming,and lying down behaviors,irrespective of the feeding method or space allowance.However,sucking an empty bucket or the teat was significantly affected by the feeding method.Several selected group behaviors were examined in the present study,and similar values for sniffing the other calves,social grooming,and cross-sucking behaviors were observed.Overall,the present study demonstrated that different feeding methods and space allowances had a significant effect on the feeding behavior of calves,while the feed intake,growth performance,health condition,individual and group social behaviors were not significantly influenced.Furthermore,under intensified production systems,Holstein calves raised in a group may obtain a similar production performance,thus reducing management input and profitability compared with those kept individually.However,there may be competition during the feeding period.
文摘Green-lipped mussel, Perna viridis is a warm water mussel species that is distributed widely in the Indo-Pacific regions. It is a commercially important species and has demonstrated a great culture potential in tropical countries. The feeding behavior of P. viridis is influenced by both seston concentration and its nutritional values. It is shown the mussels exhibit higher ingestion rate when the organic content of the seston is higher. Interestingly, several studies have reported that P. viridis can demonstrate selective feeding behavior towards phytoplankton. Short term studies have shown that the P. viridis exhibits preferentially ingestion of dinoflagellates, while long term studies show that the P. viridis has a higher growth rate during diatom blooms. Nevertheless, spawning of P. viridis is induced by high primary productivity at relatively high sea water temperature. In the temperate countries, spawning is seasonal but normally occurs in summer. In the tropical countries, however, the P. viridis has been shown to spawn all year-round with two peaks which coincide with monsoon seasons. The site selection is critically important when considering the green mussel culture. Feasibility study for P. viridis farming is normally carried out first in order to evaluate the environmental conditions of the site. This paper attempts to review the current knowledge of biology, selective feeding behaviour, growth, reproductive and the aquaculture site selection methods for green-lipped mussel.
文摘The influence of hydrogen embrittlement on the fatigue behaviors of AISI 304 stainless steel is investigated. The fatigue endurance limits of the untreated and hydrogen-embrittled materials were almost the same at 400 MPa, and hydrogen embrittlement had little influence even though the sample contained about 8.1 times more hydrogen. Thus, the sensitivity of hydrogen gas in this material is very low. A surface crack initiation, growth, coalescence, and micro ridge model is proposed in this study. Slip line formation?⇒microcrack formation?⇒increases in the crack width, and blunting of the crack tip as it grows?⇒formation of many slip lines because of deformation in the shear direction?⇒growth of the crack in the shear direction, forming micro ridges, coalescence with adjacent cracks ⇒?continuous initiation, growth, coalescence, and ridge formation of surface cracks and specimen breakage.
基金supported by National Natural Science Foundation of China(Grant No.50972120,Grant No.50902111 and Grant No. 51072107)"111"Project of China(Grant No.B08040)
文摘During the process that implant materials are used for bone replacement,the cell responses to implant materials determine the long-term stability of bone replacement.The microstructure of implant materials is considered as a critical factor that influences the cell responses.Carbon/Carbon composites(C/C composites) are novel implant materials,but there are few reports on the effect of their microstructure,especially the carbon matrixes and holes,on cell behavior.In this paper,C/C composites with different carbon matrixes are prepared by chemical vapor infiltration and pressure impregnation carbonization technique,respectively.The structure of holes is analyzed.The cell responses to C/C composites with different carbon matrixes are evaluated with MG63 osteoblast-like cells.The morphologies of MG63 osteoblast-like cells on the surface of C/C composites,especially in the holes are assessed by scanning electron microscope,and cell proliferation behavior is evaluated by 3-[4,5-dimethylthiozol-2-yl]-2,5-diphenyltetrazolium bromide(MTT) assay. The results show that MG63 osteoblast-like cells have a lamellar morphology with similar sizes and spreading areas as well as the same proliferation behaviors for C/C composites with different carbon matrixes.Carbon matrix shows unapparent influence on the cell growth behavior.Besides,MG63 osteoblast-like cells have various interactions with the holes of C/C composites.The cells stride over the holes with 6~8μm in size,and connect with each other or grow along the curvature wall of the holes with a size of 30-40μm;the cells present three-dimensional morphologies inside the holes and display circular shapes along the ridge of the holes.Diverse cell-material interactions are found according to the size and position of the holes,which provides theoretical foundation for the microstructure design of clinical C/C composites.
基金supported by the Doctorate Research Plan of Nanchang University (Grant No. 0061)
文摘Tetrapod-shaped ZnO microcrystals in forms of whiskers and microrods have been grown in the same crucible by thermal evaporation of Zn/C mixtures at a temperature of 930℃ in air without using any catalyst. The tetrapod-shaped ZnO microrods were capped by hexagonal pyramids. It is for the first time observed that the tetrapod-shaped ZnO whiskers and microrods have quite different morphologies, and this is believed to be a result of different growth behaviors associated with these two forms of ZnO microcrystals. The octa-twin model has been used to discuss their growth behaviors. Photoluminescence properties of these two forms of tetrapod-shaped ZnO microcrystals have been investigated using different excitation wavelengths. Both of the two forms of ZnO microcrystals showed strong green emission and weak ultraviolet emission behaviors. The excitation spectrum of the tetrapod-shaped ZnO whiskers showed a strong excitation peak at 395 nm, which was not observed for the tetrapod-shaped ZnO microrods.
文摘Objective: To observe the ordered growth behavior of human urinary bladder cancer cell line (BIU) under culture in vitro. Methods: The suspension of BIU cells was spread locally in a culture container. When the cells grew a-long the wall to form a cellular colony, macroscopic and microscopic observations complemented with measurements of the parameters including expanding diameter, expanding rate, cell shape. average cell density, average cell size. dehydrogenase activity and sensitivity to pH were conducted dynamically. Results: During cell culture, obvious laminar characteristics appeared in localized growing BIU cell colonies and there was difference between the cells of different zones in shape, size, density, dehydrogenase activity and sensitivity to pH. Conclusion: Space closing and bio-dissipation result in self-organization of BIU cells with ordered growth behavior. The present experiment offers a simple, controllable model for the study of wavy growth of human cells.
基金the National Pork Board and the Pork Checkoff, USA, for partial financial support of the project
文摘Previous studies suggested that pigs prefer lower environmental temperatures during nighttime compared to daytime. So reducing nocturnal temperature in nursery barns may not jeopardize performance or welfare of pigs, but can save energy for heating the barn. A study was conducted to investigate growth performance and behavioral response of nursery pigs to reduced nocturnal temperature. This study was conducted in four replicates, each utilizing 270 newly weaned pigs and lasting for 5 wk. Temperature setpoint in the control room (CON) was started at 30℃ and decreased by 2℃ per week. In the treatment room (RNT), temperature setpoint was maintained same as in CON between 7:00 h and 19:00 h, and reduced by 8~C between 19:00 h and 7:00 h starting from d 5. Growth performance (15 pens/room, 9 pigs/pen, BW=(6.3±0.61) kg) was monitored for 5 wk, and behaviors in 6 pens in each room were video-recorded for 24 h 3 d after being exposed to the experimental temperature. Instantaneous scan sampling was performed to determine time budgets for standing, sitting, eating, drinking, belly nosing, three postures of lying, and huddling. Two focal pigs were continuously viewed to record duration and occurrence of eating and drinking. Reduced nocturnal temperature did not affect the growth performance of the pigs, time spent standing, sitting, total lying and eating or duration and frequencies of eating and drinking (all P〉0.10). However, RNT increased time spent lying sternal (83 vs. 72%, P〈0.001) and number of pigs that were huddling (70 vs. 50% of lying pigs, P〈0.001), and decreased time spent lying laterally (0.8 vs. 4.6%, P〈0.001), lying half laterally (5.3 vs. 11.0%, P〈0.001), and belly nosing (0.9 vs. 1.7%, P=0.01) during nighttime. These results indicate that nursery pigs adopted the posture of lying sternal and huddled together to reduce heat loss from their body surface to maintain thermal balance and growth performance in RNT. Such mild reduction in nocturnal temperature in the nursery barn can save energy for heating the barn without negative effects on performance and behavior of nursery pigs.
基金Supported by the National Natural Science Foundation of China(No.31602208)the K.C.Wong Magna Fund in Ningbo Universitythe Qingdao Post-doctoral Application Research Project(No.Y6KY01110N)
文摘Self-feeding device is extensively used in aquaculture farms, but for salmonids the individual feeding behavior has seldom been continuously observed. In this article, the individual self-feeding behavior of 10 rainbow trout was continuously monitored with a PIT tag record for 50 days with three replicates. The?sh fell into three categories according to their feeding behavior, i.e. high triggering ?sh(trigger behavior more than 25% of the group, HT), low triggering ?sh(1%–25%, LT) and zero triggering ?sh(less than1%). The results showed that in a group of 10 individual 1–2 HT ?sh accounted for most of the self-feeding behavior(78.19%–89.14%), which was far more than they could consume. The trigger frequency of the?sh was signi?cantly correlated with the initial body weight( P <0.01), however, no signi?cant dif ference in growth rate among the HT, LT, and ZT ?sh was observed( P >0.05). Cosinor analysis showed that the two HT ?sh in the same group had similar acrophase. Though some of the HT ?sh could be active for 50 d, there were also HT ?sh decreased triggering behavior around 40 d and the high trigger status was then replaced by other ?sh, which was ?rst discovered in salimonds. Interestingly, the growth of the group was not af fected by the alternation triggering ?sh. These results provide evidence that in the self-feeding system the HT ?sh didn't gain much advantage by their frequent self-feeding behavior, and high trigger status of the HT ?sh is not only an individual character but also driven by the demand of the group. In the self-feeding system, the critical individual should be closely monitored.