High frequency, high resolution GPR surveys are successfully applied to investigate near-surface stratification architecture of sedimentary units in coastal plains and to define their depositional conditions. However,...High frequency, high resolution GPR surveys are successfully applied to investigate near-surface stratification architecture of sedimentary units in coastal plains and to define their depositional conditions. However, low frequency GPR surveys to investigate fault-related depositional systems at greater depths are scarce. This survey was designed investigate a > 100 km long linear escarpment that controls the northwest margin of the Lagoa do Peixe, an important lagoon in Rio Grande do Sul Coastal Plain (RGSCP, Brazil). The traditional approach points that RGSCP was developed by juxtaposition of four lagoons/barrier systems as consequence of sea level changes;no deformational structure is admitted to exist before. The low frequency GPR (50 MHz, RTA antenna) and geological surveys carried out in the RGSCP showed the existence of a large, gravity-driven listric growth fault controlling the Lagoa do Peixe escarpment and hangingwall sedimentation. The radargrams in four subareas along the Lagoa do Peixe Growth Fault could be interpreted following the seismic expression of rift-related depositional systems. The radargrams enabled to distinguish three main lagoonal deposition radarfacies. The lower lagoonal radarfacies is a convex upward unit, thicker close to growth fault;the radarfacies geometry indicates that fault displacement rate surpasses the sedimentation rate, and its upper stratum is aged ~3500 <sup>l4</sup>C years BP. The second lagoonal radarfacies is a triangular wedge restricted to the lagoon depocenter, whose geometry indicates that fault displacement and the sedimentation rates kept pace. The upper lagoonal radarfacies is being deposited since 1060 ± 70 <sup>l4</sup>C years BP, under sedimentation rate higher than fault displacement rate. The results indicate that low frequency GPR surveys can help in investigating fault-related depositional systems in coastal zones. They also point to a new approach in dealing with RGSCP stratigraphy.展开更多
The structural and tectonic evolution of the Bengal Basin is characterized by a complex interplay of factors, including sedimentation, the rise of the Himalayan Mountains, and the movements of Jurassic syn-rift faults...The structural and tectonic evolution of the Bengal Basin is characterized by a complex interplay of factors, including sedimentation, the rise of the Himalayan Mountains, and the movements of Jurassic syn-rift faults. This study aims to comprehend the progression of growth faults inside the basin by examining fault geometry, basin development, and structural relief patterns. We used high-quality 2D seismic lines from the PK-MY-8403, classical seismic interpretation techniques and modeling were carried out to reveal the plate tectonic conditions, stratigraphy, and sedimentation history of the basin. The break-up unconformity, Paleocene and Eocene submerged conditions, and crucial geological formations including the Sylhet Limestone, Barail Group, and Surma Group were among the notable features recognized in seismic section. With an emphasis on growth strata and pre-growth strata, significant variations in layer thickness and relief were remarked in different stratigraphic levels. Basin development events like the evolution of the Miocene remnant ocean basin, sedimentation in Oligocene, Eocene Himalayan collision, and the Pliocene reverse fault development are analyzed. In the early the Pliocene compressional forces outpaced sedimentation rates and syn-depositional normal faults of Oligocene time began to move in opposite direction. Syn-depositional growth faults may have formed in the Bengal Basin as a result of this reversal. This research provides a detailed comprehensive knowledge of growth fault development in the Bengal Basin following the seismic interpretation, modelling, and thickness/relief analysis. The outcomes point to a substantial hydrocarbon potential, especially in regions like the Eocene Hinge Zone, where the prospectivity of the area is enhanced by carbonate reefs and Jalangi shale. However, the existence of petroleum four-way closure in the investigated region requires further investigation.展开更多
Based on the study of ore deposits and orebody structures of two sedimentary-exhalative ore deposits, i.e., Changba and Xitieshan Ore Deposits, it is found that the structural patterns of metallogenic basin of seafloo...Based on the study of ore deposits and orebody structures of two sedimentary-exhalative ore deposits, i.e., Changba and Xitieshan Ore Deposits, it is found that the structural patterns of metallogenic basin of seafloor exhalative sulfide deposits in the ancient graben systems are controlled by relay structures in normal faults. The shapes of metallogenic basins are composed of tilting ramp, fault-tip ramp and relay ramp, which dominate migration of gravity current of ore-hosted fluid and shape of orebody sedimentary fan in the ramp. By measuring and comparing the difference of length-to-thickness ratios of orebody sedimentary fan, the result shows that the occurrence of the ramp has a remarkable impact on the shape of orebody.展开更多
Based on high-resolution remote sensing image interpretation, digital elevation model 3-D analysis, field geologic field investigation, trenching engineering, and ground-penetrating radar, synthetic research on the ev...Based on high-resolution remote sensing image interpretation, digital elevation model 3-D analysis, field geologic field investigation, trenching engineering, and ground-penetrating radar, synthetic research on the evolution of the Yuguang Basin South Margin Fault (YBSMF) in northwest Beijing was carried out. We found that the propagation and growth of faults most often occurred often at two locations: the fault overlapping zone and the uneven or rough fault segment. Through detailed observation and analysis of all cropouts of faults along the YBSMF from zone a to zone i, we identified three major factors that dominate or affect fault propagation and growth. First, the irregularity of fault geometry determine the propagation and growth of the fault, and therefore, the faults always propagate and grow at such irregular fault segments. The fault finally cuts off and eliminates its irregularity, making the fault geometry and fault plane smoother than before, which contributes to the slipping movement of the half-graben block in the basin. Second, the scale of the irregularity of the fault geometry affects the result of fault propagation and growth, that is, the degree of the cutting off of fault irregularity. The degree of cutting off decreases as irregularity scale increases. Third, the maximum possible slip displacement of the fault segment influences the duration of fault propagation and growth. The duration at the central segments with a large slip displacement is longer than that at the end segments with a smaller slippage value.展开更多
Through fault structure analysis and chronology study, we discuss the origin and growth mechanisms of strike-slip faults in the Tarim Basin.(1) Multiple stages strike-slip faults with inherited growth were developed i...Through fault structure analysis and chronology study, we discuss the origin and growth mechanisms of strike-slip faults in the Tarim Basin.(1) Multiple stages strike-slip faults with inherited growth were developed in the central Tarim cratonic basin. The faults initiation time is constrained at the end of Middle Ordovician of about 460 Ma according to U-Pb dating of the fault cements and seismic interpretation.(2) The formation of the strike-slip faults was controlled by the near N-S direction stress field caused by far-field compression of the closing of the Proto-Tethys Ocean.(3) The faults localization and characteristics were influenced by the pre-existing structures of the NE trending weakening zones in the basement and lithofacies change from south to north.(4) Following the fault initiation under the Andersonian mechanism, the strike-slip fault growth was dominantly fault linkage, associated with fault tip propagation and interaction of non-Andersonian mechanisms.(5) Sequential slip accommodated deformation in the conjugate strike-slip fault interaction zones, strong localization of the main displacement and deformation occurred in the overlap zones in the northern Tarim, while the fault tips, particularly of narrow-deep grabens, and strike-slip segments in thrust zones accumulated more deformation and strain in the Central uplift. In conclusion, non-Andersonian mechanisms, dominantly fault linkage and interaction, resulted in the small displacement but long intraplate strike-slip fault development in the central Tarim Basin. The regional and localized field stress, and pre-existing structures and lithofacies difference had strong impacts on the diversity of the strike-slip faults in the Tarim cratonic basin.展开更多
Fault attributes generally display a consistent power–law-scaling relationship.Based on new 3 D seismic data,however,we found some exceptional fault attribute relationships of lengths(L)–throw(T)(vertical component ...Fault attributes generally display a consistent power–law-scaling relationship.Based on new 3 D seismic data,however,we found some exceptional fault attribute relationships of lengths(L)–throw(T)(vertical component of displacement),overlap zone length(Lo)–width(Wo)from a strike-slip fault system of the Ordovician carbonates in the Tarim Basin.The L–T relationship shows two linear segments with breakup at^40 km in fault length.This presents an exceptional throw increase in the second stage,which is attributed to a localization of vertical displacement and deformation in overlapping zones other than the different fault scales in a mature fault zone.The Lo–Wo relationship in the overlapping zones shows multiply stepped-shape patterns,suggesting multiple fault differential growth and periodic increase in fault size.Therefore,we propose a new alternative growth model of fault attributes in strike-slip fault zones,in which the overlapping zones accumulated localized displacement and deformation in the intracratonic strike-slip fault zone.展开更多
The Altyn Tagh Fault(ATF) is the longest, lithospheric scale and strike-slip fault in East Asia. In the last three decades, multidisciplinary studies focusing on the timing, displacement of strikeslip and growth mec...The Altyn Tagh Fault(ATF) is the longest, lithospheric scale and strike-slip fault in East Asia. In the last three decades, multidisciplinary studies focusing on the timing, displacement of strikeslip and growth mechanics of the ATF have made great progresses. Most studies revealed that the ATF is a sinistral strike-slip and thrust fault, which underwent multiple episodes of activation. The fault is oriented NEE with a length of 1600 km, but the direction, timing of activity and magnitude of its extension eastward are still unclear. The AFT was predominately active during the Mesozoic and Cenozoic, in relation to the Mesozoic collision of the Cimmerian continent(Qiangtang and Lhasa block) and Cenozoic collision of India with Asia. The AFT strike-slipped with a left-lateral displacement of ca. 400 km during the Cenozoic and the displacement were bigger in the western segment and stronger in the early stage of fault activation. The slip-rates in the Quaternary were bigger in the middle segment than in the western and eastern segment. We roughly estimated the Mesozoic displacement as ca. 150-300 km. The latest paleomagnetic data showed that the clockwise vertical-axis rotation did not take place in the huge basins(the Tarim and Qaidam) at both side of ATF during the Cenozoic, but the rotation happened in the small basins along the ATF. This rotation may play an important role on accommodating the tectonic deformation and displacement of the ATF. Even if we have achieved consensus for many issues related to the ATF, some issues still need to be study deeply; such as:(a) the temporal and spatial coupling relationship between the collision of Cimmerian continent with Asia and the history of AFT in the Mesozoic and(b) the tectonic deformation history which records by the sediments of the basins within and at both side of AFT and was constrained by a high-resolution and accurate chronology such as magnetostratigraphy and paleomagnetic data.展开更多
New classification scheme about faulted rocks is proposed, according to the extent of grain reduction and growth and their sequence, and faulted rocks are classified as follows: (1) faulted rocks formed by the reducti...New classification scheme about faulted rocks is proposed, according to the extent of grain reduction and growth and their sequence, and faulted rocks are classified as follows: (1) faulted rocks formed by the reduction action mainly include breccia series, cataclasite series, tectonobutchite series, mylonite series; (2) faulted rocks formed by growth action is mainly tectonoschist (gneiss) series; (3) blastomylonite series formed by grain reduction first and then growth; (4) mylonitic schist (gneiss) series formed by crystal growth first and then grain reduction. All series can be further classified according to matrix contents.展开更多
One of the focus views of the uplifting of Tibetan Plateau is the growth history of the plateau. This is an unresolved question because of the poor study in north margin, where the ATF (Altyn Tagh Fault) is acting an ...One of the focus views of the uplifting of Tibetan Plateau is the growth history of the plateau. This is an unresolved question because of the poor study in north margin, where the ATF (Altyn Tagh Fault) is acting an important role in the growth and deformation of the plateau. The fault links two huge contractional belts, e.g. Qilian Nan Shan and West Kunlun, and merges a series of thrusting\|folding arcs in southeast. Mapping of piercing points, such as unconformities between Cenozoic, Mesozoic and Paleozoic strata, and magmatic arcs, shows left slips of ca. 240km and ca. 550km along the middle and western segments of the ATF. About 140~450km of crustal shortening, approximately the same magnitude as the west segment of the ATF, is deduced from balanced sections in West Kunlun foreland thrusting belt. This implies that left\|slip displacement along the west segment of the ATF was absorbed by the contraction in West Kunlun. The ATF system merged bunches of WNW arcuated fold\|fault belts in Qaidam basin, implying anti\|clockwise rotation. Tertiary and some Lower to Middle Pleistocene strata involved in fold\|fault belts, and dip in ESE due to the uplifting of Altyn Tagh. The newest strata involved in the deformation is more and more younger from south to north, that is, from Lower Pliocene to Middle Pleistocene, showing the uplifting trends from south to north in the SE side of the fault.展开更多
Failure of a safety critical system can lead to big losses. Very high software reliability is required for automating the working of systems such as aircraft controller and nuclear reactor controller software systems....Failure of a safety critical system can lead to big losses. Very high software reliability is required for automating the working of systems such as aircraft controller and nuclear reactor controller software systems. Fault-tolerant softwares are used to increase the overall reliability of software systems. Fault tolerance is achieved using the fault-tolerant schemes such as fault recovery (recovery block scheme), fault masking (N-version programming (NVP)) or a combination of both (Hybrid scheme). These softwares incorporate the ability of system survival even on a failure. Many researchers in the field of software engineering have done excellent work to study the reliability of fault-tolerant systems. Most of them consider the stable system reliability. Few attempts have been made in reliability modeling to study the reliability growth for an NVP system. Recently, a model was proposed to analyze the reliability growth of an NVP system incorporating the effect of fault removal efficiency. In this model, a proportion of the number of failures is assumed to be a measure of fault generation while an appropriate measure of fault generation should be the proportion of faults removed. In this paper, we first propose a testing efficiency model incorporating the effect of imperfect fault debugging and error generation. Using this model, a software reliability growth model (SRGM) is developed to model the reliability growth of an NVP system. The proposed model is useful for practical applications and can provide the measures of debugging effectiveness and additional workload or skilled professional required. It is very important for a developer to determine the optimal release time of the software to improve its performance in terms of competition and cost. In this paper, we also formulate the optimal software release time problem for a 3VP system under fuzzy environment and discuss a the fuzzy optimization technique for solving the problem with a numerical illustration.展开更多
A set of ENE\|trending fault which locates in the rigid Tarim massif and flexible Qilian massif in the same dynamic system of the uplift of the Qinghai—Tibetan plateau is referred to as the Altun Fault (ALF). ALF dis...A set of ENE\|trending fault which locates in the rigid Tarim massif and flexible Qilian massif in the same dynamic system of the uplift of the Qinghai—Tibetan plateau is referred to as the Altun Fault (ALF). ALF displays a linear geometry or a geometry of overlapping of linear and arcuate segments and a growth and development process of the breakdown segment\|by\|segment, connection segment\|by\|segment and propagation gradually (northeastward migration of the northeast tip, southwestward growth of the southwest tip). The formation of the Altun fault began in the middle or upper Carboniferous. It was characteristic of the sinistral strike\|slip\|thrust before Eocene, of the thrust\|sinistral strike\|slip during Oligocene—Miocene, and of the normal slip, and thrust\|sinistral strike\|slip simultaneously since Miocene.展开更多
The Altun (or Altyn Tagh) fault displays a geometry of overlapping of linear and arcuate segments and shows strong inhomogeneity in time and space. It is a gigantic fault system with complex mechanical behaviours incl...The Altun (or Altyn Tagh) fault displays a geometry of overlapping of linear and arcuate segments and shows strong inhomogeneity in time and space. It is a gigantic fault system with complex mechanical behaviours including thrusting, sinistral strike slip and normal slip. The strike slip and normal slip mainly occurred in the Cretaceous—Cenozoic and Plio-Quaternary respectively, whereas the thrusting was a deformation event that has played a dominant role since the late Palaeozoic (for a duration of about 305 Ma). The formation of the Altun fault was related to strong inhomogeneous deformation of the massifs on its two sides (in the hinterland of the Altun Mountains contractional deformation predominated and in the Qilian massif thrust propagation was dominant). The fault experienced a dynamic process of successive break-up and connection of its segments and gradual propagation, which was synchronous with the development of an overstep thrust sequence in the Qilian massif and the uplift of the Qinghai-Tibet plateau. With southward propagation of the thrust sequence and continued uplift of the plateau, the NE tip of the Altun fault moved in a NE direction, while the SW tip grew in a SW direction.展开更多
The Putaohua Oilfield is a fault-prolific area and the faults have close relation with structural traps. The genetic models of the structural traps in the Putaohua Oilfield can be divided into two types: individual f...The Putaohua Oilfield is a fault-prolific area and the faults have close relation with structural traps. The genetic models of the structural traps in the Putaohua Oilfield can be divided into two types: individual fault model and multi-fault interaction model. This is based on the description of displacement distribution of typical individual normal faults, the geometry of the footwall and hanging wall, and the analysis of the interaction between faults and the corresponding change in geometry when the faults grow. The individual fault model is that the displacement reaches a maximum at or near the center of fault and decreases toward the fault tips, so a half-graben is formed on the hanging wall of the fault and a half- anticline is formed on the footwall because of the isostatic process. The multi-fault interaction model is that during the growth of faults, they overlap and interact with each other, and accommodation zones are formed in the overlapping segments. The accommodation zones are favorable targets for hydrocarbon exploration, and the trap characteristics are dependent The multi-fault interaction model can be subdivided on the extent of overlap and occurrence of faults. into three types: synthetic accommodation zone, convergent accommodation zone and divergent accommodation zone. Hydrocarbon migration and accumulation models of each type have been developed. The hydrocarbon migration and accumulation models of the traps with different genetic models have their own characteristics in the different stages of fault growth.展开更多
Most major oil zones in the Daqing Oilfield have reached a later,high water cut stage,but oil recovery is still only approximately 35%,and 50%of reserves remain to be recovered.The remaining oil is primarily distribut...Most major oil zones in the Daqing Oilfield have reached a later,high water cut stage,but oil recovery is still only approximately 35%,and 50%of reserves remain to be recovered.The remaining oil is primarily distributed at the edge of faults,in poor sand bodies,and in insufficiently injected and produced areas.Therefore,the edge of faults is a major target for remaining oil enrichment and potential tapping.Based on the dynamic change of production from development wells determined by the injection-recovery relationship at the edge of faults,we analyzed the control of structural features of faults on remaining oil enrichment at the edge.Our results show that the macroscopic structural features and their geometric relationship with sand bodies controlled remaining oil enrichment zones like the edges of NNE-striking faults,the footwalls of antithetic faults,the hard linkage segments(two faults had linked together with each other to form a bigger through-going fault),the tips of faults,and the oblique anticlines of soft linkages.Fault edges formed two types of forward microamplitude structures:(1) the tilted uplift of footwalls controlled by inverse fault sections and(2) the hanging-wall horizontal anticlines controlled by synthetic fault points.The remaining oil distribution was controlled by microamplitude structures.Consequently,such zones as the tilted uplift of the footwall of the NNW-striking antithetic faults with a fault throw larger than 40 m,the hard linkage segments,the tips of faults,and the oblique anticlines of soft linkage were favorable for tapping the remaining oil potential.Multi-target directional drilling was used for remaining oil development at fault edges.Reasonable fault spacing was determined on the basis of fault combinations and width of the shattered zone.Well core and log data revealed that the width of the shattered zone on the side of the fault core was less than 15 m in general;therefore,the distance from a fault to the development target should be larger than 15 m.Vertically segmented growth faults should take the separation of the lateral overlap of faults into account.Therefore,the safe distance of remaining oil well deployment at the fault edge should be larger than the sum of the width of shattered zone in faults and the separation of growth faults by vertical segmentation.展开更多
文摘High frequency, high resolution GPR surveys are successfully applied to investigate near-surface stratification architecture of sedimentary units in coastal plains and to define their depositional conditions. However, low frequency GPR surveys to investigate fault-related depositional systems at greater depths are scarce. This survey was designed investigate a > 100 km long linear escarpment that controls the northwest margin of the Lagoa do Peixe, an important lagoon in Rio Grande do Sul Coastal Plain (RGSCP, Brazil). The traditional approach points that RGSCP was developed by juxtaposition of four lagoons/barrier systems as consequence of sea level changes;no deformational structure is admitted to exist before. The low frequency GPR (50 MHz, RTA antenna) and geological surveys carried out in the RGSCP showed the existence of a large, gravity-driven listric growth fault controlling the Lagoa do Peixe escarpment and hangingwall sedimentation. The radargrams in four subareas along the Lagoa do Peixe Growth Fault could be interpreted following the seismic expression of rift-related depositional systems. The radargrams enabled to distinguish three main lagoonal deposition radarfacies. The lower lagoonal radarfacies is a convex upward unit, thicker close to growth fault;the radarfacies geometry indicates that fault displacement rate surpasses the sedimentation rate, and its upper stratum is aged ~3500 <sup>l4</sup>C years BP. The second lagoonal radarfacies is a triangular wedge restricted to the lagoon depocenter, whose geometry indicates that fault displacement and the sedimentation rates kept pace. The upper lagoonal radarfacies is being deposited since 1060 ± 70 <sup>l4</sup>C years BP, under sedimentation rate higher than fault displacement rate. The results indicate that low frequency GPR surveys can help in investigating fault-related depositional systems in coastal zones. They also point to a new approach in dealing with RGSCP stratigraphy.
文摘The structural and tectonic evolution of the Bengal Basin is characterized by a complex interplay of factors, including sedimentation, the rise of the Himalayan Mountains, and the movements of Jurassic syn-rift faults. This study aims to comprehend the progression of growth faults inside the basin by examining fault geometry, basin development, and structural relief patterns. We used high-quality 2D seismic lines from the PK-MY-8403, classical seismic interpretation techniques and modeling were carried out to reveal the plate tectonic conditions, stratigraphy, and sedimentation history of the basin. The break-up unconformity, Paleocene and Eocene submerged conditions, and crucial geological formations including the Sylhet Limestone, Barail Group, and Surma Group were among the notable features recognized in seismic section. With an emphasis on growth strata and pre-growth strata, significant variations in layer thickness and relief were remarked in different stratigraphic levels. Basin development events like the evolution of the Miocene remnant ocean basin, sedimentation in Oligocene, Eocene Himalayan collision, and the Pliocene reverse fault development are analyzed. In the early the Pliocene compressional forces outpaced sedimentation rates and syn-depositional normal faults of Oligocene time began to move in opposite direction. Syn-depositional growth faults may have formed in the Bengal Basin as a result of this reversal. This research provides a detailed comprehensive knowledge of growth fault development in the Bengal Basin following the seismic interpretation, modelling, and thickness/relief analysis. The outcomes point to a substantial hydrocarbon potential, especially in regions like the Eocene Hinge Zone, where the prospectivity of the area is enhanced by carbonate reefs and Jalangi shale. However, the existence of petroleum four-way closure in the investigated region requires further investigation.
文摘Based on the study of ore deposits and orebody structures of two sedimentary-exhalative ore deposits, i.e., Changba and Xitieshan Ore Deposits, it is found that the structural patterns of metallogenic basin of seafloor exhalative sulfide deposits in the ancient graben systems are controlled by relay structures in normal faults. The shapes of metallogenic basins are composed of tilting ramp, fault-tip ramp and relay ramp, which dominate migration of gravity current of ore-hosted fluid and shape of orebody sedimentary fan in the ramp. By measuring and comparing the difference of length-to-thickness ratios of orebody sedimentary fan, the result shows that the occurrence of the ramp has a remarkable impact on the shape of orebody.
基金financially supported by the Yuguang Basin 1:50000 Geological Mapping Project (no. 201210916),a subsubject of Active Fault Seismic Hazard Assessment Project of China's Key Area for Surveillance and Protection
文摘Based on high-resolution remote sensing image interpretation, digital elevation model 3-D analysis, field geologic field investigation, trenching engineering, and ground-penetrating radar, synthetic research on the evolution of the Yuguang Basin South Margin Fault (YBSMF) in northwest Beijing was carried out. We found that the propagation and growth of faults most often occurred often at two locations: the fault overlapping zone and the uneven or rough fault segment. Through detailed observation and analysis of all cropouts of faults along the YBSMF from zone a to zone i, we identified three major factors that dominate or affect fault propagation and growth. First, the irregularity of fault geometry determine the propagation and growth of the fault, and therefore, the faults always propagate and grow at such irregular fault segments. The fault finally cuts off and eliminates its irregularity, making the fault geometry and fault plane smoother than before, which contributes to the slipping movement of the half-graben block in the basin. Second, the scale of the irregularity of the fault geometry affects the result of fault propagation and growth, that is, the degree of the cutting off of fault irregularity. The degree of cutting off decreases as irregularity scale increases. Third, the maximum possible slip displacement of the fault segment influences the duration of fault propagation and growth. The duration at the central segments with a large slip displacement is longer than that at the end segments with a smaller slippage value.
基金Supported by the National Natural Science Foundation of China(91955204)PetroChina-Southwest Petroleum University Innovation Consortium Science and Technology Cooperation Project(2020CX010101)。
文摘Through fault structure analysis and chronology study, we discuss the origin and growth mechanisms of strike-slip faults in the Tarim Basin.(1) Multiple stages strike-slip faults with inherited growth were developed in the central Tarim cratonic basin. The faults initiation time is constrained at the end of Middle Ordovician of about 460 Ma according to U-Pb dating of the fault cements and seismic interpretation.(2) The formation of the strike-slip faults was controlled by the near N-S direction stress field caused by far-field compression of the closing of the Proto-Tethys Ocean.(3) The faults localization and characteristics were influenced by the pre-existing structures of the NE trending weakening zones in the basement and lithofacies change from south to north.(4) Following the fault initiation under the Andersonian mechanism, the strike-slip fault growth was dominantly fault linkage, associated with fault tip propagation and interaction of non-Andersonian mechanisms.(5) Sequential slip accommodated deformation in the conjugate strike-slip fault interaction zones, strong localization of the main displacement and deformation occurred in the overlap zones in the northern Tarim, while the fault tips, particularly of narrow-deep grabens, and strike-slip segments in thrust zones accumulated more deformation and strain in the Central uplift. In conclusion, non-Andersonian mechanisms, dominantly fault linkage and interaction, resulted in the small displacement but long intraplate strike-slip fault development in the central Tarim Basin. The regional and localized field stress, and pre-existing structures and lithofacies difference had strong impacts on the diversity of the strike-slip faults in the Tarim cratonic basin.
基金partly supported by the National Natural Science Foundation of China(Grant No.91955204)Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(Grant No.2020CX010300)。
文摘Fault attributes generally display a consistent power–law-scaling relationship.Based on new 3 D seismic data,however,we found some exceptional fault attribute relationships of lengths(L)–throw(T)(vertical component of displacement),overlap zone length(Lo)–width(Wo)from a strike-slip fault system of the Ordovician carbonates in the Tarim Basin.The L–T relationship shows two linear segments with breakup at^40 km in fault length.This presents an exceptional throw increase in the second stage,which is attributed to a localization of vertical displacement and deformation in overlapping zones other than the different fault scales in a mature fault zone.The Lo–Wo relationship in the overlapping zones shows multiply stepped-shape patterns,suggesting multiple fault differential growth and periodic increase in fault size.Therefore,we propose a new alternative growth model of fault attributes in strike-slip fault zones,in which the overlapping zones accumulated localized displacement and deformation in the intracratonic strike-slip fault zone.
文摘The Altyn Tagh Fault(ATF) is the longest, lithospheric scale and strike-slip fault in East Asia. In the last three decades, multidisciplinary studies focusing on the timing, displacement of strikeslip and growth mechanics of the ATF have made great progresses. Most studies revealed that the ATF is a sinistral strike-slip and thrust fault, which underwent multiple episodes of activation. The fault is oriented NEE with a length of 1600 km, but the direction, timing of activity and magnitude of its extension eastward are still unclear. The AFT was predominately active during the Mesozoic and Cenozoic, in relation to the Mesozoic collision of the Cimmerian continent(Qiangtang and Lhasa block) and Cenozoic collision of India with Asia. The AFT strike-slipped with a left-lateral displacement of ca. 400 km during the Cenozoic and the displacement were bigger in the western segment and stronger in the early stage of fault activation. The slip-rates in the Quaternary were bigger in the middle segment than in the western and eastern segment. We roughly estimated the Mesozoic displacement as ca. 150-300 km. The latest paleomagnetic data showed that the clockwise vertical-axis rotation did not take place in the huge basins(the Tarim and Qaidam) at both side of ATF during the Cenozoic, but the rotation happened in the small basins along the ATF. This rotation may play an important role on accommodating the tectonic deformation and displacement of the ATF. Even if we have achieved consensus for many issues related to the ATF, some issues still need to be study deeply; such as:(a) the temporal and spatial coupling relationship between the collision of Cimmerian continent with Asia and the history of AFT in the Mesozoic and(b) the tectonic deformation history which records by the sediments of the basins within and at both side of AFT and was constrained by a high-resolution and accurate chronology such as magnetostratigraphy and paleomagnetic data.
文摘New classification scheme about faulted rocks is proposed, according to the extent of grain reduction and growth and their sequence, and faulted rocks are classified as follows: (1) faulted rocks formed by the reduction action mainly include breccia series, cataclasite series, tectonobutchite series, mylonite series; (2) faulted rocks formed by growth action is mainly tectonoschist (gneiss) series; (3) blastomylonite series formed by grain reduction first and then growth; (4) mylonitic schist (gneiss) series formed by crystal growth first and then grain reduction. All series can be further classified according to matrix contents.
文摘One of the focus views of the uplifting of Tibetan Plateau is the growth history of the plateau. This is an unresolved question because of the poor study in north margin, where the ATF (Altyn Tagh Fault) is acting an important role in the growth and deformation of the plateau. The fault links two huge contractional belts, e.g. Qilian Nan Shan and West Kunlun, and merges a series of thrusting\|folding arcs in southeast. Mapping of piercing points, such as unconformities between Cenozoic, Mesozoic and Paleozoic strata, and magmatic arcs, shows left slips of ca. 240km and ca. 550km along the middle and western segments of the ATF. About 140~450km of crustal shortening, approximately the same magnitude as the west segment of the ATF, is deduced from balanced sections in West Kunlun foreland thrusting belt. This implies that left\|slip displacement along the west segment of the ATF was absorbed by the contraction in West Kunlun. The ATF system merged bunches of WNW arcuated fold\|fault belts in Qaidam basin, implying anti\|clockwise rotation. Tertiary and some Lower to Middle Pleistocene strata involved in fold\|fault belts, and dip in ESE due to the uplifting of Altyn Tagh. The newest strata involved in the deformation is more and more younger from south to north, that is, from Lower Pliocene to Middle Pleistocene, showing the uplifting trends from south to north in the SE side of the fault.
文摘Failure of a safety critical system can lead to big losses. Very high software reliability is required for automating the working of systems such as aircraft controller and nuclear reactor controller software systems. Fault-tolerant softwares are used to increase the overall reliability of software systems. Fault tolerance is achieved using the fault-tolerant schemes such as fault recovery (recovery block scheme), fault masking (N-version programming (NVP)) or a combination of both (Hybrid scheme). These softwares incorporate the ability of system survival even on a failure. Many researchers in the field of software engineering have done excellent work to study the reliability of fault-tolerant systems. Most of them consider the stable system reliability. Few attempts have been made in reliability modeling to study the reliability growth for an NVP system. Recently, a model was proposed to analyze the reliability growth of an NVP system incorporating the effect of fault removal efficiency. In this model, a proportion of the number of failures is assumed to be a measure of fault generation while an appropriate measure of fault generation should be the proportion of faults removed. In this paper, we first propose a testing efficiency model incorporating the effect of imperfect fault debugging and error generation. Using this model, a software reliability growth model (SRGM) is developed to model the reliability growth of an NVP system. The proposed model is useful for practical applications and can provide the measures of debugging effectiveness and additional workload or skilled professional required. It is very important for a developer to determine the optimal release time of the software to improve its performance in terms of competition and cost. In this paper, we also formulate the optimal software release time problem for a 3VP system under fuzzy environment and discuss a the fuzzy optimization technique for solving the problem with a numerical illustration.
文摘A set of ENE\|trending fault which locates in the rigid Tarim massif and flexible Qilian massif in the same dynamic system of the uplift of the Qinghai—Tibetan plateau is referred to as the Altun Fault (ALF). ALF displays a linear geometry or a geometry of overlapping of linear and arcuate segments and a growth and development process of the breakdown segment\|by\|segment, connection segment\|by\|segment and propagation gradually (northeastward migration of the northeast tip, southwestward growth of the southwest tip). The formation of the Altun fault began in the middle or upper Carboniferous. It was characteristic of the sinistral strike\|slip\|thrust before Eocene, of the thrust\|sinistral strike\|slip during Oligocene—Miocene, and of the normal slip, and thrust\|sinistral strike\|slip simultaneously since Miocene.
文摘The Altun (or Altyn Tagh) fault displays a geometry of overlapping of linear and arcuate segments and shows strong inhomogeneity in time and space. It is a gigantic fault system with complex mechanical behaviours including thrusting, sinistral strike slip and normal slip. The strike slip and normal slip mainly occurred in the Cretaceous—Cenozoic and Plio-Quaternary respectively, whereas the thrusting was a deformation event that has played a dominant role since the late Palaeozoic (for a duration of about 305 Ma). The formation of the Altun fault was related to strong inhomogeneous deformation of the massifs on its two sides (in the hinterland of the Altun Mountains contractional deformation predominated and in the Qilian massif thrust propagation was dominant). The fault experienced a dynamic process of successive break-up and connection of its segments and gradual propagation, which was synchronous with the development of an overstep thrust sequence in the Qilian massif and the uplift of the Qinghai-Tibet plateau. With southward propagation of the thrust sequence and continued uplift of the plateau, the NE tip of the Altun fault moved in a NE direction, while the SW tip grew in a SW direction.
基金the National Natural Science Foundation of China (Project No.40372072)
文摘The Putaohua Oilfield is a fault-prolific area and the faults have close relation with structural traps. The genetic models of the structural traps in the Putaohua Oilfield can be divided into two types: individual fault model and multi-fault interaction model. This is based on the description of displacement distribution of typical individual normal faults, the geometry of the footwall and hanging wall, and the analysis of the interaction between faults and the corresponding change in geometry when the faults grow. The individual fault model is that the displacement reaches a maximum at or near the center of fault and decreases toward the fault tips, so a half-graben is formed on the hanging wall of the fault and a half- anticline is formed on the footwall because of the isostatic process. The multi-fault interaction model is that during the growth of faults, they overlap and interact with each other, and accommodation zones are formed in the overlapping segments. The accommodation zones are favorable targets for hydrocarbon exploration, and the trap characteristics are dependent The multi-fault interaction model can be subdivided on the extent of overlap and occurrence of faults. into three types: synthetic accommodation zone, convergent accommodation zone and divergent accommodation zone. Hydrocarbon migration and accumulation models of each type have been developed. The hydrocarbon migration and accumulation models of the traps with different genetic models have their own characteristics in the different stages of fault growth.
基金financial support from the Natural Science Foundation of China (Grant No. 41272151, 41472126)the Natural Science Foundation for Distinguished Young Scholars of Heilongjiang Province, China (Grant No. JC201304)+1 种基金the Joint Funds of the National Natural Science Foundation of China (Grant No. U1562214)the Program for Huabei Oilfield (Grant No. HBYT-CY5-2015-JS-127)
文摘Most major oil zones in the Daqing Oilfield have reached a later,high water cut stage,but oil recovery is still only approximately 35%,and 50%of reserves remain to be recovered.The remaining oil is primarily distributed at the edge of faults,in poor sand bodies,and in insufficiently injected and produced areas.Therefore,the edge of faults is a major target for remaining oil enrichment and potential tapping.Based on the dynamic change of production from development wells determined by the injection-recovery relationship at the edge of faults,we analyzed the control of structural features of faults on remaining oil enrichment at the edge.Our results show that the macroscopic structural features and their geometric relationship with sand bodies controlled remaining oil enrichment zones like the edges of NNE-striking faults,the footwalls of antithetic faults,the hard linkage segments(two faults had linked together with each other to form a bigger through-going fault),the tips of faults,and the oblique anticlines of soft linkages.Fault edges formed two types of forward microamplitude structures:(1) the tilted uplift of footwalls controlled by inverse fault sections and(2) the hanging-wall horizontal anticlines controlled by synthetic fault points.The remaining oil distribution was controlled by microamplitude structures.Consequently,such zones as the tilted uplift of the footwall of the NNW-striking antithetic faults with a fault throw larger than 40 m,the hard linkage segments,the tips of faults,and the oblique anticlines of soft linkage were favorable for tapping the remaining oil potential.Multi-target directional drilling was used for remaining oil development at fault edges.Reasonable fault spacing was determined on the basis of fault combinations and width of the shattered zone.Well core and log data revealed that the width of the shattered zone on the side of the fault core was less than 15 m in general;therefore,the distance from a fault to the development target should be larger than 15 m.Vertically segmented growth faults should take the separation of the lateral overlap of faults into account.Therefore,the safe distance of remaining oil well deployment at the fault edge should be larger than the sum of the width of shattered zone in faults and the separation of growth faults by vertical segmentation.