Objective To observe the effect of growth differentiation factor-5 (GDF-5) on the growth and anabolic metabolism of articular chondrocytes. Methods The articular chondrocytes isolated from rats were treated with vario...Objective To observe the effect of growth differentiation factor-5 (GDF-5) on the growth and anabolic metabolism of articular chondrocytes. Methods The articular chondrocytes isolated from rats were treated with various concentrations of rmGDF-5, and the growth of chondrocytes measured by MTT assay, the cellular cartilage matrices formation detected sulfated glycosaminoglycan by Alcian blue staining and type Ⅱcollagen by RT-PCR. Results After 7 days culture, MTT assay showed that GDF-5 enhanced the growth of chondrocytes in a dose-dependent manner, RT-PCR showed that GDF-5 clearly induced the synthesis of type Ⅱ collagen because of the col2a1 mRNA band more and more strong in a dose-dependent. Chondrocytes were cultured with GDF-5 for 14 days, the intensity of Alcian blue staining was greatly enhanced, especially, at a high concentration of 1000ng/mL, and GDF-5 enhanced the accumulation of the Alcian blue-stainable material in a concentration-dependent manner and in a does-dependent manner. Conclusion GDF-5 enhanced the growth of mature articular chondrocytes, and stimulated the cellular cartilage matrices formation in mono-layer culture.展开更多
Parkinson’s disease is the most common movement disorder worldwide,affecting over 6 million people.It is an age-related disease,occurring in 1%of people over the age of 60,and 3%of the population over 80 years.The di...Parkinson’s disease is the most common movement disorder worldwide,affecting over 6 million people.It is an age-related disease,occurring in 1%of people over the age of 60,and 3%of the population over 80 years.The disease is characterized by the progressive loss of midbrain dopaminergic neurons from the substantia nigra,and their axons,which innervate the striatum,resulting in the characteristic motor and non-motor symptoms of Parkinson’s disease.This is paralleled by the intracellular accumulation ofα-synuclein in several regions of the nervous system.Current therapies are solely symptomatic and do not stop or slow disease progression.One promising disease-modifying strategy to arrest the loss of dopaminergic neurons is the targeted delivery of neurotrophic factors to the substantia nigra or striatum,to protect the remaining dopaminergic neurons of the nigrostriatal pathway.However,clinical trials of two well-established neurotrophic factors,glial cell line-derived neurotrophic factor and neurturin,have failed to meet their primary end-points.This failure is thought to be at least partly due to the downregulation byα-synuclein of Ret,the common co-receptor of glial cell line-derived neurorophic factor and neurturin.Growth/differentiation factor 5 is a member of the bone morphogenetic protein family of neurotrophic factors,that signals through the Ret-independent canonical Smad signaling pathway.Here,we review the evidence for the neurotrophic potential of growth/differentiation factor 5 in in vitro and in vivo models of Parkinson’s disease.We discuss new work on growth/differentiation factor 5’s mechanisms of action,as well as data showing that viral delivery of growth/differentiation factor 5 to the substantia nigra is neuroprotective in theα-synuclein rat model of Parkinson’s disease.These data highlight the potential for growth/differentiation factor 5 as a disease-modifying therapy for Parkinson’s disease.展开更多
BACKGROUND The hypoxic environment during bone healing is important in regulating the differentiation of periosteal stem cells(PSCs)into osteoblasts or chondrocytes;however,the underlying mechanisms remain unclear.AIM...BACKGROUND The hypoxic environment during bone healing is important in regulating the differentiation of periosteal stem cells(PSCs)into osteoblasts or chondrocytes;however,the underlying mechanisms remain unclear.AIM To determine the effect of hypoxia on PSCs,and the expression of microRNA-584-5p(miR-584-5p)and RUNX family transcription factor 2(RUNX2)in PSCs was modulated to explore the impact of the miR-584-5p/RUNX2 axis on hypoxiainduced osteogenic differentiation of PSCs.METHODS In this study,we isolated primary mouse PSCs and stimulated them with hypoxia,and the characteristics and functional genes related to PSC osteogenic differentiation were assessed.Constructs expressing miR-584-5p and RUNX2 were established to determine PSC osteogenic differentiation.RESULTS Hypoxic stimulation induced PSC osteogenic differentiation and significantly increased calcified nodules,intracellular calcium ion levels,and alkaline phosphatase(ALP)activity in PSCs.Osteogenic differentiation-related factors such as RUNX2,bone morphogenetic protein 2,hypoxia-inducible factor 1-alpha,and ALP were upregulated;in contrast,miR-584-5p was downregulated in these cells.Furthermore,upregulation of miR-584-5p significantly inhibited RUNX2 expression and hypoxia-induced PSC osteogenic differentiation.RUNX2 was the target gene of miR-584-5p,antagonizing miR-584-5p inhibition in hypoxia-induced PSC osteogenic differentiation.CONCLUSION Our study showed that the interaction of miR-584-5p and RUNX2 could mediate PSC osteogenic differentiation induced by hypoxia.展开更多
Objective To explore the feasibility and effectiveness of the self-assembly cartilage tissue engineered with chondrogenically differentiated human bone mesenchymal stem cells (hBMCs) induced by growth differentiation ...Objective To explore the feasibility and effectiveness of the self-assembly cartilage tissue engineered with chondrogenically differentiated human bone mesenchymal stem cells (hBMCs) induced by growth differentiation factor-5 (GDF-5)展开更多
Objective:To investigate the effect of the gap junction blocker 1-heptanol on the in vitro chondrogenic differentiation of mouse bone marrow mesenchymal stem cells(MSCs) following induction by GDF-5. Methods:MSCs ...Objective:To investigate the effect of the gap junction blocker 1-heptanol on the in vitro chondrogenic differentiation of mouse bone marrow mesenchymal stem cells(MSCs) following induction by GDF-5. Methods:MSCs were isolated from mouse bone marrow and cultured in vitro. After 3 passages cells were induced to undergo chondrogenic differentiation with recombinant human GDF-5(100 ng/ml), with or without 1-heptanol(2.5 la mol/L). The effect of 1-heptanol on MSCs proliferation was investigated using the MTT assay. Type II collagen mRNA and protein were examined by RT-PCR and immunocytochemistry respectively, and the sulfate glycosaminoglycan was assessed by Alcian blue dye staining. Connexin43(Cx43) protein was examined by western blotting. Results:GDF-5 induced proliferation and chondrogenic differentiation of MSCs. While 1-heptanol treatment had no effect on this proliferation, it inhibited the expression of both type II collagen mRNA and protein. The Alcian blue staining revealed that 1-heptanol also inhibited the deposition of the typical cartilage extracellular matrix promoted by recombinant GDF-5. Western blotting demonstrated that 1-heptanol had no effect on the expression of Cx43. Conclusion:These results suggest that mouse bone marrow MSCs can be differentiated into a chondrogenic phenotype by GDF- 5 administration in vitro. While the gap junction blocker, 1-heptanol, did not reduce gap junction Cx43, these intercellular communication pathways clearly played an important functional role in GDF-5-induced cartilage differentiation.展开更多
It is widely known that hypoxia can promote chondrogenesis of human bone marrow de- rived mesenchymal stem cells (hMSCs) in monolayer cultures. However, the direct impact of oxygen tension on hMSC differentiation in...It is widely known that hypoxia can promote chondrogenesis of human bone marrow de- rived mesenchymal stem cells (hMSCs) in monolayer cultures. However, the direct impact of oxygen tension on hMSC differentiation in three-dimensional cultures is still unknown. This research was de- signed to observe the direct impact of oxygen tension on the ability of hMSCs to "self assemble" into tissue-engineered cartilage constructs, hMSCs were cultured in chondrogenic medium (CM) containing 100 ng/mL growth differentiation factor 5 (GDF-5) at 5% (hypoxia) and 21% (normoxia) 02 levels in monolayer cultures for 3 weeks. After differentiation, the cells were digested and employed in a self- assembly process to produce tissue-engineered constructs under hypoxic and normoxic conditions in vi- tro. The aggrecan and type ]I collagen expression, and type X collagen in the self-assembled con- structs were assessed by using immunofluorescent and immunochemical staining respectively. The methods of dimethylmethylene blue (DMMB), hydroxyproline and PicoGreen were used to measure the total collagen content, glycosaminoglycan (GAG) content and the number of viable cells in each con- struct, respectively. The expression of type II collagen and aggrecan under hypoxic conditions was in- creased significantly as compared with that under normoxic conditions. In contrast, type X collagen expression was down-regulated in the hypoxic group. Moreover, the constructs in hypoxic group showed more significantly increased total collagen and GAG than in normoxic group, which were more close to those of the natural cartilage. These findings demonstrated that hypoxia enhanced chondro- genesis of in vitro, scaffold-free, tissue-engineered constructs generated using hMSCs induced by GDF-5. In hypoxic environments, the self-assembled constructs have a Thistological appearance and biochemical parameters similar to those of the natural cartilage.展开更多
文摘Objective To observe the effect of growth differentiation factor-5 (GDF-5) on the growth and anabolic metabolism of articular chondrocytes. Methods The articular chondrocytes isolated from rats were treated with various concentrations of rmGDF-5, and the growth of chondrocytes measured by MTT assay, the cellular cartilage matrices formation detected sulfated glycosaminoglycan by Alcian blue staining and type Ⅱcollagen by RT-PCR. Results After 7 days culture, MTT assay showed that GDF-5 enhanced the growth of chondrocytes in a dose-dependent manner, RT-PCR showed that GDF-5 clearly induced the synthesis of type Ⅱ collagen because of the col2a1 mRNA band more and more strong in a dose-dependent. Chondrocytes were cultured with GDF-5 for 14 days, the intensity of Alcian blue staining was greatly enhanced, especially, at a high concentration of 1000ng/mL, and GDF-5 enhanced the accumulation of the Alcian blue-stainable material in a concentration-dependent manner and in a does-dependent manner. Conclusion GDF-5 enhanced the growth of mature articular chondrocytes, and stimulated the cellular cartilage matrices formation in mono-layer culture.
文摘Parkinson’s disease is the most common movement disorder worldwide,affecting over 6 million people.It is an age-related disease,occurring in 1%of people over the age of 60,and 3%of the population over 80 years.The disease is characterized by the progressive loss of midbrain dopaminergic neurons from the substantia nigra,and their axons,which innervate the striatum,resulting in the characteristic motor and non-motor symptoms of Parkinson’s disease.This is paralleled by the intracellular accumulation ofα-synuclein in several regions of the nervous system.Current therapies are solely symptomatic and do not stop or slow disease progression.One promising disease-modifying strategy to arrest the loss of dopaminergic neurons is the targeted delivery of neurotrophic factors to the substantia nigra or striatum,to protect the remaining dopaminergic neurons of the nigrostriatal pathway.However,clinical trials of two well-established neurotrophic factors,glial cell line-derived neurotrophic factor and neurturin,have failed to meet their primary end-points.This failure is thought to be at least partly due to the downregulation byα-synuclein of Ret,the common co-receptor of glial cell line-derived neurorophic factor and neurturin.Growth/differentiation factor 5 is a member of the bone morphogenetic protein family of neurotrophic factors,that signals through the Ret-independent canonical Smad signaling pathway.Here,we review the evidence for the neurotrophic potential of growth/differentiation factor 5 in in vitro and in vivo models of Parkinson’s disease.We discuss new work on growth/differentiation factor 5’s mechanisms of action,as well as data showing that viral delivery of growth/differentiation factor 5 to the substantia nigra is neuroprotective in theα-synuclein rat model of Parkinson’s disease.These data highlight the potential for growth/differentiation factor 5 as a disease-modifying therapy for Parkinson’s disease.
基金Supported by Sailing Program of Naval Medical University,Program of Shanghai Hongkou District Health Commission,No.2202-27Special Funds for Activating Scientific Research of Shanghai Fourth People’s Hospital,No.sykyqd05801.
文摘BACKGROUND The hypoxic environment during bone healing is important in regulating the differentiation of periosteal stem cells(PSCs)into osteoblasts or chondrocytes;however,the underlying mechanisms remain unclear.AIM To determine the effect of hypoxia on PSCs,and the expression of microRNA-584-5p(miR-584-5p)and RUNX family transcription factor 2(RUNX2)in PSCs was modulated to explore the impact of the miR-584-5p/RUNX2 axis on hypoxiainduced osteogenic differentiation of PSCs.METHODS In this study,we isolated primary mouse PSCs and stimulated them with hypoxia,and the characteristics and functional genes related to PSC osteogenic differentiation were assessed.Constructs expressing miR-584-5p and RUNX2 were established to determine PSC osteogenic differentiation.RESULTS Hypoxic stimulation induced PSC osteogenic differentiation and significantly increased calcified nodules,intracellular calcium ion levels,and alkaline phosphatase(ALP)activity in PSCs.Osteogenic differentiation-related factors such as RUNX2,bone morphogenetic protein 2,hypoxia-inducible factor 1-alpha,and ALP were upregulated;in contrast,miR-584-5p was downregulated in these cells.Furthermore,upregulation of miR-584-5p significantly inhibited RUNX2 expression and hypoxia-induced PSC osteogenic differentiation.RUNX2 was the target gene of miR-584-5p,antagonizing miR-584-5p inhibition in hypoxia-induced PSC osteogenic differentiation.CONCLUSION Our study showed that the interaction of miR-584-5p and RUNX2 could mediate PSC osteogenic differentiation induced by hypoxia.
文摘Objective To explore the feasibility and effectiveness of the self-assembly cartilage tissue engineered with chondrogenically differentiated human bone mesenchymal stem cells (hBMCs) induced by growth differentiation factor-5 (GDF-5)
基金supported by the National Natural Science Foundation of China(30471753)
文摘Objective:To investigate the effect of the gap junction blocker 1-heptanol on the in vitro chondrogenic differentiation of mouse bone marrow mesenchymal stem cells(MSCs) following induction by GDF-5. Methods:MSCs were isolated from mouse bone marrow and cultured in vitro. After 3 passages cells were induced to undergo chondrogenic differentiation with recombinant human GDF-5(100 ng/ml), with or without 1-heptanol(2.5 la mol/L). The effect of 1-heptanol on MSCs proliferation was investigated using the MTT assay. Type II collagen mRNA and protein were examined by RT-PCR and immunocytochemistry respectively, and the sulfate glycosaminoglycan was assessed by Alcian blue dye staining. Connexin43(Cx43) protein was examined by western blotting. Results:GDF-5 induced proliferation and chondrogenic differentiation of MSCs. While 1-heptanol treatment had no effect on this proliferation, it inhibited the expression of both type II collagen mRNA and protein. The Alcian blue staining revealed that 1-heptanol also inhibited the deposition of the typical cartilage extracellular matrix promoted by recombinant GDF-5. Western blotting demonstrated that 1-heptanol had no effect on the expression of Cx43. Conclusion:These results suggest that mouse bone marrow MSCs can be differentiated into a chondrogenic phenotype by GDF- 5 administration in vitro. While the gap junction blocker, 1-heptanol, did not reduce gap junction Cx43, these intercellular communication pathways clearly played an important functional role in GDF-5-induced cartilage differentiation.
文摘It is widely known that hypoxia can promote chondrogenesis of human bone marrow de- rived mesenchymal stem cells (hMSCs) in monolayer cultures. However, the direct impact of oxygen tension on hMSC differentiation in three-dimensional cultures is still unknown. This research was de- signed to observe the direct impact of oxygen tension on the ability of hMSCs to "self assemble" into tissue-engineered cartilage constructs, hMSCs were cultured in chondrogenic medium (CM) containing 100 ng/mL growth differentiation factor 5 (GDF-5) at 5% (hypoxia) and 21% (normoxia) 02 levels in monolayer cultures for 3 weeks. After differentiation, the cells were digested and employed in a self- assembly process to produce tissue-engineered constructs under hypoxic and normoxic conditions in vi- tro. The aggrecan and type ]I collagen expression, and type X collagen in the self-assembled con- structs were assessed by using immunofluorescent and immunochemical staining respectively. The methods of dimethylmethylene blue (DMMB), hydroxyproline and PicoGreen were used to measure the total collagen content, glycosaminoglycan (GAG) content and the number of viable cells in each con- struct, respectively. The expression of type II collagen and aggrecan under hypoxic conditions was in- creased significantly as compared with that under normoxic conditions. In contrast, type X collagen expression was down-regulated in the hypoxic group. Moreover, the constructs in hypoxic group showed more significantly increased total collagen and GAG than in normoxic group, which were more close to those of the natural cartilage. These findings demonstrated that hypoxia enhanced chondro- genesis of in vitro, scaffold-free, tissue-engineered constructs generated using hMSCs induced by GDF-5. In hypoxic environments, the self-assembled constructs have a Thistological appearance and biochemical parameters similar to those of the natural cartilage.