Spinal cord injury usually leads to permanent disability, which could cause a huge financial problem to the patient. Up to now there is no effective method to treat this disease. The key of the treatment is to enable ...Spinal cord injury usually leads to permanent disability, which could cause a huge financial problem to the patient. Up to now there is no effective method to treat this disease. The key of the treatment is to enable the damage zone axonal regeneration and luckily it could go through the damage zone; last a connection can be established with the target neurons. This study attempts to combine stem cell, material science and genetic modification technology together, by preparing two genes modified adipose-derived stem cells and inducing them into neuron direction; then by compositing them on the silk fibroin/chitosan scaffold and implanting them into the spinal cord injury model, seed cells can have features of neuron cells. At the same time, it could stably express the brain-derived neurotrophic factor and neurotrophin-3, both of which could produce synergistic effects, which have a positive effect on the recovery of spinal cord. The spinal cord scaffold bridges the broken end of the spinal cord and isolates with the surrounding environment, which could avoid a scar effect on the nerve regeneration and provide three-dimensional space for the seed cell growth, and at last we hope to provide a new treatment for spinal cord injury with the tissue engineering technique.展开更多
Although autogenous nerve transplantation is the gold standard for treating peripheral nerve defects of considerable length,it still has some shortcomings,such as insufficient donors and secondary injury.Composite chi...Although autogenous nerve transplantation is the gold standard for treating peripheral nerve defects of considerable length,it still has some shortcomings,such as insufficient donors and secondary injury.Composite chitosan scaffolds loaded with controlled release of nerve growth factor can promote neuronal survival and axonal regeneration after short-segment sciatic nerve defects.However,the effects on extended nerve defects remain poorly understood.In this study,we used chitosan scaffolds loaded with nerve growth factor for 8 weeks to repair long-segment(20 mm)sciatic nerve defects in adult rats.The results showed that treatment markedly promoted the recovery of motor and sensory functions.The regenerated sciatic nerve not only reconnected with neurons but neural circuits with the central nervous system were also reconstructed.In addition,the regenerated sciatic nerve reconnected the motor endplate with the target muscle.Therefore,this novel biomimetic scaffold can promote the regeneration of extended sciatic nerve defects and reconstruct functional circuits.This provides a promising method for the clinical treatment of extended peripheral nerve injury.This study was approved by the Animal Ethics Committee of Capital Medical University,China(approval No.AEEI-2017-033)on March 21,2017.展开更多
The best tissue-engineered spinal cord grafts not only match the structural characteristics of the spinal cord but also allow the seed cells to grow and function in situ.Platelet-derived growth factor(PDGF) has been...The best tissue-engineered spinal cord grafts not only match the structural characteristics of the spinal cord but also allow the seed cells to grow and function in situ.Platelet-derived growth factor(PDGF) has been shown to promote the migration of bone marrow stromal cells;however,cytokines need to be released at a steady rate to maintain a stable concentration in vivo.Therefore,new methods are needed to maintain an optimal concentration of cytokines over an extended period of time to effectively promote seed cell localization,proliferation and differentiation.In the present study,a partition-type tubular scaffold matching the anatomical features of the thoracic 8–10 spinal cord of the rat was fabricated using chitosan and then subsequently loaded with chitosan-encapsulated PDGF-BB microspheres(PDGF-MSs).The PDGF-MS-containing scaffold was then examined in vitro for sustained-release capacity,biocompatibility,and its effect on neural progenitor cells differentiated in vitro from multilineage-differentiating stress-enduring cells(MUSE-NPCs).We found that pre-freezing for 2 hours at-20°C significantly increased the yield of partition-type tubular scaffolds,and 30 μL of 25% glutaraldehyde ensured optimal crosslinking of PDGF-MSs.The resulting PDGF-MSs cumulatively released 52% of the PDGF-BB at 4 weeks in vitro without burst release.The PDGF-MS-containing tubular scaffold showed suitable biocompatibility towards MUSE-NPCs and could promote the directional migration and growth of these cells.These findings indicate that the combination of a partition-type tubular scaffold,PDGF-MSs and MUSENPCs may be a promising model for the fabrication of tissue-engineered spinal cord grafts.展开更多
The purpose of this study was to fabricate decelluarized valve scaffold modified with polyethylene glycol nanoparticles loaded with transforming growth factor-β1(TGF-β1),by which to improve the extracellular matri...The purpose of this study was to fabricate decelluarized valve scaffold modified with polyethylene glycol nanoparticles loaded with transforming growth factor-β1(TGF-β1),by which to improve the extracellular matrix microenvironment for heart valve tissue engineering in vitro.Polyethylene glycol nanoparticles were obtained by an emulsion-crosslinking method,and their morphology was observed under a scanning electron microscope.Decelluarized valve scaffolds,prepared by using trypsinase and TritonX-100,were modified with nanoparticles by carbodiimide,and then TGF-β1 was loaded into them by adsorption.The TGF-β1 delivery of the fabricated scaffold was measured by asing enzyme-linked immunosorbent assay.Whether unseeded or reseeded with myofibroblast from rats,the morphologic,biochemical and biomechanical characteristics of hybrid scaffolds were tested and compared with decelluarized scaffolds under the same conditions.The enzyme-linked immunosorbent assay revealed a typical delivery of nanoparticles.The morphologic observations and biological data analysis indicated that fabricated scaffolds possessed advantageous biocompatibility and biomechanical property beyond decelluarized scaffolds.Altogether this study proved that it was feasible to fabricate the hybrid scaffold and effective to improve extracellular matrix microenvironment,which is beneficial for an application in heart valve tissue engineering.展开更多
Hydroxyapatite(HA)nanoparticles and silver(Ag)nanoparticles are expected to enable desirable bioactivity and antibac-terial properties on biopolymer scaffolds.Nevertheless,interfacial adhesion between HA/Ag and the bi...Hydroxyapatite(HA)nanoparticles and silver(Ag)nanoparticles are expected to enable desirable bioactivity and antibac-terial properties on biopolymer scaffolds.Nevertheless,interfacial adhesion between HA/Ag and the biopolymer is poor due to the large physicochemical differences between these components.In this study,poly L-lactic acid(PLLA)powder was first surface-modified with bioactive polydopamine(PDA)in an alkaline environment.Next,HA and Ag nanoparticles were grown in situ on the PDA-coated PLLA powder,which was then adhered to the porous bone scaffold using a selective laser-sintering process.Results showed that HA and Ag nanoparticles were homogenously distributed in the matrix,with enhanced mechanical properties.Simulated body fluid bioactivity tests showed that the in situ grown HA-endowed scaffold shows excellent bioactivity.In vitro tests confirmed that the scaffold exhibits favorable biocompatibility with human umbilical cord mesenchymal stem cells,as well as strong antibacterial activity against Gram-negative Escherichia coli.Furthermore,in vivo assays indicated that the scaffold promoted bone generation,with a new bone area fraction of 71.8%after 8 weeks’implantation,without inflammation.展开更多
The effect of culture in KLD-12 self-assembling peptide nanofiber scaffold containing TGF-β3 gene on differentiation of precartilaginous stem cells (PSCs) into chondrocytes was studied. KLD-12 was synthesized by so...The effect of culture in KLD-12 self-assembling peptide nanofiber scaffold containing TGF-β3 gene on differentiation of precartilaginous stem cells (PSCs) into chondrocytes was studied. KLD-12 was synthesized by solid-state method. After TGF-β3 plasmid was loaded into KLD-12 self-assembling peptide nanofiber scaffold, DNA release ability was investigated. PSCs and hTGF-β3 gene were loaded into KLD-12 3-D scaffold, and MTT assay was performed to investigate the cell proliferation, and ELASA assay was used to investigate the expression of TGF-β3. Specific cartilage matrix was examined by quantitative real-time PCR, immunohistochemistry and Alcian Blue staining. Compared with control group, DNA synthesis level of PSCs reached the peak within 3 days when PSCs were cultured in self-assembling peptide nanofiber scaffold loading TGF-β3 plasmid, and maintained this high level within 2 weeks. MTT results showed that the proliferation ability of experimental group was statistically higher than that in control group (P〈0.05). Quantitative real-time PCR suggested that the percentage of TGF-β3 positive PSCs in experimental group was higher than that in control group (P〈0.01). ELISA assay showed that the TGF-β3 protein level increased in supernatant of experimental group's PSCs, reached the peak after 72 h and then declined a little to the plateau phase. Compared with the control group, the specific gene of chondrocyte typical extracellular matrix significantly up-regulated (P〈0.01). The results showed that PSCs differentiated into chondrocytes in self-assembling peptide nanofiber scaffold loading TGF-β3 plasmid, which provided a fresh approach to cartilage tissue engineering.展开更多
AIM: To improve osteogenic differentiation and attachment of cells.METHODS: An electronic search was conducted inPub Med from January 2004 to December 2013. Studies which performed smart modifications on conventional ...AIM: To improve osteogenic differentiation and attachment of cells.METHODS: An electronic search was conducted inPub Med from January 2004 to December 2013. Studies which performed smart modifications on conventional bone scaffold materials were included. Scaffolds with controlled release or encapsulation of bioactive molecules were not included. Experiments which did not investigate response of cells toward the scaffold(cell attachment, proliferation or osteoblastic differentiation) were excluded. RESULTS: Among 1458 studies, 38 met the inclusion and exclusion criteria. The main scaffold varied extensively among the included studies. Smart modifications included addition of growth factors(group Ⅰ-11 studies), extracellular matrix-like molecules(group Ⅱ-13 studies) and nanoparticles(nano-HA)(group Ⅲ-17 studies). In all groups, surface coating was the most commonly applied approach for smart modification of scaffolds. In group I, bone morphogenetic proteins were mainly used as growth factor stabilized on polycaprolactone(PCL). In group Ⅱ, collagen 1 in combination with PCL, hydroxyapatite(HA) and tricalcium phosphate were the most frequent scaffolds used. In the third group, nano-HA with PCL and chitosan were used the most. As variable methods were used, a thorough and comprehensible compare between the results and approaches was unattainable.CONCLUSION: Regarding the variability in methodology of these in vitro studies it was demonstrated that smart modification of scaffolds can improve tissue properties.展开更多
The rotator cuff tear has emerged as a significant global health concern.However,existing therapies fail to fully restore the intricate bone-to-tendon gradients,resulting in compromised biomechanical functionalities o...The rotator cuff tear has emerged as a significant global health concern.However,existing therapies fail to fully restore the intricate bone-to-tendon gradients,resulting in compromised biomechanical functionalities of the reconstructed enthesis tissues.Herein,a tri-layered core–shell microfibrous scaffold with layer-specific growth factors(GFs)release is developed using coaxial electrohydrodynamic(EHD)printing for in situ cell recruitment and differentiation to facilitate gradient enthesis tissue repair.Stromal cell-derived factor-1(SDF-1)is loaded in the shell,while basic fibroblast GF,transforming GF-beta,and bone morphogenetic protein-2 are loaded in the core of the EHD-printed microfibrous scaffolds in a layer-specific manner.Correspondingly,the tri-layered microfibrous scaffolds have a core–shell fiber size of(25.7±5.1)μm,with a pore size sequentially increasing from(81.5±4.6)μm to(173.3±6.9)μm,and to(388.9±6.9μm)for the tenogenic,chondrogenic,and osteogenic instructive layers.A rapid release of embedded GFs is observed within the first 2 d,followed by a faster release of SDF-1 and a slightly slower release of differentiation GFs for approximately four weeks.The coaxial EHD-printed microfibrous scaffolds significantly promote stem cell recruitment and direct their differentiation toward tenocyte,chondrocyte,and osteocyte phenotypes in vitro.When implanted in vivo,the tri-layered core–shell microfibrous scaffolds rapidly restored the biomechanical functions and promoted enthesis tissue regeneration with native-like bone-to-tendon gradients.Our findings suggest that the microfibrous scaffolds with layer-specific GFs release may offer a promising clinical solution for enthesis regeneration.展开更多
Repair and regeneration of articular cartilage has always been a major challenge in the medical field due to its peculiar structure(e.g.sparsely distributed chondrocytes,no blood supply).Cartilage tissue engineering i...Repair and regeneration of articular cartilage has always been a major challenge in the medical field due to its peculiar structure(e.g.sparsely distributed chondrocytes,no blood supply).Cartilage tissue engineering is one promising strategy for cartilage repair,however,one critical issue for cartilage tissue engineering is the integration between tissue-engineered and native cartilage.In recent years,osteochondral tissue engineering has attracted growing interest for overcoming this problem.Herein,we review the development of osteochondral tissue engineering.Firstly,currently used seed cells in osteochondral tissue engineering will be described.Secondly,several types of scaffolds and their(dis)advantage for osteochondral tissue engineering will be introduced.Thirdly,the growth factors currently used in osteochondral tissue engineering will be presented and discussed.展开更多
文摘Spinal cord injury usually leads to permanent disability, which could cause a huge financial problem to the patient. Up to now there is no effective method to treat this disease. The key of the treatment is to enable the damage zone axonal regeneration and luckily it could go through the damage zone; last a connection can be established with the target neurons. This study attempts to combine stem cell, material science and genetic modification technology together, by preparing two genes modified adipose-derived stem cells and inducing them into neuron direction; then by compositing them on the silk fibroin/chitosan scaffold and implanting them into the spinal cord injury model, seed cells can have features of neuron cells. At the same time, it could stably express the brain-derived neurotrophic factor and neurotrophin-3, both of which could produce synergistic effects, which have a positive effect on the recovery of spinal cord. The spinal cord scaffold bridges the broken end of the spinal cord and isolates with the surrounding environment, which could avoid a scar effect on the nerve regeneration and provide three-dimensional space for the seed cell growth, and at last we hope to provide a new treatment for spinal cord injury with the tissue engineering technique.
基金supported by the National Natural Science Foundation of China,Nos.31900749(to PH),31730030(to XGL),81941011(to XGL),31971279(to ZYY),31771053(to HMD)the Natural Science Foundation of Beijing of China,No.7214301(to FH)。
文摘Although autogenous nerve transplantation is the gold standard for treating peripheral nerve defects of considerable length,it still has some shortcomings,such as insufficient donors and secondary injury.Composite chitosan scaffolds loaded with controlled release of nerve growth factor can promote neuronal survival and axonal regeneration after short-segment sciatic nerve defects.However,the effects on extended nerve defects remain poorly understood.In this study,we used chitosan scaffolds loaded with nerve growth factor for 8 weeks to repair long-segment(20 mm)sciatic nerve defects in adult rats.The results showed that treatment markedly promoted the recovery of motor and sensory functions.The regenerated sciatic nerve not only reconnected with neurons but neural circuits with the central nervous system were also reconstructed.In addition,the regenerated sciatic nerve reconnected the motor endplate with the target muscle.Therefore,this novel biomimetic scaffold can promote the regeneration of extended sciatic nerve defects and reconstruct functional circuits.This provides a promising method for the clinical treatment of extended peripheral nerve injury.This study was approved by the Animal Ethics Committee of Capital Medical University,China(approval No.AEEI-2017-033)on March 21,2017.
基金supported by the Natural Science Foundation of China,No.81501610,81350030the Priority Academic Program Development of Jiangsu Higher Education Institutes of China
文摘The best tissue-engineered spinal cord grafts not only match the structural characteristics of the spinal cord but also allow the seed cells to grow and function in situ.Platelet-derived growth factor(PDGF) has been shown to promote the migration of bone marrow stromal cells;however,cytokines need to be released at a steady rate to maintain a stable concentration in vivo.Therefore,new methods are needed to maintain an optimal concentration of cytokines over an extended period of time to effectively promote seed cell localization,proliferation and differentiation.In the present study,a partition-type tubular scaffold matching the anatomical features of the thoracic 8–10 spinal cord of the rat was fabricated using chitosan and then subsequently loaded with chitosan-encapsulated PDGF-BB microspheres(PDGF-MSs).The PDGF-MS-containing scaffold was then examined in vitro for sustained-release capacity,biocompatibility,and its effect on neural progenitor cells differentiated in vitro from multilineage-differentiating stress-enduring cells(MUSE-NPCs).We found that pre-freezing for 2 hours at-20°C significantly increased the yield of partition-type tubular scaffolds,and 30 μL of 25% glutaraldehyde ensured optimal crosslinking of PDGF-MSs.The resulting PDGF-MSs cumulatively released 52% of the PDGF-BB at 4 weeks in vitro without burst release.The PDGF-MS-containing tubular scaffold showed suitable biocompatibility towards MUSE-NPCs and could promote the directional migration and growth of these cells.These findings indicate that the combination of a partition-type tubular scaffold,PDGF-MSs and MUSENPCs may be a promising model for the fabrication of tissue-engineered spinal cord grafts.
基金supported by grants from the National Natural Sciences Foundation of China (No. 30571839, No. 30600608,No. 30872540)the National High Technology Research and Development Program of China (863 Program) (No. 2009AA03Z420)
文摘The purpose of this study was to fabricate decelluarized valve scaffold modified with polyethylene glycol nanoparticles loaded with transforming growth factor-β1(TGF-β1),by which to improve the extracellular matrix microenvironment for heart valve tissue engineering in vitro.Polyethylene glycol nanoparticles were obtained by an emulsion-crosslinking method,and their morphology was observed under a scanning electron microscope.Decelluarized valve scaffolds,prepared by using trypsinase and TritonX-100,were modified with nanoparticles by carbodiimide,and then TGF-β1 was loaded into them by adsorption.The TGF-β1 delivery of the fabricated scaffold was measured by asing enzyme-linked immunosorbent assay.Whether unseeded or reseeded with myofibroblast from rats,the morphologic,biochemical and biomechanical characteristics of hybrid scaffolds were tested and compared with decelluarized scaffolds under the same conditions.The enzyme-linked immunosorbent assay revealed a typical delivery of nanoparticles.The morphologic observations and biological data analysis indicated that fabricated scaffolds possessed advantageous biocompatibility and biomechanical property beyond decelluarized scaffolds.Altogether this study proved that it was feasible to fabricate the hybrid scaffold and effective to improve extracellular matrix microenvironment,which is beneficial for an application in heart valve tissue engineering.
基金This study was supported by the following funds:(1)National Natural Science Foundation of China(Nos.51935014,82072084,and 81871498)(2)Jiangxi Provincial Natural Science Foundation of China(Nos.20192ACB20005 and 2020ACB214004)+6 种基金(3)The Provincial Key R&D Projects of Jiangxi(No.20201BBE51012)(4)Guangdong Province Higher Vocational Colleges&Schools Pearl River Scholar Funded Scheme(2018)(5)Shenzhen Science and Technology Plan Project(No.JCYJ20170817112445033)(6)Innovation Team Project on University of Guangdong Province(No.2018GKCXTD001)(7)Technology Innovation Platform Project of Shenzhen Institute of Information Technology 2020(No.PT2020E002)(8)Open Research Fund of Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology(9)China Postdoctoral Science Foundation(No.2020M682114).
文摘Hydroxyapatite(HA)nanoparticles and silver(Ag)nanoparticles are expected to enable desirable bioactivity and antibac-terial properties on biopolymer scaffolds.Nevertheless,interfacial adhesion between HA/Ag and the biopolymer is poor due to the large physicochemical differences between these components.In this study,poly L-lactic acid(PLLA)powder was first surface-modified with bioactive polydopamine(PDA)in an alkaline environment.Next,HA and Ag nanoparticles were grown in situ on the PDA-coated PLLA powder,which was then adhered to the porous bone scaffold using a selective laser-sintering process.Results showed that HA and Ag nanoparticles were homogenously distributed in the matrix,with enhanced mechanical properties.Simulated body fluid bioactivity tests showed that the in situ grown HA-endowed scaffold shows excellent bioactivity.In vitro tests confirmed that the scaffold exhibits favorable biocompatibility with human umbilical cord mesenchymal stem cells,as well as strong antibacterial activity against Gram-negative Escherichia coli.Furthermore,in vivo assays indicated that the scaffold promoted bone generation,with a new bone area fraction of 71.8%after 8 weeks’implantation,without inflammation.
基金Funded by the National Natural Science Foundation of China (No.30571873)
文摘The effect of culture in KLD-12 self-assembling peptide nanofiber scaffold containing TGF-β3 gene on differentiation of precartilaginous stem cells (PSCs) into chondrocytes was studied. KLD-12 was synthesized by solid-state method. After TGF-β3 plasmid was loaded into KLD-12 self-assembling peptide nanofiber scaffold, DNA release ability was investigated. PSCs and hTGF-β3 gene were loaded into KLD-12 3-D scaffold, and MTT assay was performed to investigate the cell proliferation, and ELASA assay was used to investigate the expression of TGF-β3. Specific cartilage matrix was examined by quantitative real-time PCR, immunohistochemistry and Alcian Blue staining. Compared with control group, DNA synthesis level of PSCs reached the peak within 3 days when PSCs were cultured in self-assembling peptide nanofiber scaffold loading TGF-β3 plasmid, and maintained this high level within 2 weeks. MTT results showed that the proliferation ability of experimental group was statistically higher than that in control group (P〈0.05). Quantitative real-time PCR suggested that the percentage of TGF-β3 positive PSCs in experimental group was higher than that in control group (P〈0.01). ELISA assay showed that the TGF-β3 protein level increased in supernatant of experimental group's PSCs, reached the peak after 72 h and then declined a little to the plateau phase. Compared with the control group, the specific gene of chondrocyte typical extracellular matrix significantly up-regulated (P〈0.01). The results showed that PSCs differentiated into chondrocytes in self-assembling peptide nanofiber scaffold loading TGF-β3 plasmid, which provided a fresh approach to cartilage tissue engineering.
文摘AIM: To improve osteogenic differentiation and attachment of cells.METHODS: An electronic search was conducted inPub Med from January 2004 to December 2013. Studies which performed smart modifications on conventional bone scaffold materials were included. Scaffolds with controlled release or encapsulation of bioactive molecules were not included. Experiments which did not investigate response of cells toward the scaffold(cell attachment, proliferation or osteoblastic differentiation) were excluded. RESULTS: Among 1458 studies, 38 met the inclusion and exclusion criteria. The main scaffold varied extensively among the included studies. Smart modifications included addition of growth factors(group Ⅰ-11 studies), extracellular matrix-like molecules(group Ⅱ-13 studies) and nanoparticles(nano-HA)(group Ⅲ-17 studies). In all groups, surface coating was the most commonly applied approach for smart modification of scaffolds. In group I, bone morphogenetic proteins were mainly used as growth factor stabilized on polycaprolactone(PCL). In group Ⅱ, collagen 1 in combination with PCL, hydroxyapatite(HA) and tricalcium phosphate were the most frequent scaffolds used. In the third group, nano-HA with PCL and chitosan were used the most. As variable methods were used, a thorough and comprehensible compare between the results and approaches was unattainable.CONCLUSION: Regarding the variability in methodology of these in vitro studies it was demonstrated that smart modification of scaffolds can improve tissue properties.
基金financially supported by the National Key Research and Development Program of China(2018YFA0703003)National Natural Science Foundation of China(82072429,52125501,82371590)+6 种基金the Program for Innovation Team of Shaanxi Province(2023-CX-TD-17)the Key Research&Development Program of Shaanxi Province(2024SF-YBXM-355,2020SF-093,2021LLRH-08)the Natural Science Foundation of Henan Province(222300420358)the Postdoctoral Project of Shaanxi Province(2023BSHYDZZ30)the Postdoctoral Fellowship Program of CPSF(GZB20230573)the Institutional Foundation of the First Affiliated Hospital of Xi’an Jiaotong University(2019ZYTS-02)the Fundamental Research Funds for the Central Universities.
文摘The rotator cuff tear has emerged as a significant global health concern.However,existing therapies fail to fully restore the intricate bone-to-tendon gradients,resulting in compromised biomechanical functionalities of the reconstructed enthesis tissues.Herein,a tri-layered core–shell microfibrous scaffold with layer-specific growth factors(GFs)release is developed using coaxial electrohydrodynamic(EHD)printing for in situ cell recruitment and differentiation to facilitate gradient enthesis tissue repair.Stromal cell-derived factor-1(SDF-1)is loaded in the shell,while basic fibroblast GF,transforming GF-beta,and bone morphogenetic protein-2 are loaded in the core of the EHD-printed microfibrous scaffolds in a layer-specific manner.Correspondingly,the tri-layered microfibrous scaffolds have a core–shell fiber size of(25.7±5.1)μm,with a pore size sequentially increasing from(81.5±4.6)μm to(173.3±6.9)μm,and to(388.9±6.9μm)for the tenogenic,chondrogenic,and osteogenic instructive layers.A rapid release of embedded GFs is observed within the first 2 d,followed by a faster release of SDF-1 and a slightly slower release of differentiation GFs for approximately four weeks.The coaxial EHD-printed microfibrous scaffolds significantly promote stem cell recruitment and direct their differentiation toward tenocyte,chondrocyte,and osteocyte phenotypes in vitro.When implanted in vivo,the tri-layered core–shell microfibrous scaffolds rapidly restored the biomechanical functions and promoted enthesis tissue regeneration with native-like bone-to-tendon gradients.Our findings suggest that the microfibrous scaffolds with layer-specific GFs release may offer a promising clinical solution for enthesis regeneration.
文摘Repair and regeneration of articular cartilage has always been a major challenge in the medical field due to its peculiar structure(e.g.sparsely distributed chondrocytes,no blood supply).Cartilage tissue engineering is one promising strategy for cartilage repair,however,one critical issue for cartilage tissue engineering is the integration between tissue-engineered and native cartilage.In recent years,osteochondral tissue engineering has attracted growing interest for overcoming this problem.Herein,we review the development of osteochondral tissue engineering.Firstly,currently used seed cells in osteochondral tissue engineering will be described.Secondly,several types of scaffolds and their(dis)advantage for osteochondral tissue engineering will be introduced.Thirdly,the growth factors currently used in osteochondral tissue engineering will be presented and discussed.