期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Effect of plant growth regulator on rate of twin seedlings of rice with polyembryony
1
作者 TAN Zhijun HUANG Yiqiang DENG Hongde Hunan Hybrid Rice Research Center,Changsha 410125,China 《Chinese Rice Research Newsletter》 1991年第1期1-1,共1页
Rice with polyembryony characterized bytwin seedlings is a good genetic tool for apomixisresearch.A study on the effect of five plantgrowth regulators(IAA,KT,GA,2,4-D and6-BAP)on rate of twin seedlings in 3 rice varie... Rice with polyembryony characterized bytwin seedlings is a good genetic tool for apomixisresearch.A study on the effect of five plantgrowth regulators(IAA,KT,GA,2,4-D and6-BAP)on rate of twin seedlings in 3 rice varie.ties with polyembryony(Shuang 3,Shuang 13and Lu 52)was conducted.The results showed 展开更多
关键词 RATE BAP Effect of plant growth regulator on rate of twin seedlings of rice with polyembryony
全文增补中
Arabidopsis Thylakoid Formation 1 Is a Critical Regulator for Dynamics of PSII-LHCII Complexes in Leaf Senescence and Excess Light 被引量:5
2
作者 Weihua Huang Qingbo Chen Ying Zhu Fenghong Hu Lingang Zhang Zhaoxue Ma Zuhua He Jirong Huang 《Molecular Plant》 SCIE CAS CSCD 2013年第5期1673-1691,共19页
In higher plants, photosystem II (PSII) is a large pigment-protein supramolecular complex composed of the PSII core complex and the plant-specific peripheral light-harvesting complexes (LHCil). PSli-LHCII complexe... In higher plants, photosystem II (PSII) is a large pigment-protein supramolecular complex composed of the PSII core complex and the plant-specific peripheral light-harvesting complexes (LHCil). PSli-LHCII complexes are highly dynamic in their quantity and macro-organization to various environmental conditions. In this study, we reported a critical factor, the Arabidopsis Thylakoid Formation 1 (THF1) protein, which controls PSII-LHCII dynamics during dark- induced senescence and light acclimation. Loss-of-function mutations in THF1 lead to a stay-green phenotype in path- ogen-infected and senescent leaves. Both LHCII and PSll core subunits are retained in dark-induced senescent leaves of thfl, indicative of the presence of PSII-LHCII complexes. Blue native (BN)-polyacrylamide gel electrophoresis (PAGE) and immunoblot analysis showed that, in dark- and high-light-treated thfl leaves, a type of PSII-LHCII megacomplex is selec- tively retained while the stability of PSII-LHCII supercomplexes significantly decreased, suggesting a dual role of THF1 in dynamics of PSII-LHCII complexes. We showed further that THF1 interacts with Lhcb proteins in a pH-dependent manner and that the stay-green phenotype of thfl relies on the presence of LHCII complexes. Taken together, the data suggest that THF1 is required for dynamics of PSII-LHCII supramolecular organization in higher plants. 展开更多
关键词 light regulation PHOTOSYNTHESIS physiology of plant growth Arabidopsis.
原文传递
The Blue Light-Dependent Phosphorylation of the CCE Domain Determines the Photosensitivity of Arabidopsis CRY2 被引量:3
3
作者 Qin Wang William D. Barshop +9 位作者 Mingdi Bian Ajay A. Vashisht Reqing He Xuhong Yu Bin Liu Paula Nguyen Xuanming Liu Xiaoying Zhao James A. Wohlschlegel Chentao Lin 《Molecular Plant》 SCIE CAS CSCD 2015年第4期631-643,共13页
Arabidopsis cryptochrome 2 (CRY2) is a blue light receptor that mediates light inhibition of hypocotyl elongation and long-day promotion of floral initiation, CRY2 is known to undergo blue light-dependent phosphoryl... Arabidopsis cryptochrome 2 (CRY2) is a blue light receptor that mediates light inhibition of hypocotyl elongation and long-day promotion of floral initiation, CRY2 is known to undergo blue light-dependent phosphorylation, which is believed to serve regulatory roles in the function of CRY2. We report here on a biochemical and genetics study of CRY2 phosphorylation. Using mass spectrometry analysis, we identified three serine residues in the CCE domain of CRY2 (S588, S599, and S605) that undergo blue light-dependent phosphorylation in Arabidopsis seedlings. A study of serine-substitution mutations in the CCE domain of CRY2 demonstrates that CRY2 contains two types of phosphorylation in the CCE domain, one in the serine cluster that causes electrophoretic mobility upshift and the other outside the serine cluster that does not seem to cause mobility upshift. We showed that mutations in the serine residues within and outside the serine cluster diminished blue light-dependent CRY2 phosphorylation, degradation, and physiological activities. These results support the hypothesis that blue light-dependent phosphorylation of the CCE domain determines the photosensitivity of Arabidopsis CRY2. 展开更多
关键词 light regulation light signaling physiology of plant growth ARABIDOPSIS
原文传递
Arabinan Metabolism during Seed Development and Germination in Arabidopsis 被引量:2
4
作者 Leonardo D. Gomez Clare G. Steele-King Louise Jones Jonathan M. Foster Supachai Vuttipongchaikij Simon J. McQueen-Mason 《Molecular Plant》 SCIE CAS CSCD 2009年第5期966-976,共11页
Arabinans are found in the pectic network of many cell walls, where, along with galactan, they are present as side chains of Rhamnogalacturonan I. Whilst arabinans have been reported to be abundant polymers in the cel... Arabinans are found in the pectic network of many cell walls, where, along with galactan, they are present as side chains of Rhamnogalacturonan I. Whilst arabinans have been reported to be abundant polymers in the cell walls of seeds from a range of plant species, their proposed role as a storage reserve has not been thoroughly investigated. In the cell walls of Arabidopsis seeds, arabinose accounts for approximately 40% of the monosaccharide composition of non- cellulosic polysaccharides of embryos. Arabinose levels decline to -15% during seedling establishment, indicating that cell wall arabinans may be mobilized during germination. Immunolocalization of arabinan in embryos, seeds, and seedlings reveals that arabinans accumulate in developing and mature embryos, but disappear during germination and seedling establishment. Experiments using 14C-arabinose show that it is readily incorporated and metabolized in growing seedlings, indicating an active catabolic pathway for this sugar. We found that depleting arabinans in seeds using a fungal arabinanase causes delayed seedling growth, lending support to the hypothesis that these polymers may help fuel early seedling growth. 展开更多
关键词 Cell walls development embryogenesis and seed development ARABIDOPSIS arabinan arabinose carbohydrate metabolism physiology of plant growth.
原文传递
Long-Distance Signaling in bypass1 Mutants: Bioassay Development Reveals the bps Signal to Be a Metabolite 被引量:1
5
作者 Emma Adhikari Dong-Keun Lee +1 位作者 Patrick Giavalisco Leslie E. Sieburth 《Molecular Plant》 SCIE CAS CSCD 2013年第1期164-173,共10页
Root-to-shoot signaling is used by plants to coordinate shoot development with the conditions experienced by the roots. A mobile and biologically active compound, the bps signal, is over-produced in roots of an Arabid... Root-to-shoot signaling is used by plants to coordinate shoot development with the conditions experienced by the roots. A mobile and biologically active compound, the bps signal, is over-produced in roots of an Arabidopsis thaliana mutant called bypass1 (bpsl), and might also be a normally produced signaling molecule in wild-type plants. Our goal is to identify the bps signal chemically, which will then allow us to assess its production in normal plants. To identify any signaling molecule, a bioassay is required, and here we describe the development of a robust, simple, and quantitative bioassay for the bps signal. The developed bioassay follows the growth-reducing activity of the bps signal using the pCYCB1;I::GUS cell cycle marker. Wild-type plants carrying this marker, and provided the bps signal through either grafts or metabolite extracts, showed reduced cell division. By contrast, control grafts and treatment with control extracts showed no change in pCYCB1;I::GUS expression. To determine the chemical nature of the bps signal, extracts were treated with RNase A, Proteinase K, or heat. None of these treatments diminished the activity of bpsl extracts, sug- gesting that the active molecule might be a metabolite. This bioassay will be useful for future biochemical fractionation and analysis directed toward bps signal identification. 展开更多
关键词 hormone biology metabolic regulation physiology of plant growth secondary metabolism/natural prod-ucts signaling organismal level development.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部