[Objective] The aim was to study the effects of short-term high temperature stress on the photosynthesis of potato in different growth stages. [Method] Choosing powder potato named Longshu No.3 widely cultivated in Ni...[Objective] The aim was to study the effects of short-term high temperature stress on the photosynthesis of potato in different growth stages. [Method] Choosing powder potato named Longshu No.3 widely cultivated in Ningxia as test material,the changes of stomata conductance (Gs),transpiration rate (Tr) and CO2 concentration difference between internal and external leaf chamber,net photosynthetic rate (Pn) and photosynthetic water use efficiency (WUE) in different growth stages under short-term high temperature were analyzed. [Result] During seedling stage,the hysteretic nature of net photosynthetic rate and CO2 concentration difference between internal and external leaf chamber of potato could be found under high temperature stress,while the change trends of stomata conductance and transpiration rate under high temperature stress were consistent to that at normal temperature,but stomata conductance and transpiration rate were higher than those at normal temperature,and CO2 concentration difference between internal and external leaf chamber affected net photosynthetic rate most obviously. During branching stage,the change trends of net photosynthetic rate,CO2 concentration difference between internal and external leaf chamber,stomata conductance and transpiration rate under high temperature stress and normal temperature were similar,but they changed abruptly and reached peak value at noon under high temperature stress,while there existed consistent variation of water use efficiency under high temperature stress and at normal temperature,and CO2 concentration difference between internal and external leaf chamber also affected net photosynthetic rate most greatly,next came transpiration rate. [Conclusion] High temperature stress affected the photosynthesis of potato in different growth stages,and it was more obvious during branching stage than seedling stage,while CO2 concentration difference between internal and external leaf chamber had the most important influence on net photosynthetic rate.展开更多
[Objective] This study aimed to investigate the effects of waterlogging in different growth stages on nitrogen (N) uptake, distribution, and utilization of cotton. [Method] A pool-culture experiment in field was con...[Objective] This study aimed to investigate the effects of waterlogging in different growth stages on nitrogen (N) uptake, distribution, and utilization of cotton. [Method] A pool-culture experiment in field was conducted to investigate the effects of wateriogging through comparing WL1 (waterlogging at peak squaring stage) and WL2 (waterlogging at flowering and boll-forming stage) treatments with their controls respectively. [Result] The results showed that the effect of WL1 on N uptake of cotton root was stronger than WL2. At 20 days (d) after WL1 treatment, the root biomass (RB), N uptake (NU), and N uptake rate (NUR) significantly decreased by 38.1%, 48.6%, and 53.0% respectively. At 20 d after WL2 treatment, the RB, NU, and NUR significantly decreased by 27.3%, 46.0%, and 44.8% respectively. More N was distributed to root and leaf after WL1 treatment, and to square, flower, and boll after WL2 treatment. N physiological use efficiency increased by 11.4% and 44.4% after WL1 and WL2 treatments respectively. Further analysis showed that the effects of WL1 on yield and its components of cotton were stronger than WL2. The boll number, boll weight, and lint yield per plant significantly reduced by 40.5%, 12.4%, and 49.5% after WL1 treatment, and significantly decreased by 23.1%, 6.9%, and 29.9% after WL2 treatment, respectively. [Conclusion] The negative effects of water- logging at peak squaring stage on N nutrition and yield of cotton were stronger than waterlogging at flowering and boll-forming stage, indicating that more attention should be paid to waterlogging at peak squaring stage and sound N management can improve cotton regrowth and reduce yield loss after waterlogging.展开更多
The effect of nitrate (NO3^-) on rice (Oryza sativa L.) growth as well as N absorption and assimilation during different growth stages was examined using three typical rice cultivars. Dry weight, yield, N uptake, ...The effect of nitrate (NO3^-) on rice (Oryza sativa L.) growth as well as N absorption and assimilation during different growth stages was examined using three typical rice cultivars. Dry weight, yield, N uptake, nitrate reductase activity (NRA) in leaves, and glutamine synthetase activity (GSA) in roots and leaves during their entire growth periods, as well as the kinetic parameters of ammonium (NH4^+) uptake at the seedling stage, were measured with solution culture experiments. Results indicated that addition of NH4^+-N and NO3^-N at a ratio of 75:25 (NH4^++NO3^- treatment) when compared with that of NH4^+-N alone (NH4^+ treatment) increased the dry weight of ‘Nanguang' cultivar by 30% and ‘Yunjing 38' cultivar by 31%, and also increased their grain yield by 21% and 17%, respectively. For the four growth stages, the total N accumulation in plants increased by an average of 36% for ‘Nanguang' and 31% for ‘Yunjing 38', whereas the increasing effect of NO3^- in the ‘4007' cultivar was only found at the seedling stage, in the NH4^++NO3^- treatment compared to the NH4^+ treatment, NRA in the leaves increased by 2.09 folds, and GSA increased by 92% in the roots and 52% in the leaves of the three cultivars. NO3^- supply increased the maximum uptake rate (Vmax) in the ‘Nanguang' and ‘Yunjing 38' cultivars, reflecting that the NO3^- itself, not the increasing N concentration, increased the uptake rate of NH4^+ by rice. There was no effect on the apparent Michaelis-Menten constant (Kin) of the three cultivars. Thus, some replacement of NH4^+ with NO3^-could greatly improve the growth of rice plants, mainly on account of the increased uptake of NH4^+ promoted by NO3^-, and future studies should focus on the molecular mechanism of the increased uptake of NH4^+ by NO3^-.展开更多
Soil erosion on farmland is a critical environmental issue and the main source of sediment in the Yellow River, China. Thus, great efforts have been made to reduce runoff and soil loss by restoring vegetation on aband...Soil erosion on farmland is a critical environmental issue and the main source of sediment in the Yellow River, China. Thus, great efforts have been made to reduce runoff and soil loss by restoring vegetation on abandoned farmland. However, few studies have investigated runoff and soil loss from sloping farmland during crop growth season. The objective of this study was to investigate the effects of soil management on runoff and soil loss on sloping farmland during crop growth season. We tested different soybean growth stages (i.e., seedling stage (R1), initial blossoming stage (R2), full flowering stage (R3), pod bearing stage (R4), and initial filling stage (R5)) and soil management practice (one plot applied hoeing tillage (HT) before each rainfall event, whereas the other received no treatment (NH)) by applying simulated rainfall at an intensity of 80 mm/h. Results showed that runoff and soil loss both decreased and infiltration amount increased in successive soybean growth stages under both treatments. Compared with NH plot, there was less runoff and higher infiltration amount from HT plot. However, soil loss from HT plot was larger than that from NH plot in R1–R3, but lower in R4 and R5. In the early growth stages, hoeing tillage was effective for reducing runoff and enhancing rainfall infiltration. By contrast, hoeing tillage enhanced soil and water conservation during the late growth stages. The total soil loss from HT plot (509.0 g/m2) was 11.1% higher than that from NH plot (457.9 g/m2) in R1–R5. However, the infiltration amount from HT plot (313.9 mm) was 18.4% higher than that from NH plot (265.0 mm) and the total runoff volume from HT plot was 49.7% less than that from NH plot. These results indicated that crop vegetation can also act as a type of vegetation cover and play an important role on sloping farmland. Thus, adopting rational soil management in crop planting on sloping farmland can effectively reduce runoff and soil loss, as well as maximize rainwater infiltration during crop growth period.展开更多
Jincheng orange(Citrus sinensis Osbeck)is widely grown in Chongqing,China,and is commonly consumed because of its characteristic aroma contributed by the presence of diverse volatile compounds.The changes in aroma dur...Jincheng orange(Citrus sinensis Osbeck)is widely grown in Chongqing,China,and is commonly consumed because of its characteristic aroma contributed by the presence of diverse volatile compounds.The changes in aroma during the development and maturation of fruit are indicators for ripening and harvest time.However,the influence of growth stages on the volatile compounds in Jincheng orange remains unclear.In addition,volatiles originate from fatty acids,most of which are the precursors of volatile substances.On this basis,gas chromatography-mass spectrometry(GC-MS)was performed to elaborate the changes in volatile constituents and fatty acids as precursors.This study tested proximately 60 volatiles and 8 fatty acids at 9 growth and development stages(AF1-AF9).Of those compounds,more than 92.00%of total volatiles and 87.50%of fatty acids were terpenoid and saturated fatty acids,respectively.As shown in the PCA plot,the AF5,AF6,and AF9 stages were confirmed as completely segregated and appeared different.In addition,most of the volatiles and fatty acids first increased at the beginning of the development stage,then decreased from the AF6 development stage,and finally increased at the AF9 maturity stage.Moreover,the highest contents of terpenoid,alcohols,aldehydes,ketones,and saturated fatty acids in Jincheng orange peel oil were d-limonene,linalool,octanal,cyclohexanone,and stearic acid during development stages,respectively.Our results found that the growth stages significantly affected the volatile constituents and precursors in Jincheng orange peel oil.展开更多
[Objective] This study aimed to investigate the nutritional characteristics of Dianjiang peony at different growth stages.[Method] The yield,nutrient content and nutrient uptake of Dianjiang peony at different growth ...[Objective] This study aimed to investigate the nutritional characteristics of Dianjiang peony at different growth stages.[Method] The yield,nutrient content and nutrient uptake of Dianjiang peony at different growth stages and available nutrient content in soil were investigated by field survey and indoor chemical analysis.[Resuit] The results showed that biomass,leaf weight,tender stem weight and cortex moutan weight (yield) of 1-4 years old peony exhibited a significant quadratic regression relationship with the cultivation duration.The average content and uptake of 12 nutrients in leaves exhibited an overall order of Ca>N>K>Mg>S>P>Fe>Mn> Zn>Cu,which was consistent to that in tender stems.However,the average content and uptake of various nutrient elements in cortex moutan exhibited an overall order of N>Ca>K>Mg>P>S>Fe>Zn>Cu>Mn,which was different from that in leaves and tender stems.In addition,the average content and uptake of various nutrient elements in petioles exhibited an overall order of Ca>K>N>Mg>S>P>Fe>Mn>Zn>Cu.The content of organic matter in soil of Dianjiang peony at different growth stages varied greatly; to be specific,contents of N,S,Mn and Zn were higher.[Conclusion] This study provided theoretical basis for the production of high-quality and high-yield peony.展开更多
Background:Tan sheep,an important local sheep breed in China,is famous for their fur quality.One-month-old Tan sheep have white,curly hair with beautiful flower spikes,commonly known as“nine bends”,which has high ec...Background:Tan sheep,an important local sheep breed in China,is famous for their fur quality.One-month-old Tan sheep have white,curly hair with beautiful flower spikes,commonly known as“nine bends”,which has high economic value.However,the“nine bends”characteristic gradually disappears with age;consequently,the economic value of the Tan sheep decreases.Age-related changes in DNA methylation have been reported and may be responsible for age-induced changes in gene expression.Until now,no genome-wide surveys have been conducted to identify potential DNA methylation sites involved in different sheep growth stages.In this study we investigated the dynamic changes of genome-wide DNA methylation profiles in Tan sheep using DNA from skin and deep whole-genome bisulfite sequencing,and compared the DNA methylation levels at three different growth stages:1,24,and 48 months old(mon1,mon24,and mon48,respectively).Results:In this study,11 skin samples from three growth stages(four for mon1,four for mon24,and three for mon48)were used for DNA methylation analysis and gene expression profiling.There were 52,288 and 236 differentially methylated genes(DMGs)identified between mon1 and mon24,mon1 and mon48,and mon24 and mon48,respectively.Of the differentially methylated regions,1.11%,7.61%,and 7.65% were in the promoter in mon1 vs.mon24,mon24 vs.mon48,and mon1 vs.mon48,respectively.DMGs were enriched in the MAPK and WNT signaling pathways,which are related to age growth and hair follicle morphogenesis processes.There were 51 DMGs associated with age growth and curly fleece formation.Four DMGs between mon1 and mon48(KRT71,CD44,ROR2 and ZDHHC13)were further validated by bisulfite sequencing.Conclusions:This study revealed dynamic changes in the genomic methylation profiles of mon1,mon24,and mon48 sheep,and the percentages of methylated cytosines were 3.38%,2.85% and 4.17%,respectively.Of the DMGs,KRT71 and CD44 were highly methylated in mon1,and ROR2 and ZDHHC13 were highly methylated in mon48.These findings provide foundational information that may be used to develop strategies for potentially retaining the lamb fur and thus improving the economic value of Tan sheep.展开更多
The pathogen of tomato powdery mildew (Oidium neolycopersici Kiss) was simultaneously inoculated into four varieties during seedling, flowering and fruiting stages under the same environmental conditions by inducing...The pathogen of tomato powdery mildew (Oidium neolycopersici Kiss) was simultaneously inoculated into four varieties during seedling, flowering and fruiting stages under the same environmental conditions by inducing inoculation method, so as to study the resistance during different growth stages. Different varieties of plants and the plants during different growth stages were investigated after inoculation for 12 d, and disease epidemic curves were drawn according to survey data. The results showed that different varieties performed different resistance against powdery mildew and the same variety also showed different resistance during different growth stages. The susceptible extent of Lujia was the heaviest during seedling and flowering sages, while it showed the strongest resistance during fruiting stage; improved 96 -8 showed the highest resistance during seedling stage, but performed the lowest resistance during fruiting stage.展开更多
The vertical migration of Aphelenchoides besseyi under different temperatures and humidities and at different rice growth stages was investigated. It was found that the optimum temperature for the development and repr...The vertical migration of Aphelenchoides besseyi under different temperatures and humidities and at different rice growth stages was investigated. It was found that the optimum temperature for the development and reproduction of A. besseyiwas 25-30℃. At the same temperature, the rate of vertical migration increased with rising relative humidity. Artificial inoculation tests showed that at the elongation stage, nematodes survived mainly on the upper and middle parts of rice culms and the number of nematodes decreased by 50% at 20 days after inoculation compared with that at 5 days after inoculation. Whereas at the booting stage, nematodes accumulated in young panicles and reproduced quickly,, and the average number of nematodes at 20 days after inoculation increased to 164.5, three times of that at 5 days after inoculation.展开更多
Maize(Zea mays L.) can exhibit yield penalties as a result of unfavorable changes to growing conditions. The main threat to current and future global maize production is heat stress. Maize may suffer from heat stress ...Maize(Zea mays L.) can exhibit yield penalties as a result of unfavorable changes to growing conditions. The main threat to current and future global maize production is heat stress. Maize may suffer from heat stress in all of the growth stages, either continuously or separately. In order to manage the impact of climate driven heat stress on the different growth stages of maize, there is an urgent need to understand the similarities and differences in how heat stress affects maize growth and yield in the different growth stages. For the purposes of this review, the maize growth cycle was divided into seven growth stages, namely the germination and seedling stage, early ear expansion stage, late vegetative growth stage before flowering, flowering stage, lag phase, effective grain-filling stage, and late grain-filling stage. The main focus of this review is on the yield penalty and the potential physiological changes caused by heat stress in these seven different stages. The commonalities and differences in heat stress related impacts on various physiological processes in the different growth stages are also compared and discussed. Finally, a framework is proposed to describe the main influences on yield components in different stages, which can serve as a useful guide for identifying management interventions to mitigate heat stress related declines in maize yield.展开更多
The responses of Hongyang,Donghong and Jinhong varieties to temperature and precipitation were analyzed by observing the growth stages of different kiwifruit varieties in Longhe red cartridge kiwifruit base of Liuzhi ...The responses of Hongyang,Donghong and Jinhong varieties to temperature and precipitation were analyzed by observing the growth stages of different kiwifruit varieties in Longhe red cartridge kiwifruit base of Liuzhi Special Zone of Guizhou Province in 2021 and combining with the meteorological data of temperature and precipitation in the base in the same period.The results showed that Hongyang,Donghong and Jinhong all sprouted on February 1,and had the same response to temperature and precipitation.From germination to leaf spreading stage,Hongyang and Donghong had the same response to precipitation,while Donghong and Jinhong had the same response to temperature,but Jinhong needed 32.5 mm precipitation to meet its growth and development.From leaf spreading stage to budding stage,Hongyang and Donghong had similar responses to temperature and precipitation,while Jinhong needed average daily temperature of 16.5℃and precipitation of 2.1 mm.The responses of the three varieties from budding to flowering to temperature and precipitation were consistent.From flowering to fruiting,Hongyang needed 19.9℃temperature and the least precipitation,while Jinhong needed the lowest temperature and the maximum precipitation.Donghong's response to temperature and precipitation was between Hongyang and Jinhong.During the period from fruit setting to fruit ripening and picking,Hongyang needed the least temperature and precipitation,while Donghong and Jinhong had the same response to temperature and precipitation.In the key period of fruit expansion of the three kiwifruit varieties in 2021,temperature and precipitation were the most suitable for fruit expansion.In short,red cartridge kiwifruit has a good response to temperature and precipitation in different growth stages,and it requires 201 d for Hongyang variety from germination to maturity and picking,211 d for Donghong variety and 218 d for Jinhong variety.展开更多
The aim of this study was to investigate the effects of tomato quality and yield between different bunches and the differences between the two comprehensive evaluation methods on tomato quality ranking under water str...The aim of this study was to investigate the effects of tomato quality and yield between different bunches and the differences between the two comprehensive evaluation methods on tomato quality ranking under water stress.Two degrees of water stress including mild water stress(W1)and moderate water stress(W2),and three growth stages that water stress applied including seedling stage(S1),flowering stage(S2)and fruit expanding stage(S3)were tested in this study.The yield and quality of different bunches of tomatoes under water stress during different growth stages were determined as responses,and the comprehensive fruit quality ranking and yield of the second and third bunches were evaluated.The results showed that water stress was important for the improvement of fruit quality,but fruit yield decreased during water stress.The yield of the third tomato bunch decreased from 11.69%(W1S1)to 30.60%(W2S2)compared to control(97.57 t/hm^(2)),and the effects of mild water stress on fruit yield were minimal at the early growth stage.However,the fruit quality in terms of soluble sugar(SS),total soluble solids(TSS),vitamin C(VC),and firmness(F)improved under water stress compared to control.The combined effects of water stress and its application period significantly affected SS and TSS.Water stress significantly improved the content of SS and TSS in the later growth period compared to seedling and flowering stages.Meanwhile,there was a significant difference in tomato quality between the second and third bunches of fruit,especially in the content of SS,organic acid(OA)and lycopene(L).Principal Component Analysis(PCA)and Grey Relational Analysis(GRA)were used to evaluate comprehensive fruit quality,and the best treatment in terms of the fruit quality was W1S3 for both bunches.The rank-sum ratio(RSR)method was used to evaluate fruit quality and yield,the results showed that W1S3 ranked first based on PCA and W1S1 ranked first based on GRA.Water stress enhanced tomato quality but inevitably reduced its yield during each growth stage.The application of mild water stress during the fruit expanding stage(W1S3)was considered to be the best treatment to provide satisfactory fruit quality and yield based on RSR.展开更多
Particulate matter diameter ≤ 2.5 μm(PM2.5) causes direct harm to human health. Finding forms of urban forest systems that with the ability to reduce the amount of particulate matter in air effectively is the aim ...Particulate matter diameter ≤ 2.5 μm(PM2.5) causes direct harm to human health. Finding forms of urban forest systems that with the ability to reduce the amount of particulate matter in air effectively is the aim of this study. Five commonly cultivated kinds of urban forest types were studied in Beijing city at three stages of leaf growth. Results show that the urban forest system is capable of storing and capturing dust from the air. The types of shrubs and broadleaf trees that have the ability to capture PM2.5from the air are most effective when leaves have fully developed. In the leafless season, the conifer and mixed tree types are the most effective in removing dust from the air. For all kinds of forest types and stages of leaf growth, the PM2.5concentration is highest in the morning but lower in the afternoon and evening. Grassland cannot control particles suspended in the air,but can reduce dust pollution caused by dust from the ground blown by the wind back into the air.展开更多
Global rice production practices have gradually changed from a reliance on transplanting to direct seeding.Yet how this shift may alter cadmium(Cd)accumulation in rice is poorly known.Here we conducted field experimen...Global rice production practices have gradually changed from a reliance on transplanting to direct seeding.Yet how this shift may alter cadmium(Cd)accumulation in rice is poorly known.Here we conducted field experiments with two rice genotypes cultivars that were planted using three methods:via direct seeding(DS),seedling throwing(ST),and manual transplanting(MT).Rice samples were collected during four growth stages.The formation and distribution of iron plaque were analyzed using DCB(dithionite-citrate-bicarbonate)extractions and observed under micro-XRF(micro X-ray fluorescence).The results revealed that,in each growth stage,DS rice was more apt to harbor Cd distributed in the plant’s aerial parts,and the Cd concentration of brown rice from DS was 21.8%–43.3%significantly higher than those from ST and MT at maturity stage(p<0.05).During the vegetative stages,the Cd uptake percentage was higher in DS than MT rice,and those plants arising from the DS method were capable of absorbing more Cd earlier in their growth and development.Conversely,using DS decreased the amount of iron plaque covering the root surface in every growth stage,especially in the critical period of Cd accumulation,such that the roots’middle areas were distinguished by a near-complete absence of iron plaque,thus weakening its role as an effective barrier to Cd uptake from soil.Collectively,this study demonstrated that implementing the DS mode of planting will increase Cd’s distribution in the aboveground parts of rice,and heightening the risk of Cd contamination in grain.展开更多
Leaf area index(LAI)and canopy chlorophyll density(CCD)are key indicators of crop growth status.In this study,we compared several vegetation indices and their red-edge modified counterparts to evaluate the optimal red...Leaf area index(LAI)and canopy chlorophyll density(CCD)are key indicators of crop growth status.In this study,we compared several vegetation indices and their red-edge modified counterparts to evaluate the optimal red-edge bands and the best vegetation index at different growth stages.The indices were calculated with Sentinel-2 MSI data and hyperspectral data.Their performances were validated against ground measurements using R2,RMSE,and bias.The results suggest that indices computed with hyperspectral data exhibited higher R2 than multispectral data at the late jointing stage,head emergence stage,and filling stage.Furthermore,rededge modified indices outperformed the traditional indices for both data genres.Inversion models indicated that the indices with short red-edge wavelengths showed better estimation at the early joint-ing and milk development stage,while indices with long red-edge wavelength estimate the sought variables better at the middle three stages.The results were consistent with the red-edge inflec-tion point shift at different growth stages.The best indices for Sentinel-2 LAI retrieval,Sentinel-2 CCD retrieval,hyperspectral LAI retrieval,and hyperspectral CCD retrieval at five growth stages were determined in the research.These results are beneficial to crop trait monitoring by providing references for crop biophysical and bio-chemical parameters retrieval.展开更多
Climate change can lead to and intensify drought disasters.Quantifying the vulnerability of disaster-affected elements is significant for understanding the mechanisms that transform drought intensity into eventual los...Climate change can lead to and intensify drought disasters.Quantifying the vulnerability of disaster-affected elements is significant for understanding the mechanisms that transform drought intensity into eventual loss.This study proposed a growth-stage-based drought vulnerability index(GDVI)of soybean using meteorological,groundwater,land use,and field experiment data and crop growth model simulation.The CROPGRO-Soybean model was used to simulate crop growth and water deficit.Four growth stages were considered since the sensitivity of soybean to drought is strictly related to the growth stage.The GDVI was applied to the Huaibei Plain,Anhui Province,China,with the goal of quantifying the spatiotemporal characteristics of soybean drought vulnerability in typical years and growth stages.The results show that:(1)The sensitivity of leaf-related parameters exceeded that of other parameters during the vegetative growth stage,whereas the top weight and grain yield showed a higher sensitivity in the reproductive growth stage;(2)A semi-logarithmic law can describe the relationship between the drought sensitivity indicators and the GDVI during the four growth stages.The pod-filling phase is the most vulnerable stage for water deficit and with the highest loss upper limit(over 70%);(3)The 2001 and 2002 seasons were the driest time during 1997-2006.Fuyang and Huainan Cities were more vulnerable to drought than other regions on the Huaibei Plain in 2001,while Huaibei and Suzhou Cities were the most susceptible areas in 2002.The results could provide effective decision support for the categorization of areas vulnerable to droughts.展开更多
Currently,unmanned aerial vehicles(UAVs)were widely applied to spray for pest and disease control.However,spray effect can be further improved by setting operation parameters more reasonably and scientifically.Therefo...Currently,unmanned aerial vehicles(UAVs)were widely applied to spray for pest and disease control.However,spray effect can be further improved by setting operation parameters more reasonably and scientifically.Therefore,this study attempts to derive the relationship between operation parameters and spray effect.Different growth stages were distinguished by various corn heights.A six-rotor UAV was operated at different heights and velocities to test pesticides spray effects for corns at different growth stages.Different plant canopy coverage rate and penetrating coefficients were obtained,according to which,the effects on droplet deposition rate caused by different UAVs’operation parameters were analyzed.Droplet penetrating coefficients were applied as indexes to evaluate and select UAVs operation parameters for corns at different growth stages respectively.Mathematical models of droplet penetrating coefficients with UAVs operation parameters were established for corns at all growth stages.The determination coefficients(R2)of all models were greater than 0.90 and average relative errors were within 20%,which asserted high forecasting accuracy of droplet penetrating rate.With the help of the models,parameters like operating height away from the bottom of corns and UAVs velocities were further analyzed,which guided the optimization of parameter settings and selection of spray methods for corns at different growth stages.展开更多
To study the mechanism of Cu toxicity on wheat,the characteristics of Cu stress in pivotal growth periods of wheat were explored by field planting methods.The results showed that at the tillering stage,the concentrati...To study the mechanism of Cu toxicity on wheat,the characteristics of Cu stress in pivotal growth periods of wheat were explored by field planting methods.The results showed that at the tillering stage,the concentrations of Cu in the leaf cell fluid were significantly higher than those in the cell wall,and the Cu was primarily enriched in cell fluid.At the jointing and heading stages,the Cu concentration in the leaf cell wall was significantly higher than that in the cell fluid,and the main enrichment was transferred to the cell wall.During the above three growth stages,no Cu was discovered in leaf organelles.Further studies showed that the total soluble protein content in wheat leaves at the tillering and jointing stages showed a trend of first rising and then falling with increased Cu dosage.At the heading stage,under low and medium Cu stress,the total soluble protein content showed no remarkable change.Malondialdehyde(MDA)content at the tillering stage increased with the increase of Cu concentration in the soil,while MDA content did not change noticeably at the jointing and heading stages.At the tillering and heading stages,the low concentrations of Cu increased peroxidase(POD)activity.The POD activity decreased gradually with the increased Cu concentration.However,at the high concentrations of Cu,there was no significant difference in the activity of POD.At the jointing stage,the POD activity did not change significantly under the low Cu stress while it was evidently inhibited under high Cu stress.Based on the above studies,further analyses on the correlation between canopy spectral characteristics and the Cu accumulation at different growth stages of leaf cells were performed,and a new combined index SIPI/NDVI705 performed well in Cu content prediction.The results showed that at different growth stages,different sensitive spectral characteristic parameters should be used to predict the Cu content in leaf cells.展开更多
Morphological and chemical studies on zircon grains from gabbro and granite of the Pingtan magmatic complex, Fujian Province, eastern China, show that there are three stages of zircon growth. The early stage of zircon...Morphological and chemical studies on zircon grains from gabbro and granite of the Pingtan magmatic complex, Fujian Province, eastern China, show that there are three stages of zircon growth. The early stage of zircon growth is characterized by colorlessness, high transparence and birefringence, low and dispersive Ipr and Ipy, weak and homogeneous BSE brightness, lower Hf content and depletion of U, Th and Y; the middle stage is characterized by abruptly increasing lpy, progressively strong and sectoral-zoning BSE brightness, higher Hf content and enrichment of U, Th and Y with Th/U 〉 1; the late stage of growth is characterized by brownish color, poor transparence, low birefringence, highest Ipr and Ipy, middle and oscillatorily-zoning BSE brightness, highest contents of Hf, U and Y with Th/U 〈 1. The stages are considered to be formed in a deep magma chamber, ascent passage and emplacement site, respectively. Due to the more or less long residual time of the magma chamber, the difference in age between the early and late stages of zircon might be great enough to be distinguished, which can be attributed to tectonic constraint for the magnlatism.展开更多
A pot experiment was conducted in a greenhouse with three alfalfa(Medicago sativa) cultivars,Aohan, Zhongmu No.1 and Sanditi, to examine the morphological and physiological responses of alfalfa to water stress. The re...A pot experiment was conducted in a greenhouse with three alfalfa(Medicago sativa) cultivars,Aohan, Zhongmu No.1 and Sanditi, to examine the morphological and physiological responses of alfalfa to water stress. The response of alfalfa to water stress at different growth stages was generally similar, but varied among cultivars. At the branching, flowering and podding stages, the shoot biomasses of Aohan and Zhongmu No.1 were greatly affected by, and responded quickly to, water stress. The shoot biomass of Sanditi was not affected by mild water stress, but had a slight response to moderate and severe water stress. The root/shoot ratios in Aohan and Zhongmu No.1 were more sensitive to water stress than in Sanditi, with the root/shoot ratio in Aohan increasing most significantly. At flowering, the root/shoot ratio was the highest and the effect of water stress the greatest. The abscisic acid(ABA) concentration in the roots of Aohan and Zhongmu No.1 increased under water stress, while in Sanditi there was only a slight or delayed response of ABA concentration.展开更多
基金Supported by National Natural Science Foundation of China(40765003)National Key Technology R &D Program in the 11th Five Year Plan of China (2007BAC03A02)~~
文摘[Objective] The aim was to study the effects of short-term high temperature stress on the photosynthesis of potato in different growth stages. [Method] Choosing powder potato named Longshu No.3 widely cultivated in Ningxia as test material,the changes of stomata conductance (Gs),transpiration rate (Tr) and CO2 concentration difference between internal and external leaf chamber,net photosynthetic rate (Pn) and photosynthetic water use efficiency (WUE) in different growth stages under short-term high temperature were analyzed. [Result] During seedling stage,the hysteretic nature of net photosynthetic rate and CO2 concentration difference between internal and external leaf chamber of potato could be found under high temperature stress,while the change trends of stomata conductance and transpiration rate under high temperature stress were consistent to that at normal temperature,but stomata conductance and transpiration rate were higher than those at normal temperature,and CO2 concentration difference between internal and external leaf chamber affected net photosynthetic rate most obviously. During branching stage,the change trends of net photosynthetic rate,CO2 concentration difference between internal and external leaf chamber,stomata conductance and transpiration rate under high temperature stress and normal temperature were similar,but they changed abruptly and reached peak value at noon under high temperature stress,while there existed consistent variation of water use efficiency under high temperature stress and at normal temperature,and CO2 concentration difference between internal and external leaf chamber also affected net photosynthetic rate most greatly,next came transpiration rate. [Conclusion] High temperature stress affected the photosynthesis of potato in different growth stages,and it was more obvious during branching stage than seedling stage,while CO2 concentration difference between internal and external leaf chamber had the most important influence on net photosynthetic rate.
基金Supported by Jiangsu Agricultural Science and Technology Independent-innovation Fund Project(SCX(13)5071)National Natural Science Foundation of China(30900877)~~
文摘[Objective] This study aimed to investigate the effects of waterlogging in different growth stages on nitrogen (N) uptake, distribution, and utilization of cotton. [Method] A pool-culture experiment in field was conducted to investigate the effects of wateriogging through comparing WL1 (waterlogging at peak squaring stage) and WL2 (waterlogging at flowering and boll-forming stage) treatments with their controls respectively. [Result] The results showed that the effect of WL1 on N uptake of cotton root was stronger than WL2. At 20 days (d) after WL1 treatment, the root biomass (RB), N uptake (NU), and N uptake rate (NUR) significantly decreased by 38.1%, 48.6%, and 53.0% respectively. At 20 d after WL2 treatment, the RB, NU, and NUR significantly decreased by 27.3%, 46.0%, and 44.8% respectively. More N was distributed to root and leaf after WL1 treatment, and to square, flower, and boll after WL2 treatment. N physiological use efficiency increased by 11.4% and 44.4% after WL1 and WL2 treatments respectively. Further analysis showed that the effects of WL1 on yield and its components of cotton were stronger than WL2. The boll number, boll weight, and lint yield per plant significantly reduced by 40.5%, 12.4%, and 49.5% after WL1 treatment, and significantly decreased by 23.1%, 6.9%, and 29.9% after WL2 treatment, respectively. [Conclusion] The negative effects of water- logging at peak squaring stage on N nutrition and yield of cotton were stronger than waterlogging at flowering and boll-forming stage, indicating that more attention should be paid to waterlogging at peak squaring stage and sound N management can improve cotton regrowth and reduce yield loss after waterlogging.
基金Project supported by the National Natural Science Foundation of China (Nos. 30390082 and 40471074)
文摘The effect of nitrate (NO3^-) on rice (Oryza sativa L.) growth as well as N absorption and assimilation during different growth stages was examined using three typical rice cultivars. Dry weight, yield, N uptake, nitrate reductase activity (NRA) in leaves, and glutamine synthetase activity (GSA) in roots and leaves during their entire growth periods, as well as the kinetic parameters of ammonium (NH4^+) uptake at the seedling stage, were measured with solution culture experiments. Results indicated that addition of NH4^+-N and NO3^-N at a ratio of 75:25 (NH4^++NO3^- treatment) when compared with that of NH4^+-N alone (NH4^+ treatment) increased the dry weight of ‘Nanguang' cultivar by 30% and ‘Yunjing 38' cultivar by 31%, and also increased their grain yield by 21% and 17%, respectively. For the four growth stages, the total N accumulation in plants increased by an average of 36% for ‘Nanguang' and 31% for ‘Yunjing 38', whereas the increasing effect of NO3^- in the ‘4007' cultivar was only found at the seedling stage, in the NH4^++NO3^- treatment compared to the NH4^+ treatment, NRA in the leaves increased by 2.09 folds, and GSA increased by 92% in the roots and 52% in the leaves of the three cultivars. NO3^- supply increased the maximum uptake rate (Vmax) in the ‘Nanguang' and ‘Yunjing 38' cultivars, reflecting that the NO3^- itself, not the increasing N concentration, increased the uptake rate of NH4^+ by rice. There was no effect on the apparent Michaelis-Menten constant (Kin) of the three cultivars. Thus, some replacement of NH4^+ with NO3^-could greatly improve the growth of rice plants, mainly on account of the increased uptake of NH4^+ promoted by NO3^-, and future studies should focus on the molecular mechanism of the increased uptake of NH4^+ by NO3^-.
基金financially supported by the National Natural Science Foundation of China (41390464, 41571130083, 41271288)
文摘Soil erosion on farmland is a critical environmental issue and the main source of sediment in the Yellow River, China. Thus, great efforts have been made to reduce runoff and soil loss by restoring vegetation on abandoned farmland. However, few studies have investigated runoff and soil loss from sloping farmland during crop growth season. The objective of this study was to investigate the effects of soil management on runoff and soil loss on sloping farmland during crop growth season. We tested different soybean growth stages (i.e., seedling stage (R1), initial blossoming stage (R2), full flowering stage (R3), pod bearing stage (R4), and initial filling stage (R5)) and soil management practice (one plot applied hoeing tillage (HT) before each rainfall event, whereas the other received no treatment (NH)) by applying simulated rainfall at an intensity of 80 mm/h. Results showed that runoff and soil loss both decreased and infiltration amount increased in successive soybean growth stages under both treatments. Compared with NH plot, there was less runoff and higher infiltration amount from HT plot. However, soil loss from HT plot was larger than that from NH plot in R1–R3, but lower in R4 and R5. In the early growth stages, hoeing tillage was effective for reducing runoff and enhancing rainfall infiltration. By contrast, hoeing tillage enhanced soil and water conservation during the late growth stages. The total soil loss from HT plot (509.0 g/m2) was 11.1% higher than that from NH plot (457.9 g/m2) in R1–R5. However, the infiltration amount from HT plot (313.9 mm) was 18.4% higher than that from NH plot (265.0 mm) and the total runoff volume from HT plot was 49.7% less than that from NH plot. These results indicated that crop vegetation can also act as a type of vegetation cover and play an important role on sloping farmland. Thus, adopting rational soil management in crop planting on sloping farmland can effectively reduce runoff and soil loss, as well as maximize rainwater infiltration during crop growth period.
基金supported by the Guizhou Provincial Science and Technology Projects,China(ZK[2022]391)the Cultivation Project of National Natural Science Foundation of Guizhou Medical University,China(21NSFCP20).
文摘Jincheng orange(Citrus sinensis Osbeck)is widely grown in Chongqing,China,and is commonly consumed because of its characteristic aroma contributed by the presence of diverse volatile compounds.The changes in aroma during the development and maturation of fruit are indicators for ripening and harvest time.However,the influence of growth stages on the volatile compounds in Jincheng orange remains unclear.In addition,volatiles originate from fatty acids,most of which are the precursors of volatile substances.On this basis,gas chromatography-mass spectrometry(GC-MS)was performed to elaborate the changes in volatile constituents and fatty acids as precursors.This study tested proximately 60 volatiles and 8 fatty acids at 9 growth and development stages(AF1-AF9).Of those compounds,more than 92.00%of total volatiles and 87.50%of fatty acids were terpenoid and saturated fatty acids,respectively.As shown in the PCA plot,the AF5,AF6,and AF9 stages were confirmed as completely segregated and appeared different.In addition,most of the volatiles and fatty acids first increased at the beginning of the development stage,then decreased from the AF6 development stage,and finally increased at the AF9 maturity stage.Moreover,the highest contents of terpenoid,alcohols,aldehydes,ketones,and saturated fatty acids in Jincheng orange peel oil were d-limonene,linalool,octanal,cyclohexanone,and stearic acid during development stages,respectively.Our results found that the growth stages significantly affected the volatile constituents and precursors in Jincheng orange peel oil.
基金Supported by Scientific and Technological Project of Chongqing Municipality (CSTC,2011AC1192)Project of Chongqing University of Arts and Sciences(Y2012LX43)~~
文摘[Objective] This study aimed to investigate the nutritional characteristics of Dianjiang peony at different growth stages.[Method] The yield,nutrient content and nutrient uptake of Dianjiang peony at different growth stages and available nutrient content in soil were investigated by field survey and indoor chemical analysis.[Resuit] The results showed that biomass,leaf weight,tender stem weight and cortex moutan weight (yield) of 1-4 years old peony exhibited a significant quadratic regression relationship with the cultivation duration.The average content and uptake of 12 nutrients in leaves exhibited an overall order of Ca>N>K>Mg>S>P>Fe>Mn> Zn>Cu,which was consistent to that in tender stems.However,the average content and uptake of various nutrient elements in cortex moutan exhibited an overall order of N>Ca>K>Mg>P>S>Fe>Zn>Cu>Mn,which was different from that in leaves and tender stems.In addition,the average content and uptake of various nutrient elements in petioles exhibited an overall order of Ca>K>N>Mg>S>P>Fe>Mn>Zn>Cu.The content of organic matter in soil of Dianjiang peony at different growth stages varied greatly; to be specific,contents of N,S,Mn and Zn were higher.[Conclusion] This study provided theoretical basis for the production of high-quality and high-yield peony.
基金supported by the talent cultivation and developmental support program of China Agricultural University,an award to study the cultivation of high-quality mutton sheep varieties(or lines)from Ningxia province(NXNYYZ20150101)the Natural Science Foundation of Hebei Province of China for Youths(C2019402261).
文摘Background:Tan sheep,an important local sheep breed in China,is famous for their fur quality.One-month-old Tan sheep have white,curly hair with beautiful flower spikes,commonly known as“nine bends”,which has high economic value.However,the“nine bends”characteristic gradually disappears with age;consequently,the economic value of the Tan sheep decreases.Age-related changes in DNA methylation have been reported and may be responsible for age-induced changes in gene expression.Until now,no genome-wide surveys have been conducted to identify potential DNA methylation sites involved in different sheep growth stages.In this study we investigated the dynamic changes of genome-wide DNA methylation profiles in Tan sheep using DNA from skin and deep whole-genome bisulfite sequencing,and compared the DNA methylation levels at three different growth stages:1,24,and 48 months old(mon1,mon24,and mon48,respectively).Results:In this study,11 skin samples from three growth stages(four for mon1,four for mon24,and three for mon48)were used for DNA methylation analysis and gene expression profiling.There were 52,288 and 236 differentially methylated genes(DMGs)identified between mon1 and mon24,mon1 and mon48,and mon24 and mon48,respectively.Of the differentially methylated regions,1.11%,7.61%,and 7.65% were in the promoter in mon1 vs.mon24,mon24 vs.mon48,and mon1 vs.mon48,respectively.DMGs were enriched in the MAPK and WNT signaling pathways,which are related to age growth and hair follicle morphogenesis processes.There were 51 DMGs associated with age growth and curly fleece formation.Four DMGs between mon1 and mon48(KRT71,CD44,ROR2 and ZDHHC13)were further validated by bisulfite sequencing.Conclusions:This study revealed dynamic changes in the genomic methylation profiles of mon1,mon24,and mon48 sheep,and the percentages of methylated cytosines were 3.38%,2.85% and 4.17%,respectively.Of the DMGs,KRT71 and CD44 were highly methylated in mon1,and ROR2 and ZDHHC13 were highly methylated in mon48.These findings provide foundational information that may be used to develop strategies for potentially retaining the lamb fur and thus improving the economic value of Tan sheep.
文摘The pathogen of tomato powdery mildew (Oidium neolycopersici Kiss) was simultaneously inoculated into four varieties during seedling, flowering and fruiting stages under the same environmental conditions by inducing inoculation method, so as to study the resistance during different growth stages. Different varieties of plants and the plants during different growth stages were investigated after inoculation for 12 d, and disease epidemic curves were drawn according to survey data. The results showed that different varieties performed different resistance against powdery mildew and the same variety also showed different resistance during different growth stages. The susceptible extent of Lujia was the heaviest during seedling and flowering sages, while it showed the strongest resistance during fruiting stage; improved 96 -8 showed the highest resistance during seedling stage, but performed the lowest resistance during fruiting stage.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2001AA249021)
文摘The vertical migration of Aphelenchoides besseyi under different temperatures and humidities and at different rice growth stages was investigated. It was found that the optimum temperature for the development and reproduction of A. besseyiwas 25-30℃. At the same temperature, the rate of vertical migration increased with rising relative humidity. Artificial inoculation tests showed that at the elongation stage, nematodes survived mainly on the upper and middle parts of rice culms and the number of nematodes decreased by 50% at 20 days after inoculation compared with that at 5 days after inoculation. Whereas at the booting stage, nematodes accumulated in young panicles and reproduced quickly,, and the average number of nematodes at 20 days after inoculation increased to 164.5, three times of that at 5 days after inoculation.
基金financially supported by the National Natural Science Foundation of China(32071978)the Open Project of State Key Laboratory of Crop Biology,Shandong Agricultural University,China(2021KF10)the National Key R&D Program of China(2016YFD0300203)。
文摘Maize(Zea mays L.) can exhibit yield penalties as a result of unfavorable changes to growing conditions. The main threat to current and future global maize production is heat stress. Maize may suffer from heat stress in all of the growth stages, either continuously or separately. In order to manage the impact of climate driven heat stress on the different growth stages of maize, there is an urgent need to understand the similarities and differences in how heat stress affects maize growth and yield in the different growth stages. For the purposes of this review, the maize growth cycle was divided into seven growth stages, namely the germination and seedling stage, early ear expansion stage, late vegetative growth stage before flowering, flowering stage, lag phase, effective grain-filling stage, and late grain-filling stage. The main focus of this review is on the yield penalty and the potential physiological changes caused by heat stress in these seven different stages. The commonalities and differences in heat stress related impacts on various physiological processes in the different growth stages are also compared and discussed. Finally, a framework is proposed to describe the main influences on yield components in different stages, which can serve as a useful guide for identifying management interventions to mitigate heat stress related declines in maize yield.
基金Supported by Liupanshui Planned Project (52020-2021-01-03)Guizhou Provincial and Municipal Science and Technology Cooperation Project (52020-2015-01-02)Guizhou Science and Technology Planning Project (QKHNYZ[2012]3020)
文摘The responses of Hongyang,Donghong and Jinhong varieties to temperature and precipitation were analyzed by observing the growth stages of different kiwifruit varieties in Longhe red cartridge kiwifruit base of Liuzhi Special Zone of Guizhou Province in 2021 and combining with the meteorological data of temperature and precipitation in the base in the same period.The results showed that Hongyang,Donghong and Jinhong all sprouted on February 1,and had the same response to temperature and precipitation.From germination to leaf spreading stage,Hongyang and Donghong had the same response to precipitation,while Donghong and Jinhong had the same response to temperature,but Jinhong needed 32.5 mm precipitation to meet its growth and development.From leaf spreading stage to budding stage,Hongyang and Donghong had similar responses to temperature and precipitation,while Jinhong needed average daily temperature of 16.5℃and precipitation of 2.1 mm.The responses of the three varieties from budding to flowering to temperature and precipitation were consistent.From flowering to fruiting,Hongyang needed 19.9℃temperature and the least precipitation,while Jinhong needed the lowest temperature and the maximum precipitation.Donghong's response to temperature and precipitation was between Hongyang and Jinhong.During the period from fruit setting to fruit ripening and picking,Hongyang needed the least temperature and precipitation,while Donghong and Jinhong had the same response to temperature and precipitation.In the key period of fruit expansion of the three kiwifruit varieties in 2021,temperature and precipitation were the most suitable for fruit expansion.In short,red cartridge kiwifruit has a good response to temperature and precipitation in different growth stages,and it requires 201 d for Hongyang variety from germination to maturity and picking,211 d for Donghong variety and 218 d for Jinhong variety.
基金This study was financially supported by the 863 Program of National High-Tech R&D Program of China(2013AA103004)the Water and Technology Support Plan of Shaanxi Province,China(2014slkj-17).
文摘The aim of this study was to investigate the effects of tomato quality and yield between different bunches and the differences between the two comprehensive evaluation methods on tomato quality ranking under water stress.Two degrees of water stress including mild water stress(W1)and moderate water stress(W2),and three growth stages that water stress applied including seedling stage(S1),flowering stage(S2)and fruit expanding stage(S3)were tested in this study.The yield and quality of different bunches of tomatoes under water stress during different growth stages were determined as responses,and the comprehensive fruit quality ranking and yield of the second and third bunches were evaluated.The results showed that water stress was important for the improvement of fruit quality,but fruit yield decreased during water stress.The yield of the third tomato bunch decreased from 11.69%(W1S1)to 30.60%(W2S2)compared to control(97.57 t/hm^(2)),and the effects of mild water stress on fruit yield were minimal at the early growth stage.However,the fruit quality in terms of soluble sugar(SS),total soluble solids(TSS),vitamin C(VC),and firmness(F)improved under water stress compared to control.The combined effects of water stress and its application period significantly affected SS and TSS.Water stress significantly improved the content of SS and TSS in the later growth period compared to seedling and flowering stages.Meanwhile,there was a significant difference in tomato quality between the second and third bunches of fruit,especially in the content of SS,organic acid(OA)and lycopene(L).Principal Component Analysis(PCA)and Grey Relational Analysis(GRA)were used to evaluate comprehensive fruit quality,and the best treatment in terms of the fruit quality was W1S3 for both bunches.The rank-sum ratio(RSR)method was used to evaluate fruit quality and yield,the results showed that W1S3 ranked first based on PCA and W1S1 ranked first based on GRA.Water stress enhanced tomato quality but inevitably reduced its yield during each growth stage.The application of mild water stress during the fruit expanding stage(W1S3)was considered to be the best treatment to provide satisfactory fruit quality and yield based on RSR.
基金supported by the Forestry Public Welfare Project of China (No. 201304301)
文摘Particulate matter diameter ≤ 2.5 μm(PM2.5) causes direct harm to human health. Finding forms of urban forest systems that with the ability to reduce the amount of particulate matter in air effectively is the aim of this study. Five commonly cultivated kinds of urban forest types were studied in Beijing city at three stages of leaf growth. Results show that the urban forest system is capable of storing and capturing dust from the air. The types of shrubs and broadleaf trees that have the ability to capture PM2.5from the air are most effective when leaves have fully developed. In the leafless season, the conifer and mixed tree types are the most effective in removing dust from the air. For all kinds of forest types and stages of leaf growth, the PM2.5concentration is highest in the morning but lower in the afternoon and evening. Grassland cannot control particles suspended in the air,but can reduce dust pollution caused by dust from the ground blown by the wind back into the air.
基金supported by grants from the National Natural Science Foundation of China(Nos.42077142 and 41701366)the Changsha Plan Project of Science and Technology(kq1801025).
文摘Global rice production practices have gradually changed from a reliance on transplanting to direct seeding.Yet how this shift may alter cadmium(Cd)accumulation in rice is poorly known.Here we conducted field experiments with two rice genotypes cultivars that were planted using three methods:via direct seeding(DS),seedling throwing(ST),and manual transplanting(MT).Rice samples were collected during four growth stages.The formation and distribution of iron plaque were analyzed using DCB(dithionite-citrate-bicarbonate)extractions and observed under micro-XRF(micro X-ray fluorescence).The results revealed that,in each growth stage,DS rice was more apt to harbor Cd distributed in the plant’s aerial parts,and the Cd concentration of brown rice from DS was 21.8%–43.3%significantly higher than those from ST and MT at maturity stage(p<0.05).During the vegetative stages,the Cd uptake percentage was higher in DS than MT rice,and those plants arising from the DS method were capable of absorbing more Cd earlier in their growth and development.Conversely,using DS decreased the amount of iron plaque covering the root surface in every growth stage,especially in the critical period of Cd accumulation,such that the roots’middle areas were distinguished by a near-complete absence of iron plaque,thus weakening its role as an effective barrier to Cd uptake from soil.Collectively,this study demonstrated that implementing the DS mode of planting will increase Cd’s distribution in the aboveground parts of rice,and heightening the risk of Cd contamination in grain.
基金funded by National Natural Science Foundation of China(Project Nos.:41871339 and 41901369),China Scholarship Council(CSC),National Special Support Program for High-level Personnel Recruitment(Wenjiang Huang)and the Ten-thousand Talents Program(Wenjiang Huang).
文摘Leaf area index(LAI)and canopy chlorophyll density(CCD)are key indicators of crop growth status.In this study,we compared several vegetation indices and their red-edge modified counterparts to evaluate the optimal red-edge bands and the best vegetation index at different growth stages.The indices were calculated with Sentinel-2 MSI data and hyperspectral data.Their performances were validated against ground measurements using R2,RMSE,and bias.The results suggest that indices computed with hyperspectral data exhibited higher R2 than multispectral data at the late jointing stage,head emergence stage,and filling stage.Furthermore,rededge modified indices outperformed the traditional indices for both data genres.Inversion models indicated that the indices with short red-edge wavelengths showed better estimation at the early joint-ing and milk development stage,while indices with long red-edge wavelength estimate the sought variables better at the middle three stages.The results were consistent with the red-edge inflec-tion point shift at different growth stages.The best indices for Sentinel-2 LAI retrieval,Sentinel-2 CCD retrieval,hyperspectral LAI retrieval,and hyperspectral CCD retrieval at five growth stages were determined in the research.These results are beneficial to crop trait monitoring by providing references for crop biophysical and bio-chemical parameters retrieval.
基金the support of the Natural Science Foundation of Anhui Province(Grant no.2208085US03)the National Natural Science Foundation of China(Grant nos.U2240223,52109009,42271084)。
文摘Climate change can lead to and intensify drought disasters.Quantifying the vulnerability of disaster-affected elements is significant for understanding the mechanisms that transform drought intensity into eventual loss.This study proposed a growth-stage-based drought vulnerability index(GDVI)of soybean using meteorological,groundwater,land use,and field experiment data and crop growth model simulation.The CROPGRO-Soybean model was used to simulate crop growth and water deficit.Four growth stages were considered since the sensitivity of soybean to drought is strictly related to the growth stage.The GDVI was applied to the Huaibei Plain,Anhui Province,China,with the goal of quantifying the spatiotemporal characteristics of soybean drought vulnerability in typical years and growth stages.The results show that:(1)The sensitivity of leaf-related parameters exceeded that of other parameters during the vegetative growth stage,whereas the top weight and grain yield showed a higher sensitivity in the reproductive growth stage;(2)A semi-logarithmic law can describe the relationship between the drought sensitivity indicators and the GDVI during the four growth stages.The pod-filling phase is the most vulnerable stage for water deficit and with the highest loss upper limit(over 70%);(3)The 2001 and 2002 seasons were the driest time during 1997-2006.Fuyang and Huainan Cities were more vulnerable to drought than other regions on the Huaibei Plain in 2001,while Huaibei and Suzhou Cities were the most susceptible areas in 2002.The results could provide effective decision support for the categorization of areas vulnerable to droughts.
基金The National Key Research and Development Program of China(No.2016YFD0200700)from Ministry of Science and Technology,and the Chinese Universities Scientific Fund under Grand No.2017QC139&No.2017GX001,and helped by VIGA UAV Company(Beijing).
文摘Currently,unmanned aerial vehicles(UAVs)were widely applied to spray for pest and disease control.However,spray effect can be further improved by setting operation parameters more reasonably and scientifically.Therefore,this study attempts to derive the relationship between operation parameters and spray effect.Different growth stages were distinguished by various corn heights.A six-rotor UAV was operated at different heights and velocities to test pesticides spray effects for corns at different growth stages.Different plant canopy coverage rate and penetrating coefficients were obtained,according to which,the effects on droplet deposition rate caused by different UAVs’operation parameters were analyzed.Droplet penetrating coefficients were applied as indexes to evaluate and select UAVs operation parameters for corns at different growth stages respectively.Mathematical models of droplet penetrating coefficients with UAVs operation parameters were established for corns at all growth stages.The determination coefficients(R2)of all models were greater than 0.90 and average relative errors were within 20%,which asserted high forecasting accuracy of droplet penetrating rate.With the help of the models,parameters like operating height away from the bottom of corns and UAVs velocities were further analyzed,which guided the optimization of parameter settings and selection of spray methods for corns at different growth stages.
基金This work was supported by the National Natural Science Fund of China(41471279)。
文摘To study the mechanism of Cu toxicity on wheat,the characteristics of Cu stress in pivotal growth periods of wheat were explored by field planting methods.The results showed that at the tillering stage,the concentrations of Cu in the leaf cell fluid were significantly higher than those in the cell wall,and the Cu was primarily enriched in cell fluid.At the jointing and heading stages,the Cu concentration in the leaf cell wall was significantly higher than that in the cell fluid,and the main enrichment was transferred to the cell wall.During the above three growth stages,no Cu was discovered in leaf organelles.Further studies showed that the total soluble protein content in wheat leaves at the tillering and jointing stages showed a trend of first rising and then falling with increased Cu dosage.At the heading stage,under low and medium Cu stress,the total soluble protein content showed no remarkable change.Malondialdehyde(MDA)content at the tillering stage increased with the increase of Cu concentration in the soil,while MDA content did not change noticeably at the jointing and heading stages.At the tillering and heading stages,the low concentrations of Cu increased peroxidase(POD)activity.The POD activity decreased gradually with the increased Cu concentration.However,at the high concentrations of Cu,there was no significant difference in the activity of POD.At the jointing stage,the POD activity did not change significantly under the low Cu stress while it was evidently inhibited under high Cu stress.Based on the above studies,further analyses on the correlation between canopy spectral characteristics and the Cu accumulation at different growth stages of leaf cells were performed,and a new combined index SIPI/NDVI705 performed well in Cu content prediction.The results showed that at different growth stages,different sensitive spectral characteristic parameters should be used to predict the Cu content in leaf cells.
基金This work is supported by the National Natural Science Foundation of China (No. 40572038).
文摘Morphological and chemical studies on zircon grains from gabbro and granite of the Pingtan magmatic complex, Fujian Province, eastern China, show that there are three stages of zircon growth. The early stage of zircon growth is characterized by colorlessness, high transparence and birefringence, low and dispersive Ipr and Ipy, weak and homogeneous BSE brightness, lower Hf content and depletion of U, Th and Y; the middle stage is characterized by abruptly increasing lpy, progressively strong and sectoral-zoning BSE brightness, higher Hf content and enrichment of U, Th and Y with Th/U 〉 1; the late stage of growth is characterized by brownish color, poor transparence, low birefringence, highest Ipr and Ipy, middle and oscillatorily-zoning BSE brightness, highest contents of Hf, U and Y with Th/U 〈 1. The stages are considered to be formed in a deep magma chamber, ascent passage and emplacement site, respectively. Due to the more or less long residual time of the magma chamber, the difference in age between the early and late stages of zircon might be great enough to be distinguished, which can be attributed to tectonic constraint for the magnlatism.
基金funded by the Agricultural Research System (CARS-34)the National Major Research and Development (2016YFC0500608)the National Natural Science Foundation of China (31372370)
文摘A pot experiment was conducted in a greenhouse with three alfalfa(Medicago sativa) cultivars,Aohan, Zhongmu No.1 and Sanditi, to examine the morphological and physiological responses of alfalfa to water stress. The response of alfalfa to water stress at different growth stages was generally similar, but varied among cultivars. At the branching, flowering and podding stages, the shoot biomasses of Aohan and Zhongmu No.1 were greatly affected by, and responded quickly to, water stress. The shoot biomass of Sanditi was not affected by mild water stress, but had a slight response to moderate and severe water stress. The root/shoot ratios in Aohan and Zhongmu No.1 were more sensitive to water stress than in Sanditi, with the root/shoot ratio in Aohan increasing most significantly. At flowering, the root/shoot ratio was the highest and the effect of water stress the greatest. The abscisic acid(ABA) concentration in the roots of Aohan and Zhongmu No.1 increased under water stress, while in Sanditi there was only a slight or delayed response of ABA concentration.