期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
Peripheral nerve regeneration through nerve conduits evokes differential expression of growth-associated protein-43 in the spinal cord 被引量:1
1
作者 Jesús Chato-Astrain Olga Roda +5 位作者 David Sánchez-Porras Esther Miralles Miguel Alaminos Fernando Campos Óscar Darío García-García Víctor Carriel 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1852-1856,共5页
Growth-associated protein 43 plays a key role in neurite outgrowth through cytoskeleton remodeling.We have previously demonstrated that structural damage of peripheral nerves induces growth-associated protein 43 upreg... Growth-associated protein 43 plays a key role in neurite outgrowth through cytoskeleton remodeling.We have previously demonstrated that structural damage of peripheral nerves induces growth-associated protein 43 upregulation to promote growth cone formation.Conversely,the limited regenerative capacity of the central nervous system due to an inhibitory environment prevents major changes in neurite outgrowth and should be presumably associated with low levels of growth-associated protein 43 expression.However,central alterations due to peripheral nerve damage have never been assessed using the growthassociated protein 43 marker.In this study,we used the tubulization technique to repair 1 cm-long nerve gaps in the rat nerve injury/repair model and detected growth-associated protein 43 expression in the peripheral and central nervous systems.First,histological analysis of the regeneration process confirmed an active regeneration process of the nerve gaps through the conduit from 10 days onwards.The growth-associated protein 43 expression profile varied across regions and follow-up times,from a localized expression to an abundant and consistent expression throughout the regeneration tissue,confirming the presence of an active nerve regeneration process.Second,spinal cord changes were also histologically assessed,and no apparent changes in the structural and cellular organization were observed using routine staining methods.Surprisingly,remarkable differences and local changes appeared in growth-associated protein 43 expression at the spinal cord level,in particular at 20 days post-repair and beyond.Growth-associated protein 43 protein was first localized in the gracile fasciculus and was homogeneously distributed in the left posterior cord.These findings differed from the growth-associated protein 43 pattern observed in the healthy control,which did not express growth-associated protein 43 at these levels.Our results revealed a differential expression in growth-associated protein 43 protein not only in the regenerating nerve tissue but also in the spinal cord after peripheral nerve transection.These findings open the possibility of using this marker to monitor changes in the central nervous system after peripheral nerve injury. 展开更多
关键词 growth-associated protein 43(GAP-43) IMMUNOHISTOCHEMISTRY nerve guide nerve tissue regeneration peripheral nerve repair spinal cord tissue engineering
下载PDF
Neurofilament 200 expression in a rat model of complete spinal cord injury following growth-associated protein-43 treatment
2
作者 Yanping Duan Dongkui Zhang +5 位作者 Yingchun Ba Yun Yuan Jun Sun Dengli Fu Ran Zhang Jinde Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第11期827-831,共5页
BACKGROUND: Growth-associated protein-43 (GAP-43) expression in the nervous system has been demonstrated to promote neural regeneration, neuronal growth and development, as well as synaptic reconstruction. Neurofil... BACKGROUND: Growth-associated protein-43 (GAP-43) expression in the nervous system has been demonstrated to promote neural regeneration, neuronal growth and development, as well as synaptic reconstruction. Neurofilament 200 (NF200) expression could reflect degree of injury and repair in injured spinal axons. OBJECTIVE: To observe NF200 expression changes in a rat model of complete spinal cord injury following GAP-43 treatment and to explore the effects of GAP-43 following spinal cord injury. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Laboratory of Histology and Embryology of Kunming Medical University between March 2007 and October 2008. MATERIALS: GAP-43 and GAP-43 antibody were provided by Beijing Boao Biology, China; mouse anti-rat NF200 antibody was purchased from Chemicon, USA. METHODS: Female, 8-week-old, Sprague Dawley rats were randomly assigned into three groups following complete spinal cord injury, with 20 animals in each group: GAP-43 antibody, GAP-43, and model groups. In addition, each group was subdivided into four subgroups according to sampling time after modeling, Le., 3-, 5-, 9-, and 15-day groups, with 5 rats in each group. GAP-43 antibody or GAP-43 was injected into injury sites of the spinal cord, 5 μg/0.2 mL, respectively, twice daily for three consecutive days, followed by three additional days of injection, once daily. The model group did not receive any treatment following injury. MAIN OUTCOME MEASURES: NF200 expression in the damaged spinal area at different stages was detected by immunohistochemistry; lower limb motion function following injury was evaluated using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale. RESULTS: NF200 expression was significantly reduced in the GAP-43 antibody group, compared with GAP-43 and model groups, at 3 and 5 days after spinal cord injury (P 〈 0.05). In addition, the model group expressed significantly less NF200 than the GAP-43 group (P 〈 0.05). BBB scores from the GAP-43 antibody and model groups were remarkably less than the GAP-43 group (P 〈 0.05). At 9 and 15 days of injury after drug withdrawal, NF200 expression was increased in the GAP-43 antibody group, and NF200 expression and BBB scores in the GAP-43 antibody and GAP-43 groups were significantly greater than in the model group (P 〈 0.05). In particular, the GAP-43 group exhibited greater BBB scores than the GAP-43 antibody group at day 9 (P 〈 0.05). CONCLUSION: GAP-43 promoted NF200 expression and recovery of lower limb function. Early administration of GAP-43 antibody produced reversible nerve inhibition, which was rapidly restored following withdrawal. 展开更多
关键词 spinal cord injury growth-associated protein-43 neurofilament 200 Basso Beattie and Bresnahan locomotor rating scale
下载PDF
Growth-associated protein 43 and neural cell adhesion molecule expression following bone marrow-derived mesenchymal stem cell transplantation in a rat model of ischemic brain injury 被引量:18
3
作者 Yu Peng Qimei Zhang +3 位作者 Hui You Weihua Zhuang Ying Zhang Chengyan Li 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第13期975-980,共6页
BACKGROUND: Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) improves motor functional recovery, but the mechanisms remain unclear. OBJECTIVE: To investigate expression of growth-associated pr... BACKGROUND: Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) improves motor functional recovery, but the mechanisms remain unclear. OBJECTIVE: To investigate expression of growth-associated protein 43 (GAP-43) and neural cell adhesion molecule following BMSC transplantation to the lateral ventricle in rats with acute focal cerebral ischemic brain damage. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment using immunohistochemistry was performed at the laboratories of Department of Neurology, Renmin Hospital of Wuhan University and Doctoral Scientific Research Work Station of C-BONS PHARMA, Hubei Province, China, from January 2007 to December 2008. MATERIALS: Monoclonal mouse anti-rat 5-bromo-2-deoxyuridine and neural cell adhesion molecule antibodies were purchased from Sigma, USA; monoclonal mouse anti-rat GAP-43 antibody was purchased from Wuhan Boster, China. METHODS: Rat models of right middle cerebral artery occlusion were established using the thread method. At 1 day after middle cerebral artery occlusion, 20μL culture solution, containing 5×10^5 BMSCs, was transplanted to the left lateral ventricle using micro-injection. MAIN OUTCOME MEASURES: Scores of neurological impairment were measured to assess neural function. Expression of GAP-43 and neural cell adhesion molecule at the lesion areas was examined by immunohistochemistry. RESULTS: GAP-43 and neural cell adhesion molecule expression was low in brain tissues of the sham-operated group, but expression increased at the ischemic boundary (P 〈 0.05). Transplantation of BMSCs further enhanced expression of GAP-43 and neural cell adhesion molecule (P 〈 0.05) and remarkably improved neurological impairment of ischemic rats (P 〈 0.05). CONCLUSION: BMSC transplantation promoted neurological recovery in rats by upregulating expression of GAP-43 and neural cell adhesion molecule. 展开更多
关键词 growth-associated protein 43 neural cell adhesion molecule bone marrow-derived mesenchymal stem cell brain injury neural regeneration
下载PDF
Enriched environment upregulates growth-associated protein 43 expression in the hippocampus and enhances cognitive abilities in prenatally stressed rat offspring 被引量:3
4
作者 Zhengyu Zhang Hua Zhang +1 位作者 Baoling Du Zhiqiang Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第25期1967-1973,共7页
In our previous study, we reported that prenatal restraint stress could induce cognitive deficits, which correlated with a change in expression of growth-associated protein 43 in the hippocampus. In this study, we inv... In our previous study, we reported that prenatal restraint stress could induce cognitive deficits, which correlated with a change in expression of growth-associated protein 43 in the hippocampus. In this study, we investigated the effects of enriched environment on cognitive abilities in prenatally stressed rat offspring, as well as the underlying mechanisms. Reverse transcription-PCR and western blot assay results revealed that growth-associated protein 43 mRNA and protein levels were upregulated on postnatal day 15 in the prenatal restraint stress group. Growth-associated protein 43 expression was significantly lower in the prenatal restraint stress group compared with the negative control and prenatal restraint stress plus enriched environment groups on postnatal days 30 and 50. Morris water maze test demonstrated that cognitive abilities were noticeably increased in rats from the prenatal restraint stress plus enriched environment group on postnatal day 50. These results indicate that enriched environment can improve the spatial learning and memory ability of prenatally stressed offspring by upregulating growth-associated protein 43 expression. 展开更多
关键词 prenatal restraint stress growth-associated protein 43 HIPPOCAMPUS Morris water maze enrichedenvironment COGNITION neural regeneration
下载PDF
Amyloid precursor protein and growth-associated protein 43 expression in brain white matter and spinal cord tissues in a rat model of experimental autoimmune encephalomyelitis 被引量:3
5
作者 Yizhou Wang Shuang Kou +6 位作者 Jingcheng Tang Ping Zhang Qiuxia Zhang Yan Liu Qi Zheng Hui Zhao Lei Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第2期101-106,共6页
Studies have demonstrated that amyloid precursor protein (APP) expression increases in multiple sclerosis tissues during acutely and chronically active stages. To determine the relationship between axonal injury and... Studies have demonstrated that amyloid precursor protein (APP) expression increases in multiple sclerosis tissues during acutely and chronically active stages. To determine the relationship between axonal injury and regeneration in multiple sclerosis, an animal model of experimental autoimmune encephalomyelitis was induced using different doses of myelin basic protein peptide. APP and growth-associated protein 43 (GAP-43), which is considered a specific marker of neural regeneration, were assessed by western blot analysis. Expression of APP and GAP-43, as well as the correlation between these two proteins, in brain white matter and spinal cord tissues of experimental autoimmune encephalomyelitis rats at different pathological stages was analyzed. Results showed that APP and GAP-43 expression increased during the acute stage and decreased during remission, with a positive correlation between APP and GAP-43 expression in brain white matter and spinal cord tissues. These results suggest that APP and GAP-43 could provide nutritional and protective effects on damaged neurons. 展开更多
关键词 amyloid precursor protein axonal regeneration central nervous system experimental autoimmune encephalomyelitis growth-associated protein 43
下载PDF
Effect of cyclovirobuxine D on human growth-associated protein 43 and neurocan expression in ischemic brain tissue of stroke-prone renovascular hypertensive rats 被引量:1
6
作者 Feng Tan Wei Gu +6 位作者 Saiying Wan Haike Wu Jinliang Wang Jingbo Sun Jiamao Cheng Xin Zhang Renfeng Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第4期394-397,共4页
BACKGROUND: Experimental data indicate that human growth-associated protein 43 mRNA expression coincides with axonal growth during nerve ganglion development; while neurocan, secreted from astrocytes, can inhibit spr... BACKGROUND: Experimental data indicate that human growth-associated protein 43 mRNA expression coincides with axonal growth during nerve ganglion development; while neurocan, secreted from astrocytes, can inhibit sprouting and elongation of the axonal growth cone. OBJECTIVE: To verify regulatory effects of cyclovirobuxine D (CVB-D) extracted from Chinese box branchlet on human growth-associated protein 43 (GAP-43), and neurocan expression in brain tissue of stroke-prone renovascular hypertensive (RHRSP) rats, at different time points after cerebral ischemia/reperfusion. DESIGN: Randomized grouping design and controlled animal study. SETTING: This study was performed at the Center of Guangdong Hospital of Traditional Chinese Medicine (a national key laboratory) from March 2003 to September 2006. MATERIALS: 100 healthy male Sprague-Dawley rats, aged 2 3 months and weighing 90-120 g, were selected for this study. CVB-D was provided by Nanjing Xiaoying Pharmaceutical Factory (Batch number: 307701). METHODS: The initial tip of renal arteries was clamped bilaterally for 10 weeks to establish the RHRSP model. 100 RHRSP rats were randomly divided into 4 groups: naive group (n = 10), sham surgery group (n = 10), CVB-D group (n = 40), and lesion group (n = 40). Rats in the naive group did not undergo any treatment, and cervical vessels of rats in the sham surgery group were exposed, but not blocked. The right middle cerebral artery of rats in the CVB-D group and lesion group were occluded to establish cerebral ischemia. Rats in the CVB-D group were intraperitoneally injected with CVB-D (6.48 mg/kg) every day and with saline (1.5 mL/injection) twice a day. Rats in the lesion group were intraperitoneally injected with saline (2 mL/injection). MAIN OUTCOME MEASURES: Immunohistochemistry was applied to detect GAP-43 and neurocan expression in the ischemic penumbra region of CVB-D and lesion brains at 2 hours post-cerebral ischemia and at 1, 7, 14, and 30 days post-perfusion (n = 10 at each time point). Similarly, GAP-43 and neurocan expression was detected in the right hemisphere of naive and sham-operated animals. The results were expressed as positive cells. RESULTS: A total of 100 rats were included in the final analysis. The number of GAP-43 positive cells increased in the CVB-D group 1, 7, 14, and 30 days post-cerebral ischemia/perfusion compared to the lesion group, as indicated by a significant difference between the CVB-D and lesion group (P 〈 0.054).01). The number of neurocan-positive cells decreased in the CVB-D group on the first day compared to the model group; however, there was no significant difference between the two groups (P 〉 0.05). On post-ischemia days 7, 14, and 30, the number of neurocan-positive cells in the CVB-D group was significantly less than in the lesion group (P 〈 0.05). Both, GAP-43 and neurocan expression was not detectable in brains of naive and sham-operated animals. CONCLUSION: CVB-D treatment up-regulated GAP-43 expression and down-regulated neurocan expression in the ischemic region of RHRSP rats. 展开更多
关键词 cerebral ischemia/perfusion human growth-associated protein 43 NEUROCAN cyclovirobuxine D rats
下载PDF
Preemptive analgesic effects of low-dose ketamine on growth-associated protein expression in dorsal root ganglion of chronic constriction injury model rats 被引量:1
7
作者 Shuyong Lin Chen Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第4期354-357,共4页
BACKGROUND: Ketamine is a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists and plays an important role in the treatment of pain. OBJECTIVE: To analyze the preemptive analgesic effects of different d... BACKGROUND: Ketamine is a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists and plays an important role in the treatment of pain. OBJECTIVE: To analyze the preemptive analgesic effects of different doses of ketamine on growth-associated protein-43 (GAP43) expression in dorsal root ganglion in a rat model of chronic sciatic nerve constricted injury, and to study the differences between high-dose and low-dose ketamine DESIGN: Randomized controlled animal study. SETTING: Medical College of Shantou University. MATERIALS: Thirty-five adult male Sprague Dawley rats were provided by the Experimental Animal Center of Guangzhou University of Traditional Chinese Medicine. Ketamine hydrochloride injection was provided by Hengrui Pharmaceutical Co., Ltd., Jiangsu. METHODS: This study was performed at the Immunological Laboratory, Medical College of Shantou University from September to December 2006. Model of chronic sciatic nerve constricted injury: after anesthesia, the right sciatic nerve was exposed and ligated l-cm distal to the ischiadic tuberosity with a No. 3-0 cat gut suture. Grouping and intervention: 35 rats were randomly divided into 4 groups: normal control group (n = 5), chronic constriction injury (CCI) group (n = 10), low-dose ketamine group (n = 10), and high-dose ketamine group (n = 10). Rats in the normal control group did not undergo any surgery or drug intervention. Rats in the CCI group received intraperitoneal injection of saline (1 mL), and their sciatic nerves were ligated after 10 minutes. Rats in the low-dose ketamine group underwent intraperitoneal injection of ketamine (25 mg/kg) 10 minutes prior to ligation of sciatic nerve; while, rats in the high-dose ketamine group were given intraperitoneal injection of ketamine (50 mg/kg) 10 minutes prior to ligation of sciatic nerve. On the third and the seventh days after surgery, dorsal root ganglion were resected from the sciatic nerve and cut into sections. MAIN OUTCOME MEASURES: GAP-43 expression in dorsal root ganglion was detected by immunohistochemistry and image analysis system, as well as semi-quantitative analysis. RESULTS: Thirty-five Sprague Dawley rats were included in the final analysis. Qualitative analysis: GAP-43 expression in the CCI group was higher than in the normal control group. Quantitative analysis: after three post-operative days, GAP-43 expression in the CCI group was significantly higher than in the normal control group (t = 22.919, 7.319, P 〈 0.05). GAP-43 expression in the low-dose and high-dose ketamine group was significantly lower than in the CCI group (t = 11.166, 26.474, P 〈 0.05). After seven postoperative days, GAP-43 expression in the low-dose and high-dose ketamine groups was significantly lower than in the CCI group (t = 2.382, 5.016, P 〈 0.05). CONCLUSION: Preoperative administration of ketamine inhibited the increased GAP-43 expression in dorsal root ganglion during neuropathic pain. 展开更多
关键词 growth-associated protein-43 neuropathic pain ketamlne sciatic nerve dorsal root ganglion
下载PDF
Activation of Growth-associated Protein by Intragastric Brazilein in Motor Neuron of Spinal Cord Connected with Injured Sciatic Nerve in Mice 被引量:4
8
作者 CAO Jian LI Li-sen LIU Biao LIU Hao-yu ZHANG Hui ZHAO Ming-ming YIN Wei-tian 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2011年第2期254-257,共4页
The purpose of this study is to explore the expression of growth-associated protein(GAP-43) in spinal cord segments connected with injured sciatic nerve by the treatment with brazilein in mice. Unilateral sciatic ne... The purpose of this study is to explore the expression of growth-associated protein(GAP-43) in spinal cord segments connected with injured sciatic nerve by the treatment with brazilein in mice. Unilateral sciatic nerve interruption and anastomosis were performed. Physiological saline(blank group), high dose, middle dose and low dose of brazilein were administrated intragastrically to healthy adult BALB/c mice in separate groups. L4―6 spinal segments connected with the sciatic nerve were harvested. Real-time PCR(Polymerase chain reaction) and Western blot analysis were performed to detect the expression of GAP-43 in spinal segments. Histological staining on myelin and the electrophysiology were performed to examine the sciatic nerve recovery. GAP-43 was activated in spinal cord L4―6 connected with injured sciatic nerve. In the survival time of 12 h, 24 h, 3 d, 5 d, 7 d and 14 d, GAP-43 expression in the motor neurons of spinal cord of the high dose group and that in the middle dose group were significantly higher than those on the low dose and blank groups. Myelin in the high dose group and that in the middle dose group were more mature and the potential amplitude and MNCV(motor nerve conduction velocity) in the high and middle dose groups were obviously higher than those in the low dose group and blank group. Brazilein facilitates the expression of GAP-43 in neurons in spinal cord L4―6 segments connected with injured sciatic nerve, which promotes nerve regeneration. 展开更多
关键词 Brazilein growth-associated protein(GAP-43 Injury of sciatic nerve REGENERATION
下载PDF
Effects of continuous peripheral nerve block by tetrodotoxin on growth associated protein-43 expression during neuropathic pain development 被引量:2
9
作者 Chen Wang Xiaoyu Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2007年第6期350-354,共5页
BACKGROUND: Peripheral nerve injury may lead to neuropathic pain and cause a markedly increase expression of growth associated protein-43 (GAP-43) in the spinal cord and dorsal root ganglion, local anesthetics bloc... BACKGROUND: Peripheral nerve injury may lead to neuropathic pain and cause a markedly increase expression of growth associated protein-43 (GAP-43) in the spinal cord and dorsal root ganglion, local anesthetics blocking electrical impulse propagation of nerve fibers may also affect the expression of GAP-43 in the spinal cord and dorsal root ganglion. OBJECTIVE: To determine the effects of continuous peripheral nerve block by tetrodotoxin before and after nerve injury on GAP-43 expression in the dorsal root ganglion during the development of neuropathic pain. DESIGN: A randomized controlled animal experiment. SETTINGS: Department of Anesthesiology, the Second Hospital of Xiamen City; Department of Anesthesiology, the Second Affiliated Hospital of Shantou University Medical College. MATERIALS: Thirty-five Spragne Dawley (SD) rats, weighing 200 - 250 g, were randomly divided into four groups: control group (n =5), simple sciatic nerve transection group (n =10), peripheral nerve block before and after sciatic nerve transection groups (n =10). All the sciatic nerve transection groups were divided into two subgroups according to the different postoperative survival periods: 3 and 7 days (n =5) respectively. Mouse anti-GAP-43 monoclonal antibody (Sigma Co., Ltd.), supervision TM anti-mouse reagent (HRP, Changdao antibody diagnosis reagent Co., Ltd., Shanghai), and HMIAS-100 image analysis system (Qianping Image Engineering Company, Tongji Medical University) were employed in this study. METHODS: This experiment was carried out in the Department of Surgery and Pathological Laboratory, the Second Affiliated Hospital of Shantou University Medical College from April 2005 to April 2006. ①The animals were anesthetized and the right sciatic nerve was exposed and transected at 1 cm distal to sciatic notch. ② Tetrodotoxin 10 μg/kg was injected percutaneously between the greater trochanter and the posterior superior iliac spine of fight hind limb to block the sciatic nerve proximally at 1 hour before or 4 hours after nerve injury respectively, the injection was repeated in all the rats every 12 hours.③ At 3 or 7 days after nerve injury, immunohistochemistry and image analysis were used to evaluate the expression of GAP-43 in the dorsal root ganglions of L5 to the transected sciatic nerve, and quantitative analysis was also performed. ④ Statistical analysis was performed using one way analysis of variance followed by t test. MAIN OUTCOME MEASURE: Expression of GAP-43 in the fight dorsal root ganglions of L5. RESULTS: All the 35 SD rats were involved in the final analysis of results. In normal rats, there were very low expressions of GAP-43 in the dorsal root ganglions. In simple sciatic nerve transection rats 3 and 7 days after sciatic nerve transection, the average absorbance value of GAP-43 immunopositive neurons were significantly different from that in normal rats (t =8.806, 6.771, P 〈 0.01). Whereas 3 and 7 days after sciatic nerve transection in rats with peripheral nerve block before and after nerve injury, the average absorbance value of GAP-43 immunopositive neurons were not significantly different from that in normal rats (P 〉 0.05). CONCLUSION: Local anesthetic continuous peripheral nerve block before or after nerve injury can suppress nerve injury induced high expression of GAP-43 during the development of neuropathic pain. 展开更多
关键词 growth associated protein-43 (GAP-43 neuropathic pain sciatic nerve TETRODOTOXIN
下载PDF
Pathological changes in the retina and growth associated protein-43 expression following treatment of intracanalicular optic nerve injury via optic canal decompression,dexamethasone or their combination 被引量:2
10
作者 Xuehong Ju Hui Cheng Hongguo Liu Xiaoshuang Li Xiuyun Li 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第10期752-756,共5页
BACKGROUND: The main clinical treatments for optic nerve injury are optic canal decompression and systemic administration of hormones, but both treatments have disadvantages. OBJECTIVE: To observe the pathological c... BACKGROUND: The main clinical treatments for optic nerve injury are optic canal decompression and systemic administration of hormones, but both treatments have disadvantages. OBJECTIVE: To observe the pathological changes in the retina and growth associated protein-43 (GAP-43) expression, to compare the treatment of optic canal decompression, hormones, and their combination with the intracanalicular optic nerve injury.DESIGN, TIME AND SETTING: A randomized, controlled animal study was performed at the Department of Anatomy, Weifang Medical University, China, from September 2007 to November 2008.MATERIALS: Dexamethasone (Shandong Huaxin Pharmaceutical, China) and rabbit anti-GAP-43 polyclonal antibody (Boster, China) were used.METHODS: All 36 healthy adult rabbits were randomly assigned to control group (n = 4), simple injury group (n = 20), and treatment group (n = 12). Intracanalicular optic nerve injury models were established using the metal cylinder free-fall impact method. The control group was left intact. The treatment group (four rabbits in each subgroup) was treated by optic nerve decompression, dexamethasone treatment (1 mg/kg daily via two intravenous infusions, 1/5 total dose reduction every 3 days, for 14 days), and simultaneously giving surgery and hormone treatment.MAIN OUTCOME MEASURES: Pathological changes in the retina were determined using hematoxylin-eosin staining. GAP-43 expression was detected using immunohistochemistry in the retina.RESULTS: Retina injury induced obvious pathological changes in the retina. With prolonged time after optic nerve injury, the number of retinal ganglion cells was gradually decreased, and reached the minimum on day 14 (P〈0.01). All three treatments increased the number of retinal ganglion cells (P〈0.01), but surgery + hormone treatment was most effective. No GAP-43 cells were present in the normal retinal, but they appeared 3 days after injury, peaked 7 days after injury, and then began to decline.CONCLUSION: Intracanalicular optic nerve injury induced obvious pathological changes in the retina, including increased GAP-43 expression. Optic canal decompression and hormones improved nerve repair after injury, and their combination produced better outcomes. 展开更多
关键词 optic nerve RETINA DECOMPRESSION DEXAMETHASONE therapy growth associated protein-43 neural regeneration
下载PDF
Enriched environment elevates expression of growth associated protein-43 in the substantia nigra of SAMP8 mice 被引量:4
11
作者 Zhen-Yun Yuan Jie Yang +2 位作者 Xiao-Wei Ma Yan-Yong Wang Ming-Wei Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第11期1988-1994,共7页
An enriched environment protects dopaminergic neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced neuronal injury, but the underlying mechanism for this is not clear. Growth associated protein-43... An enriched environment protects dopaminergic neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced neuronal injury, but the underlying mechanism for this is not clear. Growth associated protein-43(GAP-43) is closely associated with neurite outgrowth and axon regeneration during neural development. We speculate that an enriched environment can reduce damage to dopaminergic neurons by affecting the expression of GAP-43. This study is designed to test this hypothesis. Three-month-old female senescence-accelerated mouse prone 8(SAMP8) mice were housed for 3 months in an enriched environment or a standard environment. These mice were then subcutaneously injected in the abdomen with 14 mg/kg MPTP four times at 2-hour intervals. Morris water maze testing demonstrated that learning and memory abilities were better in the enriched environment group than in the standard environment group. Reverse-transcription polymerase chain reaction, immunohistochemistry and western blot assays showed that m RNA and protein levels of GAP-43 in the substantia nigra were higher after MPTP application in the enriched environment group compared with the standard environment group. These findings indicate that an enriched environment can increase GAP-43 expression in SAMP8 mice. The upregulation of GAP-43 may be a mechanism by which an enriched environment protects against MPTP-induced neuronal damage. 展开更多
关键词 nerve regeneration Parkinson's disease neural plasticity senescence-accelerated mouse prone 8 growth associated protein-43 substantia nigra learning and memory neural regeneration
下载PDF
Granulocyte colony-stimulating factor promotes growth of processes,growth associated protein 43 and microtubule-associated protein 2 expression in cultured rat retinal ganglion cells in vitro
12
作者 Haitao Xu Yuying Jiang +4 位作者 Xiuhong Qin Lihui Si Jie Zhao Lijuan Liu Yazhen Wu 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第31期2435-2440,共6页
Following granulocyte colony-stimulating factor (G-CSF) treatment,the growth of processes in cul-tured rat retinal ganglion cells (RGCs) in vitro,expression of growth associated protein 43,and expression of microt... Following granulocyte colony-stimulating factor (G-CSF) treatment,the growth of processes in cul-tured rat retinal ganglion cells (RGCs) in vitro,expression of growth associated protein 43,and expression of microtubule-associated protein 2 mRNA expression were significantly increased.In contrast,RhoA/Rock protein content was significantly reduced by G-CSF treatment.These results indicate that G-CSF promotes the growth of processes in RGCs and increases the expression of growth-associated protein 43 and microtubule-associated protein 2 mRNA by inhibiting the RhoA/Rock pathway,thereby benefiting axonal repair in RGCs exposed to hypoxia. 展开更多
关键词 granulocyte colony-stimulating factor ganglion cells growth-associated protein 43 microtubule-associated protein 2 AXONS neural regeneration
下载PDF
Neuroprotective effects of ginsenoside Rb1 on hippocampal neuronal injury and neurite outgrowth 被引量:15
13
作者 Juan Liu Jing He +3 位作者 Liang Huang Ling Dou Shuang Wu Qionglan Yuan 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第9期943-950,共8页
Ginsenoside Rb1 has been reported to exert anti-aging and anti-neurodegenerative effects. In the present study, we investigate whether ginsenoside Rb1 is involved in neurite outgrowth and neuroprotection against damag... Ginsenoside Rb1 has been reported to exert anti-aging and anti-neurodegenerative effects. In the present study, we investigate whether ginsenoside Rb1 is involved in neurite outgrowth and neuroprotection against damage induced by amyloid beta(25–35) in cultured hippocampal neurons, and explore the underlying mechanisms. Ginsenoside Rb1 significantly increased neurite outgrowth in hippocampal neurons, and increased the expression of phosphorylated-Akt and phosphorylated extracellular signal-regulated kinase 1/2. These effects were abrogated by API-2 and PD98059, inhibitors of the signaling proteins Akt and MEK. Additionally, cultured hippocampal neurons were exposed to amyloid beta(25–35) for 30 minutes; ginsenoside Rb1 prevented apoptosis induced by amyloid beta(25–35), and this effect was blocked by API-2 and PD98059. Furthermore, ginsenoside Rb1 significantly reversed the reduction in phosphorylated-Akt and phosphorylated extracellular signal-regulated kinase 1/2 levels induced by amyloid beta(25–35), and API-2 neutralized the effect of ginsenoside Rb1. The present results indicate that ginsenoside Rb1 enhances neurite outgrowth and protects against neurotoxicity induced by amyloid beta(25–35) via a mechanism involving Akt and extracellular signal-regulated kinase 1/2 signaling. 展开更多
关键词 nerve regeneration ginsenoside Rb1 hippocampal neurons neurite outgrowth apoptosis amyloid beta protein(25–35) growth-associated protein-43 Hoechst-33258 staining PD98059 API-2 Akt and ERK1/2 signaling NSFC grant neural regeneration
下载PDF
Rho kinase:A new target for treatment of cerebral ischemia/reperfusion injury 被引量:7
14
作者 Qinghong Cui Yongbo Zhang +1 位作者 Hui Chen Jimei Li 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第13期1180-1189,共10页
Rho kinase inhibitor fasudil hydrochloride has been shown to reduce cerebral vasospasm, to inhibit inflammation and apoptosis and to promote the recovery of neurological function. However, the effect of fasudil hydroc... Rho kinase inhibitor fasudil hydrochloride has been shown to reduce cerebral vasospasm, to inhibit inflammation and apoptosis and to promote the recovery of neurological function. However, the effect of fasudil hydrochloride on claudin-5 protein expression has not been reported after cerebral ischemia/reperfusion. Therefore, this study sought to explore the effects of fasudil hydrochloride on blood-brain barrier permeability, growth-associated protein-43 and claudin-5 protein expression, and to further understand the neuroprotective effect of fasudil hydrochloride. A focal cerebral ischemia/reperfusion model was established using the intraluminal suture technique. Fasudil hydrochloride (15 mg/kg) was intraperitoneally injected once a day. Neurological deficit was evaluated using Longa's method. Changes in permeability of blood-brain barrier were measured using Evans blue. Changes in RhoA, growth-associated protein-43 and claudin-5 protein expression were detected using immunohistochemistry and western blotting. Results revealed that fasudil hydrochloride noticeably contributed to the recovery of neurological function, improved the function of blood-brain barrier, inhibited RhoA protein expression, and upregulated growth-associated protein-43 and claudin-5 protein expression following cerebral ischemia/reperfusion. Results indicated that Rho kinase exhibits a certain effect on neurovascular damage following cerebral ischemia/reperfusion. Intervention targeted Rho kinase might be a new therapeutic target in the treatment of cerebral ischemia/reperfusion. 展开更多
关键词 neural regeneration brain injury cerebral ischemia Rho kinase fasudil hydrochloride RHOA growth-associated protein-43 CLAUDIN-5 neurovascular unit blood-brain barrier grants-supportedpaper NEUROREGENERATION
下载PDF
Transfection of the glial cell line-derived neurotrophic factor gene promotes neuronal differentiation 被引量:7
15
作者 Jie Du Xiaoqing Gao +3 位作者 Li Deng Nengbin Chang Huailin Xiong Yu Zheng 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第1期33-40,共8页
Glial cell line-derived neurotrophic factor recombinant adenovirus vector-transfected bone marrow mesenchymal stem cells were induced to differentiate into neuron-like cells using inductive medium containing retinoic ... Glial cell line-derived neurotrophic factor recombinant adenovirus vector-transfected bone marrow mesenchymal stem cells were induced to differentiate into neuron-like cells using inductive medium containing retinoic acid and epidermal growth factor. Cell viability, micro- tubule-associated protein 2-positive cell ratio, and the expression levels of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43 protein in the su- pernatant were significantly higher in glial cell line-derived neurotrophic factor/bone marrow mesenchymal stem cells compared with empty virus plasmid-transfected bone marrow mes- enchymal stem cells. Furthermore, microtubule-associated protein 2, glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein743 mRNA levels in cell pellets were statistically higher in glial cell line-derived neurotrophic factor/bone marrow mesen- chymal stem cells compared with empty virus plasmid-transfected bone marrow mesenchymal stem cells. These results suggest that glial cell line-derived neurotrophic factor/bone marrow mesenchymal stem cells have a higher rate of induction into neuron-like cells, and this enhanced differentiation into neuron-like cells may be associated with up-regulated expression of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43. 展开更多
关键词 nerve regeneration bone marrow mesenchymal stem cells cell differentiation neu-ron-like cells glial cell line-derived neurotrophic factor recombinant adenovirus vector TRANSFECTION retinoic acid epidermal growth factor nerve growth factor growth-associated protein-43 neuralregeneration
下载PDF
Treadmill step training promotes spinal cord neural plasticity after incomplete spinal cord injury 被引量:5
16
作者 Tiansheng Sun Chaoqun Ye +3 位作者 Jun Wu Zhicheng Zhang Yanhua Cai Feng Yue 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第27期2540-2547,共8页
A large body of evidence shows that spinal circuits are significantly affected by training, and that intrinsic circuits that drive locomotor tasks are located in lumbosacral spinal segments in rats with complete spina... A large body of evidence shows that spinal circuits are significantly affected by training, and that intrinsic circuits that drive locomotor tasks are located in lumbosacral spinal segments in rats with complete spinal cord transection. However, after incomplete lesions, the effect of treadmil training has been debated, which is likely because of the difficulty of separating spontaneous stepping from specific training-induced effects. In this study, rats with moderate spinal cord contusion were sub-jected to either step training on a treadmil or used in the model (control) group. The treadmil training began at day 7 post-injury and lasted 20 ± 10 minutes per day, 5 days per week for 10 weeks. The speed of the treadmil was set to 3 m/min and was increased on a daily basis according to the tolerance of each rat. After 3 weeks of step training, the step training group exhibited a sig-nificantly greater improvement in the Basso, Beattie and Bresnahan score than the model group. The expression of growth-associated protein-43 in the spinal cord lesion site and the number of tyrosine hydroxylase-positive ventral neurons in the second lumbar spinal segment were greater in the step training group than in the model group at 11 weeks post-injury, while the levels of brain-derived neurotrophic factor protein in the spinal cord lesion site showed no difference between the two groups. These results suggest that treadmil training significantly improves functional re-covery and neural plasticity after incomplete spinal cord injury. 展开更多
关键词 neural regeneration spinal cord injury NEUROREHABILITATION incomplete spinal cord injury treadmilltraining spinal cord plasticity growth-associated protein-43 tyrosine hydroxylase function recovery grants-supported paper NEUROREGENERATION
下载PDF
The mechanism of astragaloside Ⅳ promoting sciatic nerve regeneration 被引量:13
17
作者 Xiaohong Zhang Jiajun Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第24期2256-2265,共10页
3-O-beta-D-xylopyranosyl-6-O-beta-D-glucopyranosyl-cycloastragenol (astragaloside IV), the main active component of the traditional Chinese medicine astragalus membranaceus, has been shown to be neuroprotective. Thi... 3-O-beta-D-xylopyranosyl-6-O-beta-D-glucopyranosyl-cycloastragenol (astragaloside IV), the main active component of the traditional Chinese medicine astragalus membranaceus, has been shown to be neuroprotective. This study investigated whether astragaloside IV could promote the repair of injured sciatic nerve. Denervated sciatic nerve of mice was subjected to anastomosis. The mice were intraperitoneally injected with 10, 5, 2.5 mg/kg astragaloside IV per day for 8 consecutive days Western blot assay and real-time PCR results demonstrated that growth-associated protein-43 ex- pression was upregulated in mouse spinal cord segments L4-6 after intervention with 10, 5, 2.5 mg/kg astragaloside IV per day in a dose-dependent manner. Luxol fast blue staining and elec- trophysiological detection suggested that astragaloside IV elevated the number and diameter of myelinated nerve fibers, and simultaneously increased motor nerve conduction velocity and action potential amplitude in the sciatic nerve of mice. These results indicated that astragaloside IV con- tributed to sciatic nerve regeneration and functional recovery in mice. The mechanism underlying this effect may be associated with the upregulation of growth-associated protein-43 expression. 展开更多
关键词 neural regeneration traditional Chinese medicine peripheral nerve injury astragaloside IVgrowth-associated protein-43 sciatic nerve nerve myelin sheath myelinated nerve axonsneuroregeneration
下载PDF
Nischarin-siRNA delivered by polyethyleniminealginate nanoparticles accelerates motor function recovery after spinal cord injury 被引量:2
18
作者 Yue-min Ding Yu-ying Li +6 位作者 Chu Wang Hao Huang Chen-chen Zheng Shao-han Huang Yang Xuan Xiao-yi Sun Xiong Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第10期1687-1694,共8页
A previous study by our group found that inhibition of nischarin promotes neurite outgrowth and neuronal regeneration in Neuro-2 a cells and primary cortical neurons.In recent years,more and more studies have shown th... A previous study by our group found that inhibition of nischarin promotes neurite outgrowth and neuronal regeneration in Neuro-2 a cells and primary cortical neurons.In recent years,more and more studies have shown that nanomaterials have good prospects in treatment of spinal cord injury.We proposed that small interfering RNA targeting nischarin(Nis-si RNA) delivered by polyethyleneimine-alginate(PEIALG) nanoparticles promoted motor function recovery in rats with spinal cord injury.Direct microinjection of 5 μL PEI-ALG/Nis-si RNA into the spinal cord lesion area of spinal cord injury rats was performed.From day 7 after surgery,Basso,Beattie and Bresnahan score was significantly higher in rats from the PEI-ALG/Nis-si RNA group compared with the spinal cord injury group and PEI-ALG/Control-si RNA group.On day 21 after injection,hematoxylin-eosin staining showed that the necrotic area was reduced in the PEI-ALG/Nis-si RNA group.Immunohistochemistry and western blot assay results confirmed successful inhibition of nischarin expression and increased protein expression of growth-associated protein-43 in the PEI-ALG/Nis-si RNA group.These findings suggest that a complex of PEI-ALG nanoparticles and Nis-si RNA effectively suppresses nischarin expression,induces expression of growth-associated protein-43,and accelerates motor function recovery after spinal cord injury. 展开更多
关键词 nerve regeneration spinal cord injury polyethylenimine alginate nanoparticles nischarin small interfering RNA necrotic area growth-associated protein-43 motor function neural regeneration
下载PDF
Effects of exogenous ganglioside-1 on learning and memory in a neonatal rat model of hypoxia-ischemia brain injury
19
作者 Shizhi Li Nong Xiao +5 位作者 Xiaoping Zhang Ling Liu Liyun Lin Siyuan Chen Yuxia Chen Bei Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第9期1004-1009,共6页
BACKGROUND: Exogenous ganglioside-1 (GM1) can cross the blood-brain barrier and play a protective role against hypoxia-ischemia-induced brain damage. OBJECTIVE: To examine the possible mechanisms of exogenous GM1 ... BACKGROUND: Exogenous ganglioside-1 (GM1) can cross the blood-brain barrier and play a protective role against hypoxia-ischemia-induced brain damage. OBJECTIVE: To examine the possible mechanisms of exogenous GM1 protection in hypoxia-ischemia-induced brain damage in a neonatal rat model by measuring changes in brain mass, pathological morphology, growth-associated protein-43 expression, and neurobehavioral manifestations. DESIGN, TIME AND SETTING: A randomized block-design study was performed at the Immunohistochemistry Laboratory of the Pediatric Research Institute, Children's Hospital of Chongqing Medical University from August 2005 to August 2006. MATERIALS: A total of 36 neonatal, 7-day-old, Sprague Dawley rats were used in this experiment. The hypoxia-ischemia-induced brain damage model was established by permanently occluding the right carotid artery, followed by oxygen inhalation at a low concentration (8% O2, 92% N2) for 2 hours, METHODS: All rats were randomly divided into the following groups: GMI, model, and sham operation, with 12 rats each group. Rats in the GM 1 and model groups received hypoxic/ischemic-induced brain damage. Rats in the GM1 group received injections of GM1 (i.p., 20 mg/kg) at 0, 24, 48, 72, 96, 120, and 144 hours following models established, and rats in the model group were administered (i.p.) the same amount of saline. The right carotid artery was separated, but not ligated, in the sham operation group rats. MAIN OUTCOME MEASURES: At 1 week after surgery, expression of growth-associated protein-43, a marker of neural development and plasticity, was detected in the hippocampal CA3 region by immunohistochemistry. Brain mass was measured, and the pathological morphology was observed. At 4 weeks after surgery, behavioral changes in the remaining rats were tested by Morris water maze, and growth-associated protein-43 expression was measured. RESULTS: (1) In the GMI and sham operation groups, growth-associated protein-43 expression was greater in the hippocampal CA3 region compared to the model group 1 week after surgery (P 〈 0.05). In all three groups, brain weight of the right hemisphere was significantly less than the left hemisphere, in particular in the model group (P 〈 0.05). In the GMI group, the weight difference between two hemispheres, as well as the extent of damage in the right hemisphere, was less than the model group (P 〈 0.01 ). In the sham operation Uoup, brain tissue consisted of integrated structures and ordered cells. In the model group, the cerebral cortex layers of the right hemisphere were not defined, neurons were damaged, and neurons were disarranged in the hippocampal area. In the GM1 group, neurons were dense in the right cerebral cortex and hippocampal area, with no significant change in glial proliferation. (2) The average time of escape latency in the GM1 group was shortened 4 weeks alter surgery, and significantly less than the model group (P 〈 0.05). In addition, the frequency platform passing in the GMI group was significantly greater than the model group (P 〈 0.01). CONCLUSION: Exogenous GM1 may reduce brain injury and improve learning and memory in hypoxia-ischemia-induced brain damage rats. This protection may be associated with increased growth-associated protein-43 expression, which is involved in neuronal remodeling processes. 展开更多
关键词 GANGLIOSIDE growth-associated protein-43 hypoxia-ischemia brain damage Morris water maze
下载PDF
益气通脉胶囊对脑缺血大鼠学习记忆能力的影响 被引量:3
20
作者 彭涛 冯振宇 +1 位作者 王永辉 周然 《世界中西医结合杂志》 2016年第1期117-120,共4页
目的观察益气通脉胶囊对脑缺血损伤后大鼠学习记忆能力的影响及相关机理研究。方法选择SD大鼠90只,按随机数字表法选择10只作为对照组,其余大鼠采用反复夹闭双侧颈总动脉结合硝普钠降压法复制SD大鼠拟血管性痴呆模型。造模后选存活大鼠5... 目的观察益气通脉胶囊对脑缺血损伤后大鼠学习记忆能力的影响及相关机理研究。方法选择SD大鼠90只,按随机数字表法选择10只作为对照组,其余大鼠采用反复夹闭双侧颈总动脉结合硝普钠降压法复制SD大鼠拟血管性痴呆模型。造模后选存活大鼠50只随机分为模型组、脑心通组和益气通脉胶囊高、中、低剂量组,每组各10只,连续给药15 d后通过Morris水迷宫测试大鼠的学习记忆能力,之后取大鼠脑的海马组织,提取蛋白测定生长相关蛋白43(growth associated protein 43,GAP43)和神经丝蛋白-200(Neurofilaments Protein-200,NF200)的表达,以及测定大鼠海马组织NOS活性和NO含量。结果 (1)大鼠的学习记忆能力:益气通脉胶囊高、中剂量组大鼠的学习记忆能力均高于模型组。(2)GAP43和NF200的表达:益气通脉胶囊高、中、低剂量组的蛋白表达均明显大于模型组。(3)益气通脉胶囊高、中剂量组大鼠的NOS活性和NO含量均显著低于模型组。结论益气通脉胶囊对脑缺血损伤后大鼠学习记忆能力的恢复有明显的促进作用,能使神经可塑性相关蛋白表达上调,降低大鼠海马组织NOS活性和NO含量。 展开更多
关键词 脑缺血 学习记忆 生长相关蛋白43(growth associated protein 43 GAP43) 神经丝蛋白-200(Neurofilaments protein-200 NF200) 中药复方
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部