In the development of the Gravity-1 launch vehicle, solid rocket motors without a thrust termination mechanism created great challenges for ascent guidance. To resolve this problem, the Gravity-1 GNC system used cross...In the development of the Gravity-1 launch vehicle, solid rocket motors without a thrust termination mechanism created great challenges for ascent guidance. To resolve this problem, the Gravity-1 GNC system used cross product guidance in the core 2nd stage, and a nonlinear adaptive guidance algorithm in core 3rd stage, in order to achieve high orbit injection precision. On January 11, 2024, the Gravity-1 launch vehicle successfully carried out its maiden flight from a mobile sea platform off the coast of Haiyang in Shandong province, inserting its payload into a low earth orbit at an altitude of 500 kilometers, validating the guidance algorithm.展开更多
In the context of the era of continuous development of artificial intelligence, the labor value of university students is impacted by technological substitution. Simultaneously, university students are also required t...In the context of the era of continuous development of artificial intelligence, the labor value of university students is impacted by technological substitution. Simultaneously, university students are also required to constantly update their skills. All of the above will be the challenge of university students’ employment prospects. However, artificial intelligence will also bring new opportunities, which will stimulate the innovation ability of university students and bring new directions for employment. In order to better cope with the possible impact of artificial intelligence, universities should incorporate employment guidance services into the “three-wide education” system. To achieve this, universities need to take the following measures: developing the dynamic monitoring system of university employment based on big data, constructing the employment guidance curriculum system of university students throughout the whole process, updating the mode of diversified employment guidance service as well as establishing a team of employment guidance teachers keeping pace with the times. These measures aim to better adapt to the job market demands in the context of artificial intelligence, guide students to actively respond to the possible impact of artificial intelligence technology, cultivate their core competencies and qualities that are less likely to be replaced by artificial intelligence, and promote the high-quality employment of university students.展开更多
An improved target tracking information differentiating system using the neural network to substitute for fuzzy rules is presented for the infrared-radar dual-mode guidance system. Since the neural network training ba...An improved target tracking information differentiating system using the neural network to substitute for fuzzy rules is presented for the infrared-radar dual-mode guidance system. Since the neural network training based on the expert knowledge database is conducted off-line, the benefits for developing real-time tracking capabilities can be obtained. The network outputs the confidence degree denoted by the weight value of target information in the data fusion center according to two input variables of the measurement noise covariance and the tracking filter covariance. Simulation results show that the improved system can differentiate the target tracking information from the seeker fast and accurately.展开更多
This paper focuses on the influence of the disturbance rejection rate(DRR)and parasitic loop parameters on the stability domain of the roll-pitch seeker's guidance system.The DRR models of the roll-pitch seeker ca...This paper focuses on the influence of the disturbance rejection rate(DRR)and parasitic loop parameters on the stability domain of the roll-pitch seeker's guidance system.The DRR models of the roll-pitch seeker caused by different types of disturbance torques and the scale deviation of different sensors are established.The optimal DRR model of the roll-pitch seeker,which contains the scale deviation model,is proposed by formula derivation.The model of the roll-pitch seeker's guidance system is established and equivalently simplified by the dimensionless method.The Lyapunov stability criterion for stability analysis of the guidance system is given by means of the passivity theorem and related definitions and lemmas.A simplified model of the roll-pitch seeker's guidance system,which is suitable for the Lyapunov stability criterion,is established by formula derivation and equivalent transformation.Three conditions that satisfy the Lyapunov stability criterion are obtained.Mathematical simulation with Nyquist plots is used to analyze the influence of different DRR parameters on the stability domain of the roll-pitch seeker's guidance system.Simulation results of this paper can provide reference for the stability analysis of systems related to the roll-pitch seeker.展开更多
The present paper introduces a three-dimensional guidance system developed for a miniature Autonomous Underwater Vehicle(AUV). The guidance system determines the best trajectory for the vehicle based on target behav...The present paper introduces a three-dimensional guidance system developed for a miniature Autonomous Underwater Vehicle(AUV). The guidance system determines the best trajectory for the vehicle based on target behavior and vehicle capabilities. The dynamic model of this novel AUV is derived based on its special characteristics such as the horizontal posture and the independent diving mechanism. To design the guidance strategy, the main idea is to select the desired depth, presumed proportional to the horizontal distance of the AUV and the target. By connecting the two with a straight line, this strategy helps the AUV move in a trajectory sufficiently close to this line. The adjacency of the trajectory to the line leads to reasonably short travelling distances and avoids unsafe areas. Autopilots are designed using sliding mode controller. Two different engagement geometries are considered to evaluate the strategy's performance: stationary target and moving target. The simulation results show that the strategy can provide sufficiently fast and smooth trajectories in both target situations.展开更多
Image-guided needles are currently used for drug delivery in bodies, but the additional time associated with aligning and maintaining the needle’s position results in increased patient discomfort or risk of invasion ...Image-guided needles are currently used for drug delivery in bodies, but the additional time associated with aligning and maintaining the needle’s position results in increased patient discomfort or risk of invasion of the human body. In this paper, a needle guidance system using piezoelectric materials is designed and analyzed for precise drug delivery without damaging parts of the body and improving processing time. A piezoelectric generates an ultrasound wave that can propagate through different mediums, and a second piezoelectric crystal can receive that energy and convert it into voltage. A 1D real-time image represents the changes of the voltage induced in the double piezoelectric crystal. Extensive data analysis and visualization are done using different obstacles and location of the needle verified for other mediums. The presence of obstacles in between those crystals can be identified in the real-time grayscale image. The needle can reach its destination using this image information as directional guidance. This guided drug delivery improves patient recovery time and eliminates extra injuries that can be caused due to wrong needle injections, such as lumbar puncture-related nerve damage.展开更多
This paper presents an image-based mobile robot guidance system in an indoor space with installed artificial ceiling landmarks. The overall system, including an omni-directional mobile robot motion control, landmark i...This paper presents an image-based mobile robot guidance system in an indoor space with installed artificial ceiling landmarks. The overall system, including an omni-directional mobile robot motion control, landmark image processing and image recognition, is implemented on a single FPGA chip with one CMOS image sensor. The proposed feature representation of the artificial ceiling landmarks is invariant with respect to rotation and translation. One unique feature of the proposed ceiling landmark recognition system is that the feature points of landmarks are determined by topological information from both the foreground and background. To enhance recognition accuracy, landmark classification is performed after the mobile robot is moved to a position such that the ceiling landmark is located in the upright- top corner position of the robot’s camera image. The accuracy of the proposed artificial ceiling landmark recognition system using the nearest neighbor classification is 100% in our experiments.展开更多
The strapdown homing guidance system for some ammunition was mainly studied. A strong tracking Kalman filter was designed for the strapdown homing guidance system using the information measured by the strapdown homing...The strapdown homing guidance system for some ammunition was mainly studied. A strong tracking Kalman filter was designed for the strapdown homing guidance system using the information measured by the strapdown homing seeker to estimate relative movement variables between the ammunition and target. Then the optimal proportional law, which using the estimated information, guided the ammunition. Simulation results show that the designed strapdown homing guidance system with strong tracking Kalman filter can attack the maneuvering target effectively, and satisfy the performance index for the guided ammunition system.展开更多
This paper aims at a type of image homing guided missile. The guided trajectory characteristics and the initial condition of the homing guidance are analyzed by calculating the miss distance of the image guided missil...This paper aims at a type of image homing guided missile. The guided trajectory characteristics and the initial condition of the homing guidance are analyzed by calculating the miss distance of the image guided missile. Several modified proportional navigation laws which are easy for engineering implementation are introduced.展开更多
Feature aided design of estimators and guidance laws can significantly improve the interception performance of the terminal guidance system. The achieved enhancement can be effectively assessed by observability analys...Feature aided design of estimators and guidance laws can significantly improve the interception performance of the terminal guidance system. The achieved enhancement can be effectively assessed by observability analysis methods. This paper first analyzes and discusses the existing assessment methods in a typical endgame scenario with target orientation observations. To get over their deficiencies, a novel singular value decomposition(SVD) method is proposed. Employing both theoretical analysis and numerical simulation, the proposed method can represent the degree of state observability which is enhanced by integrating target features more completely and quantitatively.展开更多
Most currently existing investigations on the observability of passive guidance systems can only provide a qualitative result. In this paper, a quantitative method, which utilizes Cramér-Rao lower bound in the es...Most currently existing investigations on the observability of passive guidance systems can only provide a qualitative result. In this paper, a quantitative method, which utilizes Cramér-Rao lower bound in the estimability analysis of closed-loop guidance systems with bearings-only measurements, is proposed. The new method provides an intuitive result for observability of the guidance system through graphical analysis. As a demonstration, a numerical example is presented, in which the degrees of observability of the guidance systems under two commonly used guidance laws are compared by using the new approach.展开更多
Legal education and legal theory research are on the honorable mission of cultivating high-quality rule-of-law personnel and providing theoretical support for the rule of law in China, and play an important role in ad...Legal education and legal theory research are on the honorable mission of cultivating high-quality rule-of-law personnel and providing theoretical support for the rule of law in China, and play an important role in advancing the law-based governance in all fields. The Opinions on Strengthening Legal Education and Legal Theory Research in the New Era (hereinafter referred to as the “Opinions” ) issued by the General Office of the Central Committee of the Communist Party of China (CPC) and the General Office of the State Council in 2023 to meet the needs of legal education and legal theory research at present and in the future further clarifies the directions of legal education and legal theory research, and carries great importance for strengthening legal education, deepening legal research, improving the cultivation quality of rule-of-law personnel, and advancing law-based governance in all fields. The Opinions also puts forward new requirements for thoroughly implementing the spirit of the 20th National Congress of the CPC and XI Jinping Thought on the Rule of Law, and continuously cultivating high-quality rule-of-law personnel.展开更多
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system...This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.展开更多
Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduit...Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduits may be used.The ideal conduit should be flexible,resistant to kinks and lumen collapse,and provide physical cues to guide nerve regeneration.We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them.Subsequently,we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen.The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers.The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability.Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model,suggesting that it has potential for clinical use in human nerve injuries.展开更多
The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs m...The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs makes the design of the guidance,navigation,and control(GNC)have a larger-thanbefore impact on the main-body design(shape,motor,and layout design)and its design objective,i.e.,flight performance.Pursuing a trade-off between flight performance and guidance precision,all the relevant interactions have to be accounted for in the design of the main body and the GNC system.Herein,a multi-objective and multidisciplinary design optimization(MDO)is proposed.Disciplines pertinent to motor,aerodynamics,layout,trajectory,flight dynamics,control,and guidance are included in the proposed MDO framework.The optimization problem seeks to maximize the range and minimize the guidance error.The problem is solved by using the nondominated sorting genetic algorithm II.An optimum design that balances a longer range with a smaller guidance error is obtained.Finally,lessons learned about the design of the MM and insights into the trade-off between flight performance and guidance precision are given by comparing the optimum design to a design provided by the traditional approach.展开更多
Current treatments for epilepsy can only manage the symptoms of the condition but cannot alter the initial onset or halt the progression of the disease. Consequently, it is crucial to identify drugs that can target no...Current treatments for epilepsy can only manage the symptoms of the condition but cannot alter the initial onset or halt the progression of the disease. Consequently, it is crucial to identify drugs that can target novel cellular and molecular mechanisms and mechanisms of action. Increasing evidence suggests that axon guidance molecules play a role in the structural and functional modifications of neural networks and that the dysregulation of these molecules is associated with epilepsy susceptibility. In this review, we discuss the essential role of axon guidance molecules in neuronal activity in patients with epilepsy as well as the impact of these molecules on synaptic plasticity and brain tissue remodeling. Furthermore, we examine the relationship between axon guidance molecules and neuroinflammation, as well as the structural changes in specific brain regions that contribute to the development of epilepsy. Ample evidence indicates that axon guidance molecules, including semaphorins and ephrins, play a fundamental role in guiding axon growth and the establishment of synaptic connections. Deviations in their expression or function can disrupt neuronal connections, ultimately leading to epileptic seizures. The remodeling of neural networks is a significant characteristic of epilepsy, with axon guidance molecules playing a role in the dynamic reorganization of neural circuits. This, in turn, affects synapse formation and elimination. Dysregulation of these molecules can upset the delicate balance between excitation and inhibition within a neural network, thereby increasing the risk of overexcitation and the development of epilepsy. Inflammatory signals can regulate the expression and function of axon guidance molecules, thus influencing axonal growth, axon orientation, and synaptic plasticity. The dysregulation of neuroinflammation can intensify neuronal dysfunction and contribute to the occurrence of epilepsy. This review delves into the mechanisms associated with the pathogenicity of axon guidance molecules in epilepsy, offering a valuable reference for the exploration of therapeutic targets and presenting a fresh perspective on treatment strategies for this condition.展开更多
Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the ...Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the use of tubular nerve guidance conduits(tNGCs). However, the use of tNGCs results in poor functional recovery and central necrosis of the regenerating tissue, which limits their application to short nerve lesion defects(typically shorter than 3 cm). Given the importance of vascularization in nerve regeneration, we hypothesized that enabling the growth of blood vessels from the surrounding tissue into the regenerating nerve within the tNGC would help eliminate necrotic processes and lead to improved regeneration. In this study, we reported the application of macroscopic holes into the tubular walls of silk-based tNGCs and compared the various features of these improved silk^(+) tNGCs with the tubes without holes(silk^(–) tNGCs) and autologous nerve transplants in an 8-mm sciatic nerve defect in rats. Using a combination of micro-computed tomography and histological analyses, we were able to prove that the use of silk^(+) tNGCs induced the growth of blood vessels from the adjacent tissue to the intraluminal neovascular formation. A significantly higher number of blood vessels in the silk^(+) group was found compared with autologous nerve transplants and silk^(–), accompanied by improved axon regeneration at the distal coaptation point compared with the silk^(–) tNGCs at 7 weeks postoperatively. In the 15-mm(critical size) sciatic nerve defect model, we again observed a distinct ingrowth of blood vessels through the tubular walls of silk^(+) tNGCs, but without improved functional recovery at 12 weeks postoperatively. Our data proves that macroporous tNGCs increase the vascular supply of regenerating nerves and facilitate improved axonal regeneration in a short-defect model but not in a critical-size defect model. This study suggests that further optimization of the macroscopic holes silk^(+) tNGC approach containing macroscopic holes might result in improved grafting technology suitable for future clinical use.展开更多
Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 y...Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 years,research has revealed that the nuclear factor Y complex controls many aspects of brain development,including differentiation,axon guidance,homeostasis,disease,and most recently regeneration.However,a complete understanding of transcriptional regulatory networks,including how the nuclear factor Y complex binds to specific CCAAT boxes to perform its function remains elusive.In this review,we explore the nuclear factor Y complex’s role and mode of action during brain development,as well as how genomic technologies may expand understanding of this key regulator of gene expression.展开更多
This work proposes a recorded recurrent twin delayed deep deterministic(RRTD3)policy gradient algorithm to solve the challenge of constructing guidance laws for intercepting endoatmospheric maneuvering missiles with u...This work proposes a recorded recurrent twin delayed deep deterministic(RRTD3)policy gradient algorithm to solve the challenge of constructing guidance laws for intercepting endoatmospheric maneuvering missiles with uncertainties and observation noise.The attack-defense engagement scenario is modeled as a partially observable Markov decision process(POMDP).Given the benefits of recurrent neural networks(RNNs)in processing sequence information,an RNN layer is incorporated into the agent’s policy network to alleviate the bottleneck of traditional deep reinforcement learning methods while dealing with POMDPs.The measurements from the interceptor’s seeker during each guidance cycle are combined into one sequence as the input to the policy network since the detection frequency of an interceptor is usually higher than its guidance frequency.During training,the hidden states of the RNN layer in the policy network are recorded to overcome the partially observable problem that this RNN layer causes inside the agent.The training curves show that the proposed RRTD3 successfully enhances data efficiency,training speed,and training stability.The test results confirm the advantages of the RRTD3-based guidance laws over some conventional guidance laws.展开更多
Final velocity and impact angle are critical to missile guidance.Computationally efficient guidance law with compre-hensive consideration of the two performance merits is challeng-ing yet remains less addressed.Theref...Final velocity and impact angle are critical to missile guidance.Computationally efficient guidance law with compre-hensive consideration of the two performance merits is challeng-ing yet remains less addressed.Therefore,this paper seeks to solve a type of optimal control problem that maximizes final velocity subject to equality point constraint of impact angle con-straint.It is proved that the crude problem of maximizing final velocity is equivalent to minimizing a quadratic-form cost of cur-vature.The closed-form guidance law is henceforth derived using optimal control theory.The derived analytical guidance law coincides with the widely-used optimal guidance law with impact angle constraint(OGL-IAC)with a set of navigation parameters of two and six.On this basis,the optimal emission angle is determined to further increase the final velocity.The derived optimal value depends solely on the initial line-of-sight angle and impact angle constraint,and thus practical for real-world appli-cations.The proposed guidance law is validated by numerical simulation.The results show that the OGL-IAC is superior to the benchmark guidance laws both in terms of final velocity and missing distance.展开更多
文摘In the development of the Gravity-1 launch vehicle, solid rocket motors without a thrust termination mechanism created great challenges for ascent guidance. To resolve this problem, the Gravity-1 GNC system used cross product guidance in the core 2nd stage, and a nonlinear adaptive guidance algorithm in core 3rd stage, in order to achieve high orbit injection precision. On January 11, 2024, the Gravity-1 launch vehicle successfully carried out its maiden flight from a mobile sea platform off the coast of Haiyang in Shandong province, inserting its payload into a low earth orbit at an altitude of 500 kilometers, validating the guidance algorithm.
文摘In the context of the era of continuous development of artificial intelligence, the labor value of university students is impacted by technological substitution. Simultaneously, university students are also required to constantly update their skills. All of the above will be the challenge of university students’ employment prospects. However, artificial intelligence will also bring new opportunities, which will stimulate the innovation ability of university students and bring new directions for employment. In order to better cope with the possible impact of artificial intelligence, universities should incorporate employment guidance services into the “three-wide education” system. To achieve this, universities need to take the following measures: developing the dynamic monitoring system of university employment based on big data, constructing the employment guidance curriculum system of university students throughout the whole process, updating the mode of diversified employment guidance service as well as establishing a team of employment guidance teachers keeping pace with the times. These measures aim to better adapt to the job market demands in the context of artificial intelligence, guide students to actively respond to the possible impact of artificial intelligence technology, cultivate their core competencies and qualities that are less likely to be replaced by artificial intelligence, and promote the high-quality employment of university students.
文摘An improved target tracking information differentiating system using the neural network to substitute for fuzzy rules is presented for the infrared-radar dual-mode guidance system. Since the neural network training based on the expert knowledge database is conducted off-line, the benefits for developing real-time tracking capabilities can be obtained. The network outputs the confidence degree denoted by the weight value of target information in the data fusion center according to two input variables of the measurement noise covariance and the tracking filter covariance. Simulation results show that the improved system can differentiate the target tracking information from the seeker fast and accurately.
基金supported by the Defense Science and Technology Key Laboratory Fund of Luoyang Electro-optical Equipment Institute,Aviation Industry Corporation of China(6142504200108)。
文摘This paper focuses on the influence of the disturbance rejection rate(DRR)and parasitic loop parameters on the stability domain of the roll-pitch seeker's guidance system.The DRR models of the roll-pitch seeker caused by different types of disturbance torques and the scale deviation of different sensors are established.The optimal DRR model of the roll-pitch seeker,which contains the scale deviation model,is proposed by formula derivation.The model of the roll-pitch seeker's guidance system is established and equivalently simplified by the dimensionless method.The Lyapunov stability criterion for stability analysis of the guidance system is given by means of the passivity theorem and related definitions and lemmas.A simplified model of the roll-pitch seeker's guidance system,which is suitable for the Lyapunov stability criterion,is established by formula derivation and equivalent transformation.Three conditions that satisfy the Lyapunov stability criterion are obtained.Mathematical simulation with Nyquist plots is used to analyze the influence of different DRR parameters on the stability domain of the roll-pitch seeker's guidance system.Simulation results of this paper can provide reference for the stability analysis of systems related to the roll-pitch seeker.
文摘The present paper introduces a three-dimensional guidance system developed for a miniature Autonomous Underwater Vehicle(AUV). The guidance system determines the best trajectory for the vehicle based on target behavior and vehicle capabilities. The dynamic model of this novel AUV is derived based on its special characteristics such as the horizontal posture and the independent diving mechanism. To design the guidance strategy, the main idea is to select the desired depth, presumed proportional to the horizontal distance of the AUV and the target. By connecting the two with a straight line, this strategy helps the AUV move in a trajectory sufficiently close to this line. The adjacency of the trajectory to the line leads to reasonably short travelling distances and avoids unsafe areas. Autopilots are designed using sliding mode controller. Two different engagement geometries are considered to evaluate the strategy's performance: stationary target and moving target. The simulation results show that the strategy can provide sufficiently fast and smooth trajectories in both target situations.
文摘Image-guided needles are currently used for drug delivery in bodies, but the additional time associated with aligning and maintaining the needle’s position results in increased patient discomfort or risk of invasion of the human body. In this paper, a needle guidance system using piezoelectric materials is designed and analyzed for precise drug delivery without damaging parts of the body and improving processing time. A piezoelectric generates an ultrasound wave that can propagate through different mediums, and a second piezoelectric crystal can receive that energy and convert it into voltage. A 1D real-time image represents the changes of the voltage induced in the double piezoelectric crystal. Extensive data analysis and visualization are done using different obstacles and location of the needle verified for other mediums. The presence of obstacles in between those crystals can be identified in the real-time grayscale image. The needle can reach its destination using this image information as directional guidance. This guided drug delivery improves patient recovery time and eliminates extra injuries that can be caused due to wrong needle injections, such as lumbar puncture-related nerve damage.
文摘This paper presents an image-based mobile robot guidance system in an indoor space with installed artificial ceiling landmarks. The overall system, including an omni-directional mobile robot motion control, landmark image processing and image recognition, is implemented on a single FPGA chip with one CMOS image sensor. The proposed feature representation of the artificial ceiling landmarks is invariant with respect to rotation and translation. One unique feature of the proposed ceiling landmark recognition system is that the feature points of landmarks are determined by topological information from both the foreground and background. To enhance recognition accuracy, landmark classification is performed after the mobile robot is moved to a position such that the ceiling landmark is located in the upright- top corner position of the robot’s camera image. The accuracy of the proposed artificial ceiling landmark recognition system using the nearest neighbor classification is 100% in our experiments.
文摘The strapdown homing guidance system for some ammunition was mainly studied. A strong tracking Kalman filter was designed for the strapdown homing guidance system using the information measured by the strapdown homing seeker to estimate relative movement variables between the ammunition and target. Then the optimal proportional law, which using the estimated information, guided the ammunition. Simulation results show that the designed strapdown homing guidance system with strong tracking Kalman filter can attack the maneuvering target effectively, and satisfy the performance index for the guided ammunition system.
文摘This paper aims at a type of image homing guided missile. The guided trajectory characteristics and the initial condition of the homing guidance are analyzed by calculating the miss distance of the image guided missile. Several modified proportional navigation laws which are easy for engineering implementation are introduced.
基金supported by the National Natural Science Foundation of China(61101186)the Specialized Research Fund for the Doctoral Program of Higher Education(20134307110012)
文摘Feature aided design of estimators and guidance laws can significantly improve the interception performance of the terminal guidance system. The achieved enhancement can be effectively assessed by observability analysis methods. This paper first analyzes and discusses the existing assessment methods in a typical endgame scenario with target orientation observations. To get over their deficiencies, a novel singular value decomposition(SVD) method is proposed. Employing both theoretical analysis and numerical simulation, the proposed method can represent the degree of state observability which is enhanced by integrating target features more completely and quantitatively.
基金the National Natural Science Foundation of China (Grant No. 60104003 and 60374024).
文摘Most currently existing investigations on the observability of passive guidance systems can only provide a qualitative result. In this paper, a quantitative method, which utilizes Cramér-Rao lower bound in the estimability analysis of closed-loop guidance systems with bearings-only measurements, is proposed. The new method provides an intuitive result for observability of the guidance system through graphical analysis. As a demonstration, a numerical example is presented, in which the degrees of observability of the guidance systems under two commonly used guidance laws are compared by using the new approach.
文摘Legal education and legal theory research are on the honorable mission of cultivating high-quality rule-of-law personnel and providing theoretical support for the rule of law in China, and play an important role in advancing the law-based governance in all fields. The Opinions on Strengthening Legal Education and Legal Theory Research in the New Era (hereinafter referred to as the “Opinions” ) issued by the General Office of the Central Committee of the Communist Party of China (CPC) and the General Office of the State Council in 2023 to meet the needs of legal education and legal theory research at present and in the future further clarifies the directions of legal education and legal theory research, and carries great importance for strengthening legal education, deepening legal research, improving the cultivation quality of rule-of-law personnel, and advancing law-based governance in all fields. The Opinions also puts forward new requirements for thoroughly implementing the spirit of the 20th National Congress of the CPC and XI Jinping Thought on the Rule of Law, and continuously cultivating high-quality rule-of-law personnel.
基金the National Natural Science Foundation of China(Grant No.12072090).
文摘This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.
基金supported by the National Natural Science Foundation of China,No.82202718the Natural Science Foundation of Beijing,No.L212050the China Postdoctoral Science Foundation,Nos.2019M664007,2021T140793(all to ZL)。
文摘Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduits may be used.The ideal conduit should be flexible,resistant to kinks and lumen collapse,and provide physical cues to guide nerve regeneration.We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them.Subsequently,we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen.The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers.The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability.Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model,suggesting that it has potential for clinical use in human nerve injuries.
文摘The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs makes the design of the guidance,navigation,and control(GNC)have a larger-thanbefore impact on the main-body design(shape,motor,and layout design)and its design objective,i.e.,flight performance.Pursuing a trade-off between flight performance and guidance precision,all the relevant interactions have to be accounted for in the design of the main body and the GNC system.Herein,a multi-objective and multidisciplinary design optimization(MDO)is proposed.Disciplines pertinent to motor,aerodynamics,layout,trajectory,flight dynamics,control,and guidance are included in the proposed MDO framework.The optimization problem seeks to maximize the range and minimize the guidance error.The problem is solved by using the nondominated sorting genetic algorithm II.An optimum design that balances a longer range with a smaller guidance error is obtained.Finally,lessons learned about the design of the MM and insights into the trade-off between flight performance and guidance precision are given by comparing the optimum design to a design provided by the traditional approach.
基金supported by the National Natural Science Foundation of China,Nos. 81760247, 82171450the Scientific Research Foundation for Doctors of the Affiliated Hospital of Zunyi Medical University,No.(2016)14 (all to HH)。
文摘Current treatments for epilepsy can only manage the symptoms of the condition but cannot alter the initial onset or halt the progression of the disease. Consequently, it is crucial to identify drugs that can target novel cellular and molecular mechanisms and mechanisms of action. Increasing evidence suggests that axon guidance molecules play a role in the structural and functional modifications of neural networks and that the dysregulation of these molecules is associated with epilepsy susceptibility. In this review, we discuss the essential role of axon guidance molecules in neuronal activity in patients with epilepsy as well as the impact of these molecules on synaptic plasticity and brain tissue remodeling. Furthermore, we examine the relationship between axon guidance molecules and neuroinflammation, as well as the structural changes in specific brain regions that contribute to the development of epilepsy. Ample evidence indicates that axon guidance molecules, including semaphorins and ephrins, play a fundamental role in guiding axon growth and the establishment of synaptic connections. Deviations in their expression or function can disrupt neuronal connections, ultimately leading to epileptic seizures. The remodeling of neural networks is a significant characteristic of epilepsy, with axon guidance molecules playing a role in the dynamic reorganization of neural circuits. This, in turn, affects synapse formation and elimination. Dysregulation of these molecules can upset the delicate balance between excitation and inhibition within a neural network, thereby increasing the risk of overexcitation and the development of epilepsy. Inflammatory signals can regulate the expression and function of axon guidance molecules, thus influencing axonal growth, axon orientation, and synaptic plasticity. The dysregulation of neuroinflammation can intensify neuronal dysfunction and contribute to the occurrence of epilepsy. This review delves into the mechanisms associated with the pathogenicity of axon guidance molecules in epilepsy, offering a valuable reference for the exploration of therapeutic targets and presenting a fresh perspective on treatment strategies for this condition.
基金supported by the Lorenz B?hler Fonds,#2/19 (obtained by the Neuroregeneration Group,Ludwig Boltzmann Institute for Traumatology)the City of Vienna project ImmunTissue,MA23#30-11 (obtained by the Department Life Science Engineering,University of Applied Sciences Technikum Wien)。
文摘Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the use of tubular nerve guidance conduits(tNGCs). However, the use of tNGCs results in poor functional recovery and central necrosis of the regenerating tissue, which limits their application to short nerve lesion defects(typically shorter than 3 cm). Given the importance of vascularization in nerve regeneration, we hypothesized that enabling the growth of blood vessels from the surrounding tissue into the regenerating nerve within the tNGC would help eliminate necrotic processes and lead to improved regeneration. In this study, we reported the application of macroscopic holes into the tubular walls of silk-based tNGCs and compared the various features of these improved silk^(+) tNGCs with the tubes without holes(silk^(–) tNGCs) and autologous nerve transplants in an 8-mm sciatic nerve defect in rats. Using a combination of micro-computed tomography and histological analyses, we were able to prove that the use of silk^(+) tNGCs induced the growth of blood vessels from the adjacent tissue to the intraluminal neovascular formation. A significantly higher number of blood vessels in the silk^(+) group was found compared with autologous nerve transplants and silk^(–), accompanied by improved axon regeneration at the distal coaptation point compared with the silk^(–) tNGCs at 7 weeks postoperatively. In the 15-mm(critical size) sciatic nerve defect model, we again observed a distinct ingrowth of blood vessels through the tubular walls of silk^(+) tNGCs, but without improved functional recovery at 12 weeks postoperatively. Our data proves that macroporous tNGCs increase the vascular supply of regenerating nerves and facilitate improved axonal regeneration in a short-defect model but not in a critical-size defect model. This study suggests that further optimization of the macroscopic holes silk^(+) tNGC approach containing macroscopic holes might result in improved grafting technology suitable for future clinical use.
基金supported by National Health and Medical Research Council GNT1105374,GNT1137645,GNT2000766 and veski Innovation Fellowship(VIF23)to RP.
文摘Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 years,research has revealed that the nuclear factor Y complex controls many aspects of brain development,including differentiation,axon guidance,homeostasis,disease,and most recently regeneration.However,a complete understanding of transcriptional regulatory networks,including how the nuclear factor Y complex binds to specific CCAAT boxes to perform its function remains elusive.In this review,we explore the nuclear factor Y complex’s role and mode of action during brain development,as well as how genomic technologies may expand understanding of this key regulator of gene expression.
基金supported by the National Natural Science Foundation of China(Grant No.12072090)。
文摘This work proposes a recorded recurrent twin delayed deep deterministic(RRTD3)policy gradient algorithm to solve the challenge of constructing guidance laws for intercepting endoatmospheric maneuvering missiles with uncertainties and observation noise.The attack-defense engagement scenario is modeled as a partially observable Markov decision process(POMDP).Given the benefits of recurrent neural networks(RNNs)in processing sequence information,an RNN layer is incorporated into the agent’s policy network to alleviate the bottleneck of traditional deep reinforcement learning methods while dealing with POMDPs.The measurements from the interceptor’s seeker during each guidance cycle are combined into one sequence as the input to the policy network since the detection frequency of an interceptor is usually higher than its guidance frequency.During training,the hidden states of the RNN layer in the policy network are recorded to overcome the partially observable problem that this RNN layer causes inside the agent.The training curves show that the proposed RRTD3 successfully enhances data efficiency,training speed,and training stability.The test results confirm the advantages of the RRTD3-based guidance laws over some conventional guidance laws.
文摘Final velocity and impact angle are critical to missile guidance.Computationally efficient guidance law with compre-hensive consideration of the two performance merits is challeng-ing yet remains less addressed.Therefore,this paper seeks to solve a type of optimal control problem that maximizes final velocity subject to equality point constraint of impact angle con-straint.It is proved that the crude problem of maximizing final velocity is equivalent to minimizing a quadratic-form cost of cur-vature.The closed-form guidance law is henceforth derived using optimal control theory.The derived analytical guidance law coincides with the widely-used optimal guidance law with impact angle constraint(OGL-IAC)with a set of navigation parameters of two and six.On this basis,the optimal emission angle is determined to further increase the final velocity.The derived optimal value depends solely on the initial line-of-sight angle and impact angle constraint,and thus practical for real-world appli-cations.The proposed guidance law is validated by numerical simulation.The results show that the OGL-IAC is superior to the benchmark guidance laws both in terms of final velocity and missing distance.