A direct algorithm is proposed by which one can distinguish whether a matrix is an M-matrix (or H-matrix) or not quickly and effectively. Numerical examples show that it is effective and convincible to distinguish M-m...A direct algorithm is proposed by which one can distinguish whether a matrix is an M-matrix (or H-matrix) or not quickly and effectively. Numerical examples show that it is effective and convincible to distinguish M-matrix (or H-matrix) by using the algorithm.展开更多
This paper investigates the application of active mass dampers to mitigate the vibrations of building structures subjected to unknown external excitations under controller saturation conditions. By utilizing an H<s...This paper investigates the application of active mass dampers to mitigate the vibrations of building structures subjected to unknown external excitations under controller saturation conditions. By utilizing an H<sub>∞</sub> control strategy, the optimal state feedback controller is derived by solving the linear matrix inequality problem for controller saturation. Case studies show that the proposed controller is capable of stabilizing the closed-loop system with good control performance and effectively suppressing vibrations in building structures under unknown external excitation. When compared to controllers that do not consider saturation, the proposed controller requires lower gain and results in reduced energy consumption. The research findings provide valuable insights for addressing real-world building structure control problems, contributing to both theoretical significance and practical applications.展开更多
基金Foundation item: This work is supported by the Science Foundations of the Education Department of Yunnan Province (03Z169A)the Science Foundatons of Yunnan University (2003Z013B).
文摘A direct algorithm is proposed by which one can distinguish whether a matrix is an M-matrix (or H-matrix) or not quickly and effectively. Numerical examples show that it is effective and convincible to distinguish M-matrix (or H-matrix) by using the algorithm.
文摘This paper investigates the application of active mass dampers to mitigate the vibrations of building structures subjected to unknown external excitations under controller saturation conditions. By utilizing an H<sub>∞</sub> control strategy, the optimal state feedback controller is derived by solving the linear matrix inequality problem for controller saturation. Case studies show that the proposed controller is capable of stabilizing the closed-loop system with good control performance and effectively suppressing vibrations in building structures under unknown external excitation. When compared to controllers that do not consider saturation, the proposed controller requires lower gain and results in reduced energy consumption. The research findings provide valuable insights for addressing real-world building structure control problems, contributing to both theoretical significance and practical applications.