In this paper, we introduce a K Hölder p-adic derivative that can be applied to fractal curves with different Hölder exponent K. We will show that the Koch curve satisfies the Hölder conditi...In this paper, we introduce a K Hölder p-adic derivative that can be applied to fractal curves with different Hölder exponent K. We will show that the Koch curve satisfies the Hölder condition with exponent and has a 4-adic arithmetic-analytic representation. We will prove that the Koch curve has exact -Hölder 4-adic derivative.展开更多
Let n≥2 and let L be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in ℝ^(n).In this article,we consider the weighted...Let n≥2 and let L be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in ℝ^(n).In this article,we consider the weighted Kato square root problem for L.More precisely,we prove that the square root L^(1/2)satisfies the weighted L^(p)estimates||L^(1/2)(f)||L_(ω)^p(R^(n))≤C||■f||L_(ω)^p(R^(n);R^(n))for any p∈(1,∞)andω∈Ap(ℝ^(n))(the class of Muckenhoupt weights),and that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,2+ε)andω∈Ap(ℝ^(n))∩RH_(2+ε/p),(R^(n))(the class of reverse Hölder weights),whereε∈(0,∞)is a constant depending only on n and the operator L,and where(2+ε/p)'denotes the Hölder conjugate exponent of 2+ε/p.Moreover,for any given q∈(2,∞),we give a sufficient condition to obtain that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,q)andω∈A_(p)(R^(n))∩pRH_(q/p),(R^(n)).As an application,we prove that when the coefficient matrix A that appears in L satisfies the small BMO condition,the Riesz transform∇L^(−1/2)is bounded on L_(ω)^(p)(ℝ^(n))for any given p∈(1,∞)andω∈Ap(ℝ^(n)).Furthermore,applications to the weighted L^(2)-regularity problem with the Dirichlet or the Neumann boundary condition are also given.展开更多
In this paper,a strong converse inequality of type B in terms of a new Kfunctional Kλα f,t2(0 < α < 2,0 ≤λ≤ 1) for certain mixed Szász-Beta operators is given.By this inequality,the converse theorem c...In this paper,a strong converse inequality of type B in terms of a new Kfunctional Kλα f,t2(0 < α < 2,0 ≤λ≤ 1) for certain mixed Szász-Beta operators is given.By this inequality,the converse theorem can be obtained for the operators.展开更多
In this paper, some new generalizations of inverse type Hilbert-Pachpatte integral inequalities are proved. The results of this paper reduce to those of Pachpatte (1998, J. Math. Anal. Appl. 226, 166–179) and Zhao an...In this paper, some new generalizations of inverse type Hilbert-Pachpatte integral inequalities are proved. The results of this paper reduce to those of Pachpatte (1998, J. Math. Anal. Appl. 226, 166–179) and Zhao and Debnath (2001, J. Math. Anal. Appl. 262, 411–418).展开更多
文摘In this paper, we introduce a K Hölder p-adic derivative that can be applied to fractal curves with different Hölder exponent K. We will show that the Koch curve satisfies the Hölder condition with exponent and has a 4-adic arithmetic-analytic representation. We will prove that the Koch curve has exact -Hölder 4-adic derivative.
基金supported by the Key Project of Gansu Provincial National Science Foundation(23JRRA1022)the National Natural Science Foundation of China(12071431)+1 种基金the Fundamental Research Funds for the Central Universities(lzujbky-2021-ey18)the Innovative Groups of Basic Research in Gansu Province(22JR5RA391).
文摘Let n≥2 and let L be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in ℝ^(n).In this article,we consider the weighted Kato square root problem for L.More precisely,we prove that the square root L^(1/2)satisfies the weighted L^(p)estimates||L^(1/2)(f)||L_(ω)^p(R^(n))≤C||■f||L_(ω)^p(R^(n);R^(n))for any p∈(1,∞)andω∈Ap(ℝ^(n))(the class of Muckenhoupt weights),and that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,2+ε)andω∈Ap(ℝ^(n))∩RH_(2+ε/p),(R^(n))(the class of reverse Hölder weights),whereε∈(0,∞)is a constant depending only on n and the operator L,and where(2+ε/p)'denotes the Hölder conjugate exponent of 2+ε/p.Moreover,for any given q∈(2,∞),we give a sufficient condition to obtain that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,q)andω∈A_(p)(R^(n))∩pRH_(q/p),(R^(n)).As an application,we prove that when the coefficient matrix A that appears in L satisfies the small BMO condition,the Riesz transform∇L^(−1/2)is bounded on L_(ω)^(p)(ℝ^(n))for any given p∈(1,∞)andω∈Ap(ℝ^(n)).Furthermore,applications to the weighted L^(2)-regularity problem with the Dirichlet or the Neumann boundary condition are also given.
基金Supported by National Science Foundation of China(10571040)
文摘In this paper,a strong converse inequality of type B in terms of a new Kfunctional Kλα f,t2(0 < α < 2,0 ≤λ≤ 1) for certain mixed Szász-Beta operators is given.By this inequality,the converse theorem can be obtained for the operators.
文摘In this paper, some new generalizations of inverse type Hilbert-Pachpatte integral inequalities are proved. The results of this paper reduce to those of Pachpatte (1998, J. Math. Anal. Appl. 226, 166–179) and Zhao and Debnath (2001, J. Math. Anal. Appl. 262, 411–418).