An improved procedure for the preparation of China, BAD(P)H model. (S_s)- 1 -benzyl-3- (p-tolylsulfinyl)-1.4-dihydropyridine with satisfactary chemical yield and excellent enantiopurity is reported.
针对逆变器的分岔和混沌现象,建立逆变器的离散模型,通过分岔图、Lyapunov指数和折叠图分析非线性行为,并计算出系统的稳定运行范围及混沌运行范围。文中提出一种非奇异终端滑膜控制策略,设计切换面函数,推导逆变器的反馈控制律。最后...针对逆变器的分岔和混沌现象,建立逆变器的离散模型,通过分岔图、Lyapunov指数和折叠图分析非线性行为,并计算出系统的稳定运行范围及混沌运行范围。文中提出一种非奇异终端滑膜控制策略,设计切换面函数,推导逆变器的反馈控制律。最后进行仿真,仿真结果表明:非奇异滑膜控制能够有效抑制系统的混沌行为,从而拓宽了系统稳定工作范围,相比于比例积分控制(proportional integral derivative,PI),稳定范围扩大了80%。由此可以使得逆变器实现稳定工作,有很强的实际应用价值。展开更多
Background:We used mixed models with random components to develop height-diameter(h-d) functions for mixed,uneven-aged stands in northwestern Durango(Mexico),considering the breast height diameter(d) and stand variabl...Background:We used mixed models with random components to develop height-diameter(h-d) functions for mixed,uneven-aged stands in northwestern Durango(Mexico),considering the breast height diameter(d) and stand variables as predictors.Methods:The data were obtained from 44 permanent plots used to monitor stand growth under forest management in the study area.Results:The generalized Bertalanffy-Richards model performed better than the other generalized models in predicting the total height of the species under study.For the genera Pinus and Quercus,the models were successfully calibrated by measuring the height of a subsample of three randomly selected trees close to the mean d,whereas for species of the genera Cupressus,Arbutus and Alnus,three trees were also selected,but they are specifically the maximum,minimum and mean d trees.Conclusions:The presented equations represent a new tool for the evaluation and management of natural forest in the region.展开更多
Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly ...Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly because use working fluids that do not cause ozone depletion and can reduce the global warming emissions.The hybrid heat pump processes combine the conventional vapor-compression and the absorption heat pump cycles.Studies about the simulations and modeling of hybrid heat pumps are few in literature.In this research a mathematical model for single effect absorption and hybrid heat pump is carried out with Chem Cad? 6.0.1.LiBr–H_2O is used as working fluid while electrolytic NRTL and electrolytes latent heat are used as thermodynamic model due to the better results.Binary parameters of activity coef ficients are regressed from experimental vapor pressure data while default constants are used for the solubility expressions.A design of heat pumps is developed and a new modeling of generator is analyzed.The coef ficient of performance of absorption heat pump and hybrid heat pump is equal to 0.7 and 0.83 respectively.For absorption heat pump a sensitivity analysis is carried out to evaluate the effect of temperature and pressure generator,the concentration of Li–Br solution on coef ficient of performance,cooling capacity and working fluid temperature.For hybrid heat pump,the different coef ficients of performance,the primary energy ratio,the generator heat,and the compressor power are analyzed for different values of compressor proportion.Results show that comparing the two systems the hybrid pump allows to save more primary energy,costs and carbon dioxide emissions with respect to absorption heat pump with the increasing of compressor proportion parameter.Future researches should focus on the construction of this heat pumps integrated in chemical processes as a biogas plant or trigeneration systems.展开更多
We proposed a dynamic model identification and design of an H-Infinity (i.e.H) controller using a LightweightPiezo-Composite Actuator (LIPCA).A second-order dynamic model was obtained by using input and output dat...We proposed a dynamic model identification and design of an H-Infinity (i.e.H) controller using a LightweightPiezo-Composite Actuator (LIPCA).A second-order dynamic model was obtained by using input and output data, and applyingan identification algorithm.The identified model coincides well with the real LIPCA.To reduce the resonating mode that istypical of piezoelectric actuators, a notch filter was used.A feedback controller using the Hcontrol scheme was designed basedon the identified dynamic model; thus, the LIPCA can be easily used as an actuator for biomemetic applications such as artificialmuscles or macro/micro positioning in bioengineering.The control algorithm was implemented using a microprocessor, analogfilters, and power amplifying drivers.Our simulation and experimental results demonstrate that the proposed control algorithmworks well in real environment, providing robust performance and stability with uncertain disturbances.展开更多
Three model polyurethane hard segments based on dimethylol butanoic acid (DMBA) and 1,6-hexane diisocyanate (HDI), toluene diisocyanate (TDI) and 4,4'-diphenylmethane diisocyanate (MDI) were prepared by the soluti...Three model polyurethane hard segments based on dimethylol butanoic acid (DMBA) and 1,6-hexane diisocyanate (HDI), toluene diisocyanate (TDI) and 4,4'-diphenylmethane diisocyanate (MDI) were prepared by the solution method. Fourier Infrared (FTIR) spectroscopy was employed to study the H-bonds in these model polyurethanes. The model polyurethane hard segment prepared from HDI and 1,4-butanodiol (BDO) was used for comparison. It was found that the incorporation of the pendent carboxyl through DMBA into the model hard segments weakens the original NH…O = C H-bond but gives more H-bond patterns based on the two H-bond donors, urethane NH and carboxylic OH. The carboxylic dimer is one of the main H-bond types and is stronger than another main H-bond type NH…O=C. In addition, the H-bond in aromatic model hard segments is stronger than that of aliphatic hard segments. The appearance of the free C=O and the fact that almost all N—H is H-bonded suggest that there possibly exist either the third H-bond acceptor or the H-bond formed by one acceptor with two donors.展开更多
Introduction Neurons are situated in a microenvironment composed of various biochemical and biophysical cues,where stretching is thought to have a major impact on neurons.For instance,during a moderate traumatic brain...Introduction Neurons are situated in a microenvironment composed of various biochemical and biophysical cues,where stretching is thought to have a major impact on neurons.For instance,during a moderate traumatic brain impact,the injury region in axons exhibits significant longitudinal strain;and in a rat model of spinal cord injury,the most severe axonal injury is located in the largest strain region.Stretching may result in microstructural changes in neural tissue and further leading to abnormal electrophysiological function.Hence,it is of great importance to understand the coupled mechanoelectricalbehaviors of neurons under stretching.In spite of significant experimental efforts,the underlying mechanism remains elusive,more works are needed to provide a detailed description of the process that leads to the observed phenomena.Mathematical modeling is a powerful tool that offers a quantitative description of the underlying mechanism of an observed biological phenomenon,including mechanical and electrophysiological behaviors of neurons.Thus,we developed a mechanoelectrical coupling model of neurons under stretching in this study.Mathematical model The mathematical model consists of three submodels,i.e.,the mechanical submodel,the mechanoelectrical coupling submodel and the electrophysiological submodel.The mechanical submodel deals with the relationship between stretching and the deformation of axons,which has specially considered the plastic deformation of axons.The electrophysiological submodel characterizes the feature of neuronal action potential(AP),which is based on the classical H-H model and the cable theory.The mechanoelectrical coupling submodel links the mechanical and electrophysiological submodels through strain-induced equivalent circuit parameter alteration and ion channel injury.Besides,we have discussed a more general deformation condition,where an expanded model coupling the axonal deformation and electrophysiology alteration was explored.As the most essential parameters in an electrophysiological assessment,the amplitude of the AP,the neuronal firing frequency and the electrophysiological signal conduction velocity,which could be affected by stretching,were used as outputs of the model.Results&discussion To understand the mechanoelectrical coupling of neurons under stretching,we developed a mechanoelectrical coupling model.To verify the model,we simulated a slow stretching on an axon following the experimental study in the literature,we observed that as the strain increases,the peak AP declines faster,which is consistent with the experimental data.Moreover,the reduced AP cannot be restored to the original peak,implying that the damage is irreversible.The simulation results also predict that strain induces a more frequent neuronal firing and a faster conduction.In a realistic situation,in addition to stretching,the loading condition is very complicated,which may induce complex axonal deformation(e.g., necking and swelling along the axons).We also simulated such necking deformation impairment and observed that the AP amplitude decreases at the necking region and recovers after that,indicating a blockage of the AP;and the conduction velocity decreases with the increase in deformation degree.Conclusions In this study,we developed a mechanoelectrical coupling model of neurons under stretching with consideration of axonal plastic deformation.With the model,we found that the effect of mechanical loading on electrophysiology mainly manifests as decreased membrane AP amplitude,a more frequent neuronal firing and a faster electrophysiological signal conduction.The model predicts not only stretch-induced injury but also a more gene ral necking deformation case,which may someday be revealed in future by experiments,providing a reference for the prediction and regulation of neuronal function under mechanical loadings.展开更多
Based on an analysis of the existing models of CO 2 corrosion in literatures and the autoclave simulative experiments, a predictive model of corrosion rate (r corr) in CO 2/H 2S corrosion for oil tubes has been ...Based on an analysis of the existing models of CO 2 corrosion in literatures and the autoclave simulative experiments, a predictive model of corrosion rate (r corr) in CO 2/H 2S corrosion for oil tubes has been established, in which r corr is expressed as a function of pH, temperature (T), pressure of CO 2 (P CO 2) and pressure of H 2S (P H 2S). The model has been verified by experimental data obtained on N80 steel. The improved features of the predictive model include the following aspects: (1) The influence of temperature on the protectiveness of corrosion film is taken into consideration for establishment of predictive model of the r corr in CO 2/H 2S corrosion. The Equations of scale temperature and scale factor are put forward, and they fit the experimental result very well. (2) The linear relationship still exists between ln r corr and ln P CO 2 in CO 2/H 2S corrosion (as same as that in CO 2 corrosion). Therefore, a correction factor as a function of P H 2S has been introduced into the predictive model in CO 2/H 2S corrosion. (3) The model is compatible with the main existing models.展开更多
基金the National Natural Science Foundation of China ! 29672031 Fang Min FU of Chengdu institute of or
文摘An improved procedure for the preparation of China, BAD(P)H model. (S_s)- 1 -benzyl-3- (p-tolylsulfinyl)-1.4-dihydropyridine with satisfactary chemical yield and excellent enantiopurity is reported.
文摘针对逆变器的分岔和混沌现象,建立逆变器的离散模型,通过分岔图、Lyapunov指数和折叠图分析非线性行为,并计算出系统的稳定运行范围及混沌运行范围。文中提出一种非奇异终端滑膜控制策略,设计切换面函数,推导逆变器的反馈控制律。最后进行仿真,仿真结果表明:非奇异滑膜控制能够有效抑制系统的混沌行为,从而拓宽了系统稳定工作范围,相比于比例积分控制(proportional integral derivative,PI),稳定范围扩大了80%。由此可以使得逆变器实现稳定工作,有很强的实际应用价值。
基金financially supported by the"Programa de Mejoramiento del Profesorado"(project:Seguimiento y Evaluacion de Sitios Permanentes de Investigación Forestal y el Impacto Socioeconómico delManejo Forestal en Norte de México)supported by"Programa Banco Santander-USC"(becas para estancias predoctorales destinadas a docentes e investigadores de America Latina)
文摘Background:We used mixed models with random components to develop height-diameter(h-d) functions for mixed,uneven-aged stands in northwestern Durango(Mexico),considering the breast height diameter(d) and stand variables as predictors.Methods:The data were obtained from 44 permanent plots used to monitor stand growth under forest management in the study area.Results:The generalized Bertalanffy-Richards model performed better than the other generalized models in predicting the total height of the species under study.For the genera Pinus and Quercus,the models were successfully calibrated by measuring the height of a subsample of three randomly selected trees close to the mean d,whereas for species of the genera Cupressus,Arbutus and Alnus,three trees were also selected,but they are specifically the maximum,minimum and mean d trees.Conclusions:The presented equations represent a new tool for the evaluation and management of natural forest in the region.
文摘Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly because use working fluids that do not cause ozone depletion and can reduce the global warming emissions.The hybrid heat pump processes combine the conventional vapor-compression and the absorption heat pump cycles.Studies about the simulations and modeling of hybrid heat pumps are few in literature.In this research a mathematical model for single effect absorption and hybrid heat pump is carried out with Chem Cad? 6.0.1.LiBr–H_2O is used as working fluid while electrolytic NRTL and electrolytes latent heat are used as thermodynamic model due to the better results.Binary parameters of activity coef ficients are regressed from experimental vapor pressure data while default constants are used for the solubility expressions.A design of heat pumps is developed and a new modeling of generator is analyzed.The coef ficient of performance of absorption heat pump and hybrid heat pump is equal to 0.7 and 0.83 respectively.For absorption heat pump a sensitivity analysis is carried out to evaluate the effect of temperature and pressure generator,the concentration of Li–Br solution on coef ficient of performance,cooling capacity and working fluid temperature.For hybrid heat pump,the different coef ficients of performance,the primary energy ratio,the generator heat,and the compressor power are analyzed for different values of compressor proportion.Results show that comparing the two systems the hybrid pump allows to save more primary energy,costs and carbon dioxide emissions with respect to absorption heat pump with the increasing of compressor proportion parameter.Future researches should focus on the construction of this heat pumps integrated in chemical processes as a biogas plant or trigeneration systems.
基金supported by the Korea Research Foundation Grant(KRF-2006-005-J03303)
文摘We proposed a dynamic model identification and design of an H-Infinity (i.e.H) controller using a LightweightPiezo-Composite Actuator (LIPCA).A second-order dynamic model was obtained by using input and output data, and applyingan identification algorithm.The identified model coincides well with the real LIPCA.To reduce the resonating mode that istypical of piezoelectric actuators, a notch filter was used.A feedback controller using the Hcontrol scheme was designed basedon the identified dynamic model; thus, the LIPCA can be easily used as an actuator for biomemetic applications such as artificialmuscles or macro/micro positioning in bioengineering.The control algorithm was implemented using a microprocessor, analogfilters, and power amplifying drivers.Our simulation and experimental results demonstrate that the proposed control algorithmworks well in real environment, providing robust performance and stability with uncertain disturbances.
基金This work was supported by the Natural Science Foundation of Henan Province (004030600)
文摘Three model polyurethane hard segments based on dimethylol butanoic acid (DMBA) and 1,6-hexane diisocyanate (HDI), toluene diisocyanate (TDI) and 4,4'-diphenylmethane diisocyanate (MDI) were prepared by the solution method. Fourier Infrared (FTIR) spectroscopy was employed to study the H-bonds in these model polyurethanes. The model polyurethane hard segment prepared from HDI and 1,4-butanodiol (BDO) was used for comparison. It was found that the incorporation of the pendent carboxyl through DMBA into the model hard segments weakens the original NH…O = C H-bond but gives more H-bond patterns based on the two H-bond donors, urethane NH and carboxylic OH. The carboxylic dimer is one of the main H-bond types and is stronger than another main H-bond type NH…O=C. In addition, the H-bond in aromatic model hard segments is stronger than that of aliphatic hard segments. The appearance of the free C=O and the fact that almost all N—H is H-bonded suggest that there possibly exist either the third H-bond acceptor or the H-bond formed by one acceptor with two donors.
基金financially supported by the National Natural Science Foundation of China ( 11522219, 11532009)the Projects of International ( Regional) Cooperation and Exchanges of NSFC ( 11761161004)+3 种基金the Natural Science Basic Research Plan in Shaanxi Province of China ( 2017JM1026,2017JM8097)the National Project Cultivating Foundation of Xi’an Medical University ( 2017GJFY23)Young Talent Support Plan of Shaanxi Provincethe China Postdoctoral Science Foundation ( 2018M631141,2018M631173)
文摘Introduction Neurons are situated in a microenvironment composed of various biochemical and biophysical cues,where stretching is thought to have a major impact on neurons.For instance,during a moderate traumatic brain impact,the injury region in axons exhibits significant longitudinal strain;and in a rat model of spinal cord injury,the most severe axonal injury is located in the largest strain region.Stretching may result in microstructural changes in neural tissue and further leading to abnormal electrophysiological function.Hence,it is of great importance to understand the coupled mechanoelectricalbehaviors of neurons under stretching.In spite of significant experimental efforts,the underlying mechanism remains elusive,more works are needed to provide a detailed description of the process that leads to the observed phenomena.Mathematical modeling is a powerful tool that offers a quantitative description of the underlying mechanism of an observed biological phenomenon,including mechanical and electrophysiological behaviors of neurons.Thus,we developed a mechanoelectrical coupling model of neurons under stretching in this study.Mathematical model The mathematical model consists of three submodels,i.e.,the mechanical submodel,the mechanoelectrical coupling submodel and the electrophysiological submodel.The mechanical submodel deals with the relationship between stretching and the deformation of axons,which has specially considered the plastic deformation of axons.The electrophysiological submodel characterizes the feature of neuronal action potential(AP),which is based on the classical H-H model and the cable theory.The mechanoelectrical coupling submodel links the mechanical and electrophysiological submodels through strain-induced equivalent circuit parameter alteration and ion channel injury.Besides,we have discussed a more general deformation condition,where an expanded model coupling the axonal deformation and electrophysiology alteration was explored.As the most essential parameters in an electrophysiological assessment,the amplitude of the AP,the neuronal firing frequency and the electrophysiological signal conduction velocity,which could be affected by stretching,were used as outputs of the model.Results&discussion To understand the mechanoelectrical coupling of neurons under stretching,we developed a mechanoelectrical coupling model.To verify the model,we simulated a slow stretching on an axon following the experimental study in the literature,we observed that as the strain increases,the peak AP declines faster,which is consistent with the experimental data.Moreover,the reduced AP cannot be restored to the original peak,implying that the damage is irreversible.The simulation results also predict that strain induces a more frequent neuronal firing and a faster conduction.In a realistic situation,in addition to stretching,the loading condition is very complicated,which may induce complex axonal deformation(e.g., necking and swelling along the axons).We also simulated such necking deformation impairment and observed that the AP amplitude decreases at the necking region and recovers after that,indicating a blockage of the AP;and the conduction velocity decreases with the increase in deformation degree.Conclusions In this study,we developed a mechanoelectrical coupling model of neurons under stretching with consideration of axonal plastic deformation.With the model,we found that the effect of mechanical loading on electrophysiology mainly manifests as decreased membrane AP amplitude,a more frequent neuronal firing and a faster electrophysiological signal conduction.The model predicts not only stretch-induced injury but also a more gene ral necking deformation case,which may someday be revealed in future by experiments,providing a reference for the prediction and regulation of neuronal function under mechanical loadings.
基金Supported by National Natural Science Foundation of China (10571036) the Key Discipline Development Program of Beijing Municipal Commission (XK100080537)
基金TheResearchProjectofTubularGoodsRe searchCenterofChinaNationalPetroleumCorporation (No .2 3 5 2 4)andtheResearchProjectofHenanUniversityofScienceandTechnology (No .2 0 0 10 1)
文摘Based on an analysis of the existing models of CO 2 corrosion in literatures and the autoclave simulative experiments, a predictive model of corrosion rate (r corr) in CO 2/H 2S corrosion for oil tubes has been established, in which r corr is expressed as a function of pH, temperature (T), pressure of CO 2 (P CO 2) and pressure of H 2S (P H 2S). The model has been verified by experimental data obtained on N80 steel. The improved features of the predictive model include the following aspects: (1) The influence of temperature on the protectiveness of corrosion film is taken into consideration for establishment of predictive model of the r corr in CO 2/H 2S corrosion. The Equations of scale temperature and scale factor are put forward, and they fit the experimental result very well. (2) The linear relationship still exists between ln r corr and ln P CO 2 in CO 2/H 2S corrosion (as same as that in CO 2 corrosion). Therefore, a correction factor as a function of P H 2S has been introduced into the predictive model in CO 2/H 2S corrosion. (3) The model is compatible with the main existing models.