In this paper, we obtain H1 norm estimate for multigrid method for plate bending problem. Meanwhile, optimal convergence rate under H1 norm is also obtainted for nested iteration multigrid method.
The mortar element method is a new domain decomposition method(DDM) with nonoverlapping subdomains. It can handle the situation where the mesh on different subdomains need not align across interfaces, and the matchi...The mortar element method is a new domain decomposition method(DDM) with nonoverlapping subdomains. It can handle the situation where the mesh on different subdomains need not align across interfaces, and the matching of discretizations on adjacent subdomains is only enforced weakly. But until now there has been very little work for nonlinear PDEs. In this paper, we will present a mortar-type Morley element method for a nonlinear biharmonic equation which is related to the well-known Navier-Stokes equation. Optimal energy and H^1-norm estimates are obtained under a reasonable elliptic regularity assumption.展开更多
文摘In this paper, we obtain H1 norm estimate for multigrid method for plate bending problem. Meanwhile, optimal convergence rate under H1 norm is also obtainted for nested iteration multigrid method.
基金This work was subsidized by the special funds for major state basic research projects under 2005CB321700 and a grant from the National Science Foundation (NSF) of China (No. 10471144).
文摘The mortar element method is a new domain decomposition method(DDM) with nonoverlapping subdomains. It can handle the situation where the mesh on different subdomains need not align across interfaces, and the matching of discretizations on adjacent subdomains is only enforced weakly. But until now there has been very little work for nonlinear PDEs. In this paper, we will present a mortar-type Morley element method for a nonlinear biharmonic equation which is related to the well-known Navier-Stokes equation. Optimal energy and H^1-norm estimates are obtained under a reasonable elliptic regularity assumption.