期刊文献+
共找到197篇文章
< 1 2 10 >
每页显示 20 50 100
Deactivation mechanism of beta-zeolite catalyst for synthesis of cumene by benzene alkylation with isopropanol 被引量:6
1
作者 Yefei Liu Yang Zou +2 位作者 Hong Jiang Huanxin Gao Rizhi Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第9期1195-1201,共7页
The alkylation of benzene with isopropanol over beta-zeolite is a more cost-effective solution to cumene production. During the benzene alkylation cycles, the cumene selectivity slowly increased, while the benzene con... The alkylation of benzene with isopropanol over beta-zeolite is a more cost-effective solution to cumene production. During the benzene alkylation cycles, the cumene selectivity slowly increased, while the benzene conversion presented the sharp decrease due to catalyst deactivation. The deactivation mechanism of betazeolite catalyst was investigated by characterizing the fresh and used catalysts. The XRD, SEM and TEM results show that the crystalline and particle size of the beta-zeolite catalyst almost remained stable during the alkylation cycles. The drop in catalytic activity and benzene conversion could be explained by the TG, BET,NH_3-TPD and GC–MS results. The organic matters mainly consisted of ethylbenzene, p-xylene and 1-ethyl-3-(1-methyl) benzene produced in the benzene alkylation deposited in the catalyst, which strongly reduced the specific surface area of beta-zeolite catalyst. Moreover, during the reaction cycles, the amount of acidity also significantly decreased. As a result, the catalyst deactivation occurred. To maintain the catalytic performance,the catalyst regeneration was carried out by using ethanol rinse and calcination. The deactivated catalyst could be effectively regenerated by the calcination method and the good catalytic performance was obtained. 展开更多
关键词 CUMENE BENZENE ISOPROPANOL ALKYLATION BETA-zeolite Catalyst deactivation
下载PDF
Study on Deactivation and Cracking Performance of Catalysts Containing Y and MFI Zeolites
2
作者 Chen Zhenyu Li Caiying +1 位作者 Tian Huiping Huang Zhiqing(Research Institute of Petroleum Processing, Beijing 100083) 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2004年第1期29-35,共7页
This article investigated the deactivation caused by hydrothermal treatment and metal contamination of two cracking catalysts containing the Y and ZRP- 1 zeolites aimed at maximization of light olefin yield.Test resul... This article investigated the deactivation caused by hydrothermal treatment and metal contamination of two cracking catalysts containing the Y and ZRP- 1 zeolites aimed at maximization of light olefin yield.Test results had shown that the hydrothermal stability and resistance to metal contamination of the ZRP-1zeolite were apparently better than those of the Y zeolite. Hydrothermal treatment and metal contamination had not only changed the catalytic cracking performance of respective zeolites, but at the same time had also modified to a definite degree of the relative proportions of effective components in these two zeolites and affected the synergistic effects between them, resulting in a relative enhancement of secondary cracking ability of the catalyst and increased olefin selectivity in the FCC products. In the course of application of catalyst for maximization of light olefins yield appropriate adjustment of the relative proportion of two active components can help to alleviate the products distribution and selectivity changes caused by deactivationof FCC catalysts. 展开更多
关键词 catalytic cracking zeolite CATALYST deactivation
下载PDF
Alkylation of toluene with tert-butyl alcohol over HPW-modified Hβ zeolite 被引量:8
3
作者 王园园 宋华 孙兴龙 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第12期2134-2141,共8页
An Hβ-supported heteropoly acid (H3PW12O40 (HPW)/Hβ) catalyst was successfully prepared by wetness impregnation, and investigated in the alkylation of toluene with tert-butyl alcohol for the synthesis of 4-tert-... An Hβ-supported heteropoly acid (H3PW12O40 (HPW)/Hβ) catalyst was successfully prepared by wetness impregnation, and investigated in the alkylation of toluene with tert-butyl alcohol for the synthesis of 4-tert-butyltoluene (PTBT). X-ray diffraction, scanning electron microscopy, transmis- sion electron microscopy, fourier-transform infrared spectroscopy, inductively coupled plas- ma-optical emission spectrometry, the brunauer emmett teller (BET) method, tempera- ture-programmed NH3 desorption, and pyridine adsorption infrared spectroscopy were used to characterize the catalyst. The results showed that loading HPW on Hβ effectively increased the B acidity and decreased the pore size of Hβ. The B acidity of HPW/Hβ was 142.97 μmol/g, which is 69.74% higher than that of Hβ (84.23 μmol/g). The catalytic activity of the HPW/Hβ catalyst was much better than that of the parent Hβ zeolite because of its high B acidity. The toluene conversion over HPW/Hβ reached 73.1%, which is much higher than that achieved with Hβ (54.0%). When HPW was loaded on Hβ, the BET surface area of Hβ decreased from 492.5 to 379.6 m2/g, accompa- nied by a significant decrease in the pore size from 3.90 to 3.17 nm. Shape selectivity can therefore play an important role and increase the product selectivity of the HPW/Hβ catalyst compared with that of the parent Hβ. PTBT (kinetic diameter 0.58 nm) can easily diffuse through the narrowed pores of HPW/Hβ, but 3-tert-butyltoluene (kinetic diameter 0.65 nm) diffusion is restricted because of steric hindrance in these narrow pores. This results in high PTBT selectivity over HPW/Hβ (around 81%). The HPW/Hβ catalyst gave a stable catalytic performance in reusability tests. 展开更多
关键词 Alkylation Toluenetert-Butyl alcohol h3PW12O40 B acidity hβ zeolite
下载PDF
Dimethyl ether carbonylation over zeolites 被引量:11
4
作者 Ensheng Zhan Zhiping Xiong Wenjie Shen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第9期51-63,共13页
Syngas to ethanol, consisting of dimethyl ether(DME) carbonylation to methyl acetate(MA) over zeolites and MA hydrogenation to ethanol on copper catalyst, has been developed in recent years.DME carbonylation over zeol... Syngas to ethanol, consisting of dimethyl ether(DME) carbonylation to methyl acetate(MA) over zeolites and MA hydrogenation to ethanol on copper catalyst, has been developed in recent years.DME carbonylation over zeolites, a key step in this new process, has attracted increasing attention due to the high reaction efficiency and promising industrial application.In recent years, continuous efforts have been made on improving the activity and stability of the zeolites.From a mechanistic point of view, DME carbonylation to MA, involving the formation of C–C bond, is achieved via the Koch-type CO insertion into DME within the 8-member ring(8-MR) pores of zeolites, typically HMOR and HZSM-35.The unique geometric configuration of the 8-MR pore endowed the formation of the key intermediate(acetyl, CH3CO^*), possibly by a spatial confinement of the transition state during CO insertion into the surface O–CH3 group.This review article summarizes the main progress on zeolite-catalyzed DME carbonylation, including reaction kinetics and mechanism, theoretical calculations, and experimental strategies developed for populating acid sites and engineering pore structure of the zeolites in order to enhance the overall performance. 展开更多
关键词 DME CARBONYLATION zeolites MORDENITE ACID SITES Reaction mechanism deactivation
下载PDF
Optimizing zeolite stabilized Pt-Zn catalysts for propane dehydrogenation 被引量:13
5
作者 Linjun Xie Yuchao Chai +4 位作者 Lanlan Sun Weili Dai Guangjun Wu Naijia Guan Landong Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期92-98,I0003,共8页
Propane dehydrogenation(PDH)provides an alternative route to non-petroleum based propylene and eligible catalysts with good overall performance are still being explored.Herein,we report the construction of zeolite sta... Propane dehydrogenation(PDH)provides an alternative route to non-petroleum based propylene and eligible catalysts with good overall performance are still being explored.Herein,we report the construction of zeolite stabilized Pt-Zn catalysts Pt-Zn/Si-Beta for PDH.Characterization results from transmission electron microscopy(TEM),ultraviolet-visible(UV-vis)and Fourier transform infrared(FTIR)spectroscopy reveal that highly-dispersed Zn species are stabilized by the silanols from zeolite framework dealumination,which then act as the anchoring sites for Pt species.The close contact between Pt-Zn species and the electronic interaction thereof make Pt-Zn/Si-Beta robust PDH catalysts.Under optimized conditions,a high propylene production rate of 4.11 molmol_(Pt)^(-1)s^(-1),high propylene selectivity of 98% and a sustainable deactivation rate of~0.02 h^(-1)can be simultaneously achieved at 823 K.Coke deposition is not the key reason for the catalytic deactivation,while the loss of Zn species and the resulting aggregation of Pt species under high temperatures are responsible for the irreversible deactivation of Pt-Zn/Si-Beta catalyst in PDH reaction. 展开更多
关键词 Propane dehydrogenation zeolite Pt-Zn/Si-Beta deactivation
下载PDF
Stabilizing copper species using zeolite for ethanol catalytic dehydrogenation to acetaldehyde 被引量:5
6
作者 Dongni Yu Weili Dai +2 位作者 Guangjun Wu Naijia Guan Landong Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第9期1375-1384,共10页
The selective dehydrogenation of ethanol to acetaldehyde is a promising route for acetaldehyde production.Although Cu-based catalysts exhibit high activity in ethanol dehydrogenation,a rapid deactivation due to Cu sin... The selective dehydrogenation of ethanol to acetaldehyde is a promising route for acetaldehyde production.Although Cu-based catalysts exhibit high activity in ethanol dehydrogenation,a rapid deactivation due to Cu sintering always occurs.In this study,highly dispersed Cu species were stabilized using the silanol defects in Beta zeolite(denoted as Beta)resulting from dealumination,and applied as robust catalysts for ethanol-to-acetaldehyde conversion.Typically,a long catalyst lifetime of 100 h with an acetaldehyde yield of^70%could be achieved over 5%Cu/Beta.The presence of Cu^+and Cu0 species and the agglomeration of Cu particles after a long-term reaction for 180 h were revealed by transmission electron microscopy,thermogravimetric analysis,and CO-diffuse-reflectance infrared Fourier transform spectroscopy,and were responsible for the deactivation of the Cu/Beta catalyst in the ethanol-to-acetaldehyde conversion. 展开更多
关键词 Ethanol dehydrogenation ACETALDEhYDE zeolite Cu-based catalyst deactivation
下载PDF
Deactivation studies of bifunctional Fe-HZSM5 catalyst in Fischer-Tropsch process 被引量:3
7
作者 Ali Nakhaei Pour Seyed Mehdi Kamali Shahri +2 位作者 Yahya Zamani Mohammad Irani Shohreh Tehrani 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第3期242-248,共7页
A physical mixture of alkali-promoted iron catalyst with binder based on Fischer-Tropsch synthesis and an acidic co-catalyst (HZSM5) for syngas conversion to hydrocarbons was studied in a fixed bed micro reactor. De... A physical mixture of alkali-promoted iron catalyst with binder based on Fischer-Tropsch synthesis and an acidic co-catalyst (HZSM5) for syngas conversion to hydrocarbons was studied in a fixed bed micro reactor. Deactivation data were obtained during the synthesis over a 1400 h period. The deactivation studies on iron catalyst showed that this trend followed the phase transformation Fe2.2C ( ε′) → Fe5C2 (χ) → Fe3C (θ), and the final predominant phase of the catalyst was Fe3C (θ). Deactivation of zeolite component in bifunctional catalyst may be caused by coking over the zeolitic component, dealumination of zeolite crystals, and migration of alkali promoters from iron catalyst under synthesis conditions. The deactivation rate of iron catalyst was also obtained. 展开更多
关键词 catalyst deactivation Fischer-Tropsch synthesis iron catalyst hZSM5 zeolite
下载PDF
Catalytic roles of the acid sites in different pore channels of H‐ZSM‐5 zeolite for methanol‐to‐olefins conversion 被引量:10
8
作者 Sen Wang Zhikai Li +4 位作者 Zhangfeng Qin Mei Dong Junfen Li Weibin Fan Jianguo Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第7期1126-1136,共11页
H‐ZSM‐5 zeolite is a typical catalyst for methanol‐to‐olefins(MTO)conversion.Although the performance of zeolite catalysts for MTO conversion is related to the actual location of acid sites in the zeolite framewor... H‐ZSM‐5 zeolite is a typical catalyst for methanol‐to‐olefins(MTO)conversion.Although the performance of zeolite catalysts for MTO conversion is related to the actual location of acid sites in the zeolite framework,the catalytic roles of the acid sites in different pore channels of the H‐ZSM‐5 zeolite are not well understood.In this study,the MTO reaction network,involving the aromatic cycle,alkene cycle,and aromatization process,and also the diffusion behavior of methanol feedstock and olefin and aromatic products at different acid sites in the straight channel,sinusoidal channel,and intersection cavity of H‐ZSM‐5 zeolite was comparatively investigated using density functional theory calculations and molecular dynamic simulations.The results indicated that the aromatic cycle and aromatization process occurred preferentially at the acid sites in the intersection cavities with a much lower energy barrier than that at the acid sites in the straight and sinusoidal channels.In contrast,the formation of polymethylbenzenes was significantly suppressed at the acid sites in the sinusoidal and straight channels,whereas the alkene cycle can occur at all three types of acid sites with similar energy barriers and probabilities.Consequently,the catalytic performance of H‐ZSM‐5 zeolite for MTO conversion,including activity and product selectivity,can be regulated properly through the purposive alteration of the acid site distribution,viz.,the location of Al in the zeolite framework.This study helps to elucidate the relation between the catalytic performance of different acid sites in the H‐ZSM‐5 zeolite framework for MTO conversion,which should greatly benefit the design of efficient catalyst for methanol conversion. 展开更多
关键词 Methanol‐to‐olefins h‐ZSM‐5 zeolite Acid site distribution Density functional theory calculation Molecular dynamic simulation
下载PDF
H-Y-zeolites induced heterocyclization:Highly efficient synthesis of substituted-quinazolin-4(3H) ones under microwave irradiation 被引量:5
9
作者 M. Bakavoli O. Sabzevari M. Rahimizadeh 《Chinese Chemical Letters》 SCIE CAS CSCD 2007年第5期533-535,共3页
A highly efficient synthesis of 2-amino-N-substituted-benzamides was performed by the condensation ofisatoic anhydride with several amines in solvent-free conditions under microwave irradiation. H-Y-zeolites induced h... A highly efficient synthesis of 2-amino-N-substituted-benzamides was performed by the condensation ofisatoic anhydride with several amines in solvent-free conditions under microwave irradiation. H-Y-zeolites induced heterocyclization of these products with ortho-esters under similar conditions afforded the relevant substituted-quinazolin-4(3H)ones in high yields. 展开更多
关键词 Isatoic anhydride 2-Aminobenzamide h-Y-zeolite QUINAZOLINONES
下载PDF
Effect of combining the metals of group VI supported on H-ZSM-5 zeolite as catalysts for non-oxidative conversion of natural gas to petrochemicals 被引量:5
10
作者 A. K. Aboul-Gheit A. E. Awadallah 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第1期71-77,共7页
The most prestigious catalyst applied in natural gas (methane) non-oxidative conversion to petrochemicals is 6%Mo/H-ZSM-5. Chromium, molybdenum and tungsten are the group VI metals. Hence, in this work, 6%Mo/H-ZSM-5... The most prestigious catalyst applied in natural gas (methane) non-oxidative conversion to petrochemicals is 6%Mo/H-ZSM-5. Chromium, molybdenum and tungsten are the group VI metals. Hence, in this work, 6%Mo/H-ZSM-5 was correlated with 3%Cr+3%Mo/H-ZSM-5 and 3%W+3%Mo/H-ZSM-5 as catalysts to examine their promoting or inhibiting effects on the various reactions taking place during methane conversion. The catalytic activities of these catalysts were tested in a continuous flow fixed bed reactor at 700℃ and a GHSV of 1500 ml·g^-1·h^-1 Characterization of the catalysts using XRD, TGA and TPD were investigated. XRD and NH3-TPD showed greater interaction between the W-phase and the Bronsted acid sites in the channels of the zeolite than between Cr-phase and the acid sites in the zeolite. 展开更多
关键词 natural gas methane BENZENE NAPhThALENE hydrogen MOLYBDENUM chromium tungsten h-ZSM-5 zeolite
下载PDF
Catalytic Synthesis of Hexyl-naphthalene over H-type Zeolites 被引量:1
11
作者 WEI Chang-ping SUN Xiao-fei +1 位作者 JIANG Xin-hua ZHEN Kai-ji 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2005年第6期684-686,共3页
H-type zeolites( HY, Hβ, and HM) were synthesized and characterized by XRD, NH3-TPD, and Py-IR. Selectively catalytic alkylation of naphthalene with n-hexanol to hexyl-naphthalene over the zeolites was carried out.... H-type zeolites( HY, Hβ, and HM) were synthesized and characterized by XRD, NH3-TPD, and Py-IR. Selectively catalytic alkylation of naphthalene with n-hexanol to hexyl-naphthalene over the zeolites was carried out. The experimental results show that the catalytic activities of the zeolites are mainly determined by their acid properties and pore structures. The larger the pore diameter is, the higher the catalytic activity is. NH3-TPD profiles show that Hβ and HM have lower acid strengths than HY. HY has both the highest activity and highest selectivity for the hexylnaphthalene. Higher reaction temperatures and longer reaction time are beneficial to the production of β-hexyl-naphthalene over the HY zeolite. 展开更多
关键词 h-type zeolites NAPhThALENE N-hEXANOL hexylnaphthalene ALKYLATION
下载PDF
Elucidating the effect of oxides on the zeolite catalyzed alkylation of benzene with 1-dodecene
12
作者 Shiyong Xing Yan Cui +2 位作者 Tiefeng Wang Jinwei He Minghan Han 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期126-135,共10页
In the present work, the effect of oxides on the alkylation of benzene with 1-dodecene was comprehensively investigated over MCM-49 n-heptanol, n-heptaldehyde and n-heptanoic acid were selected as the model oxides her... In the present work, the effect of oxides on the alkylation of benzene with 1-dodecene was comprehensively investigated over MCM-49 n-heptanol, n-heptaldehyde and n-heptanoic acid were selected as the model oxides herein, and obvious decrease of lifetime could be caused by only trace amount of oxides added in the feedstocks. However, the deactivated catalysts were difficult to be regenerated by extraction with hot benzene. Additionally, coke-burning was also proved to be incapable to regenerate the deactivated catalysts mainly for the dealumination during calcination. Further characterizations complementary with DFT calculations were conducted to demonstrate that the deactivation was mainly due to the firm adsorption of oxides on the acid sites. 展开更多
关键词 zeolite 1-DODECENE ALKYLATION OXIDES deactivation
下载PDF
ADSORPTION EQUILIBRIUM OF ETHYLENE-CARBON DIOXIDE MIXTURE ON ZEOLITE ZSM5 AND ITS CORRELATION 被引量:1
13
作者 王金渠 张永春 +2 位作者 Ma Yi Hua Li Haiqing Tang Tude 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1992年第2期208-215,共8页
Binary gas mixture adsorption equilibrium data for the ethylene-carbon dioxide system were obtained for cation exchanged forms of ZSM5 (Li^+, Na^+, K^+, Rb^+, Mg^(+2), Ca^(+2), Sr^(+2), and Ba^(+2)) for the gas phase ... Binary gas mixture adsorption equilibrium data for the ethylene-carbon dioxide system were obtained for cation exchanged forms of ZSM5 (Li^+, Na^+, K^+, Rb^+, Mg^(+2), Ca^(+2), Sr^(+2), and Ba^(+2)) for the gas phase CO_2 mole fracion of 0.766 at 308K and 101. 3kPa. The experimental adsorption phase diagrams were obtained for CO_2-C_2H_4 on NaZSM5 and MgZSM5. Single component adsorption isotherms for CO_2 and C_2H_4 were also obtained for these two zeolites. The single component data were used to obtain parameters derived in the vacancy solution model (VSM) and the statistical thermodynamic model(STM). These parameters were, in turn, used to predict binary mixture isotherms for these two zeolites. The agreement between experimental data and predicted value is generally good. 展开更多
关键词 ADSORPTION ion-exchange CO_2 C_2h_4 zeolite ZSM5
下载PDF
A Study of Acidic Sites in H[M]-ZSM-5 Zeolites by XPS, IR and TPD
14
作者 XTAO Feng-shou , XU Ru-ren and XU Yi-hua (Department of Chemistry, Jilin University, Changchun, 130023)WEI Quan (Center of Measurement and Analysis, Jilin University, Changchun, 130023) 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 1992年第4期337-342,共6页
The present paper covers an X-ray photoelectron spectroscopic (XPS) method proposed for identifying Bronsted and Lewis acidic sites in zeolites and estimating acidic strength of these sites. It was found that the adso... The present paper covers an X-ray photoelectron spectroscopic (XPS) method proposed for identifying Bronsted and Lewis acidic sites in zeolites and estimating acidic strength of these sites. It was found that the adsorption of pyridine on different acidic sites of H[M]-ZSM-5 zeolites exhibited three peaks: A (402.20-401.30 eV), B (400.95-400.40 eV) and C (399. 40-399. 10 eV). The peaks A and B are assigned to the N(?) level of pyridine adsorbed on Bronsted and Lewis acidic sites, and peak C is assigned to the N(?) level of pyridine adsorbed on a weak Lewis site and/or strongly physisorbed pyridine, respectively. The comparison of the ratio of the Bronsted and Lewis acidic sites determined from the relative intensities of the N(?), peaks with IR spectroscopic data shows that there is an inhomoge-neous distribution of Bronsted and Lewis acidic sites in H[M]-ZSM-5 zeolites. The N(?), binding energies of pyridine adsorbed on these zeolites directly reflect acidic strength, and these results are in good agreement with those observed in NH3-TPD experiments. 展开更多
关键词 Acidity XPS h[M]-ZSM-5 zeolites Adsorption of pyridine IR and TPD
下载PDF
SHIP-IN-BOTTLE SYNTHESIS AND CHARACTERIZATION OF Ru_4H_4(CO)_(12)ENTRAPPED WITHIN NaY ZEOLITE
15
作者 An Ming LIU Yi De Xu +2 位作者 Takafumi SHIDO Masaru ICHIKAWA (Catalysis Research Center.Hokkaido University, Sapporo 060.Japan State Key Laboratory for Catalysis, Dalian Institute of Chemical Physics.Dalian 116023) 《Chinese Chemical Letters》 SCIE CAS CSCD 1994年第11期999-1000,共2页
The ruthenium hydrido-carbonyl cluster in NaY zeolite,synthesized by the reaction of Ru3(CO)(12)/NaY with hydrogen,was characterized by FTIR,UV-VIS and EXAFS spectroscopies.
关键词 Ru4h4 OF zeolite WIThIN NAY ShIP CO
下载PDF
Alkylation of Benzene with Propene over Hβ Zeolite──The Effect of Reaction Conditions on the Distribution of Products
16
作者 MA Jun SHEN Jian-ping SUN Tie and JIANG Da-zhen(Department of Chernistry , Jilin University , Changchun , 130023 ) 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 1995年第1期39-44,共6页
he effects of reaction temperature , flow rate of carrier gas , space velocity andbenzene to propene ratio on the alkylation of benzene with propene over Hβ zeolitewere investigated. At lower flow rate of carrier gas... he effects of reaction temperature , flow rate of carrier gas , space velocity andbenzene to propene ratio on the alkylation of benzene with propene over Hβ zeolitewere investigated. At lower flow rate of carrier gas and space velocity, higher ben-zene to propene ratio the formation of cumene is favoured due to the difference be-tween rates of reactions of the alkylation of benzene (or cumene) with propene andthe alkyltranslation of diisopropylbenzene with benzene. The propylbenzene is pro-duced directly by the alkylation of benzene with propene. 展开更多
关键词 BENZENE PROPENE ALKYLATION hβ zeolite
下载PDF
AMINATION OF ETHANOL WITH AMM0NIA OVER H βZEOLITE
17
作者 Jian Ping SHEN Jun MA +1 位作者 and Da Zhen JIANG En Ze MINb(aDepar tment of Ckemistry, Jiiin Un iversity, Changchun, 130023)(bResearch Insitute of Petroleum Processing, Beijing, 100083) 《Chinese Chemical Letters》 SCIE CAS CSCD 1994年第4期305-308,共4页
Ethylamine is sc feetively produced in the aminationof ethanol with ammonia over H β zeolite.
关键词 AMM AMINATION OF EThANOL WITh AMM0NIA OVER h zeolite
下载PDF
Lean methane combustion over zeolite-supported Pd catalysts:Structure-performance relationship and deactivation mechanism
18
作者 Xingyu Liu Jingkun Chen +4 位作者 Bowen Han Renna Li Le Shi Zhongbiao Wu Xiaole Weng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第11期128-138,共11页
Zeolites are a promising support for Pd catalysts in leanmethane(CH_(4))combustion.Herein,three types of zeolites(H-MOR,H-ZSM-5 and H-Y)were selected to estimate their structural effects and deactivation mechanisms in... Zeolites are a promising support for Pd catalysts in leanmethane(CH_(4))combustion.Herein,three types of zeolites(H-MOR,H-ZSM-5 and H-Y)were selected to estimate their structural effects and deactivation mechanisms in CH_(4)combustion.We show that variations in zeolite structure and surface acidity led to distinct changes in Pd states.Pd/H-MOR with external high-dispersing Pd nanoparticles exhibited the best apparent activity,with activation energy(Ea)at 73 kJ/mol,while Pd/H-ZSM-5 displayed the highest turnover frequency(TOF)at 19.6×10^(−3)sec^(−1),presumably owing to its large particles with more step sites providing active sites in one particle for CH_(4)activation.Pd/H-Y with dispersed PdO within pore channels and/or Pd2+ions on ion-exchange sites yielded the lowest apparent activity and TOF.Furthermore,Pd/H-MOR and Pd/H-ZSM-5 were both stable under a dry condition,but introducing 3 vol.%H_(2)O caused the CH_(4)conversion rate on Pd/H-MOR drop from 100%to 63%and that on Pd/H-ZSM-5 decreased remarkably from 82%to 36%.The former was shown to originate fromzeolite structural dealumination,and the latter principally owed to Pd aggregation and the loss of active PdO. 展开更多
关键词 Methane combustion Pd catalysts zeolite Structure-performance relationship deactivation mechanism
原文传递
Recent progress in the deactivation mechanism of zeolite catalysts in methanol to olefins
19
作者 Sheng Fan Han Wang +2 位作者 Sen Wang Mei Dong Weibin Fan 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第12期3934-3943,共10页
Methanol to olefins(MTO)as an important reaction in C1 chemistry can effectively transform non-petroleum carbon resources into value-added chemicals.Zeolites have been widely used as MTO catalysts.However,they usually... Methanol to olefins(MTO)as an important reaction in C1 chemistry can effectively transform non-petroleum carbon resources into value-added chemicals.Zeolites have been widely used as MTO catalysts.However,they usually suffer from a rapid deactivation due to bulky coke species production,and thus require continuous regenerations in industrial application.The key to design and develop highly stable zeolite catalysts for MTO process is to unravel the deactivation mechanism and clarify the structure–performance relationship of catalysts.Here,in this mini-review,we investigate the critical intermediate species inducing zeolite deactivation and analyze the formation and evolution pathways of polycyclic aromatic hydrocarbons(PAHs)that are the precursors of carbonaceous deposits.In addition,some methods to alleviate the coking mainly including acid regulation,morphology modification and process optimization,are also summarized. 展开更多
关键词 methanol to olefins zeolites deactivation mechanism polycyclic aromatic hydrocarbons
原文传递
分子筛限域单位点钴体系催化芳香族化合物C-H键自调节高效氧化
20
作者 党健 李玮杰 +3 位作者 秦斌 柴玉超 武光军 李兰冬 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第2期133-142,共10页
通过芳香族化合物的碳-氢键活化与选择氧化,可以将廉价芳香烃类原料转化为高附加值含氧产品,因此,该反应在基础研究和工业生产中均受到广泛关注.传统的苯乙酮生产工艺存在毒性底物使用、催化剂回收困难、反应条件苛刻以及产物收率低等问... 通过芳香族化合物的碳-氢键活化与选择氧化,可以将廉价芳香烃类原料转化为高附加值含氧产品,因此,该反应在基础研究和工业生产中均受到广泛关注.传统的苯乙酮生产工艺存在毒性底物使用、催化剂回收困难、反应条件苛刻以及产物收率低等问题.通过大量的研究探索,科研人员进一步改进其生产工艺,利用环烷酸钴作为均相催化剂,实现了无溶剂条件下分子氧直接选择氧化乙苯生成苯乙酮.相比均相催化,多相催化在催化剂回收和产物分离方面具有优势,更适合工业化生产.因此,开发用于乙苯选择氧化制苯乙酮的高效稳定多相催化体系非常重要,但具有较大挑战.本文采用原位配体保护的水热合成法将钴配合物(钴-二乙烯三胺)封装在Y型分子筛中,并经进一步焙烧去除配体成功制得Co@Y分子筛催化剂.在无溶剂、无添加剂的条件下,单位点Co作为Co@Y分子筛催化剂的活性位点可催化乙苯选择氧化生成苯乙酮.X射线粉末衍射、透射电镜、紫外可见光吸收光谱和固体核磁共振谱等结果表明,该单位点Co(Co^(2+))通过与骨架氧原子作用稳定限域在Y型分子筛中.为明确Co@Y分子筛催化剂中单位点Co在乙苯氧化反应中所起的重要作用,本文还对比了不同后合成方法所制备的Y分子筛(Co/Y,Co-Y)催化剂及工业环烷酸钴催化剂的催化性能.结果表明,在相同反应条件下,Co@Y分子筛催化剂表现出最高的催化性能,也说明在乙苯氧化反应过程中Co@Y分子筛催化剂的单位点Co有别于上述其他催化剂的活性位点.此外,在Co@Y催化剂热过滤实验中未检测出Co物种浸出,表明Co@Y分子筛催化乙苯氧化反应为多相催化过程,并且在多次循环测试后,Co@Y催化剂结构和反应活性均未发生明显变化.这两项实验均表明Co@Y催化剂具有高稳定性.值得注意的是,在乙苯氧化反应过程中观察到自加速现象,为此进行了对比实验(添加苯甲醛或1-苯乙醇的对比实验)和反应动力学分析.结果表明,痕量苯甲醛或1-苯乙醇的加入会显著改变Co@Y催化剂在乙苯氧化反应中的催化行为,痕量苯甲醛的加入可将反应表观活化能从69.7降至53.7 kJ/mol.本文也通过第一性原理密度泛函理论(DFT)计算系统研究了Co@Y分子筛催化剂单位点Co处乙苯选择氧化反应机理及反应过程中自加速现象产生的原因.DFT计算结果结合上述对比实验和反应动力学分析结果表明,加入痕量苯甲醛或者1-苯乙醇后部分乙苯会直接氧化生成苯乙酮,而非通过乙苯→1-苯乙醇→苯乙酮的途径生成苯乙酮.DFT计算结果也阐明反应过程中自加速现象的产生源于单位点Co处活性氧物种(O^(*))的生成.该活性氧物种在乙苯、苯甲醛和1-苯乙醇的氧化途径中均能自发生成,并且该物种类似“引发剂”促使后续更多链式反应的发生,在乙苯氧化反应过程中具有非常重要的作用.综上所述,本文为理解芳香族化合物碳-氢键选择氧化实验现象与催化作用机制提供了有益见解,可为理性设计开发更高效的催化剂提供新思路. 展开更多
关键词 碳-氢键活化 多相催化 Co@Y分子筛催化剂 自加速 活性氧物种
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部