This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the sl...This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the slow and fast characteristics among system states,the interconnected SPS is decomposed into the slow time-scale dynamics and the fast timescale dynamics through singular perturbation theory.For the fast time-scale dynamics with interconnections,we devise a decentralized optimal control strategy by selecting appropriate weight matrices in the cost function.For the slow time-scale dynamics with unknown system parameters,an off-policy RL algorithm with convergence guarantee is given to learn the optimal control strategy in terms of measurement data.By combining the slow and fast controllers,we establish the composite decentralized adaptive optimal output regulator,and rigorously analyze the stability and optimality of the closed-loop system.The proposed decomposition design not only bypasses the numerical stiffness but also alleviates the high-dimensionality.The efficacy of the proposed methodology is validated by a load-frequency control application of a two-area power system.展开更多
The generation of electricity,considering environmental and eco-nomic factors is one of the most important challenges of recent years.In this article,a thermoelectric generator(TEG)is proposed to use the thermal energ...The generation of electricity,considering environmental and eco-nomic factors is one of the most important challenges of recent years.In this article,a thermoelectric generator(TEG)is proposed to use the thermal energy of an electric water heater(EWH)to generate electricity independently.To improve the energy conversion efficiency of the TEG,a fuzzy logic con-troller(FLC)-based perturb&observe(P&O)type maximum power point tracking(MPPT)control algorithm is used in this study.An EWH is one of the major electricity consuming household appliances which causes a higher electricity price for consumers.Also,a significant amount of thermal energy generated by EWH is wasted every day,especially during the winter season.In recent years,TEGs have been widely developed to convert surplus or unused thermal energy into usable electricity.In this context,the proposed model is designed to use the thermal energy stored in the EWH to generate electricity.In addition,the generated electricity can be easily stored in a battery storage system to supply electricity to various household appliances with low-power-consumption.The proposed MPPT control algorithm helps the system to quickly reach the optimal point corresponding to the maximum power output and maintains the system operating point at the maximum power output level.To validate the usefulness of the proposed scheme,a study model was developed in the MATLAB Simulink environment and its performance was investigated by simulation under steady state and transient conditions.The results of the study confirmed that the system is capable of generating adequate power from the available thermal energy of EWH.It was also found that the output power and efficiency of the system can be improved by maintaining a higher temperature difference at the input terminals of the TEG.Moreover,the real-time temperature data of Abha city in Saudi Arabia is considered to analyze the feasibility of the proposed system for practical implementation.展开更多
The attitude control problem and the guidance problem are solved in 3-D for a buoyancy-driven airship actuated by the combined effects of an internal air bladder which modulates the airshiprs net weight and of two mov...The attitude control problem and the guidance problem are solved in 3-D for a buoyancy-driven airship actuated by the combined effects of an internal air bladder which modulates the airshiprs net weight and of two moving masses which modulate its center of mass. A simple and clear modeling is introduced to derive the 8 degree of freedom (DOF) mathematical model. Nonlinear control loops are derived through maximal feedback linearization with internal stability for both dynamics in the longitudinal plane and in the lateral plane. Based on a singular perturbation approach, the superposition of these two control actions in the longitudinal plane and in the lateral plane is shown to achieve the control of the dynamics in 3-D space. The simulations of the airship tracking specified attitude, moving direction and speed in 3-D space are presented.展开更多
A batch-to-batch optimal iterative learning control (ILC) strategy for the tracking control of product quality in batch processes is presented. The linear time-varying perturbation (LTVP) model is built for produc...A batch-to-batch optimal iterative learning control (ILC) strategy for the tracking control of product quality in batch processes is presented. The linear time-varying perturbation (LTVP) model is built for product quality around the nominal trajectories. To address problems of model-plant mismatches, model prediction errors in the previous batch run are added to the model predictions for the current batch run. Then tracking error transition models can be built, and the ILC law with direct error feedback is explicitly obtained, A rigorous theorem is proposed, to prove the convergence of tracking error under ILC, The proposed methodology is illustrated on a typical batch reactor and the results show that the performance of trajectory tracking is gradually improved by the ILC.展开更多
In this paper, a robust model predictive control approach is proposed for a class of uncertain systems with time-varying, linear fractional transformation perturbations. By adopting a sequence of feedback control laws...In this paper, a robust model predictive control approach is proposed for a class of uncertain systems with time-varying, linear fractional transformation perturbations. By adopting a sequence of feedback control laws instead of a single one, the control performance can be improved and the region of attraction can be enlarged compared with the existing model predictive control (MPC) approaches. Moreover, a synthesis approach of MPC is developed to achieve high performance with lower on-line computational burden. The effectiveness of the proposed approach is verified by simulation examples.展开更多
This paper studies the perturbation to symmetries and adiabatic invariant for nonholonomic controllable mechanical systems with non-Chetaev type constraints. It gives the exact invariants introduced by the Lie symmetr...This paper studies the perturbation to symmetries and adiabatic invariant for nonholonomic controllable mechanical systems with non-Chetaev type constraints. It gives the exact invariants introduced by the Lie symmetries of the nonholonomic controllable mechanical system with non-Chetaev type constraints without perturbation. Based on the definition of high-order adiabatic invarlants of mechanical system, the perturbation of Lie symmetries for nonholonomic controllable mechanical system with non-Chetaev type constraints with the action of small disturbances is investigated, and a new type of adiabatic invariant of system are obtained. In the end of this paper, an example is given to illustrate the application of the results.展开更多
Perturbation and robust controllability of the singular distributed parameter control system are discussed via functional analysis and the theory of GE-semigroup in Hilbert space. The perturbation principle of GE-semi...Perturbation and robust controllability of the singular distributed parameter control system are discussed via functional analysis and the theory of GE-semigroup in Hilbert space. The perturbation principle of GE-semigroup and the sufficient condition concerning the robust controllability of the singular distributed parameter control system are obtained, in which the controllability for singular distributed parameter control system is not destroyed, if we perturb the equation by small bounded linear operator.展开更多
Two types of Mei adiabatic invariants induced by perturbation of Mei symmetry for nonholonomic controllablemechanical systems are reported.Criterion and restriction equations determining Mei symmetry after beingdistur...Two types of Mei adiabatic invariants induced by perturbation of Mei symmetry for nonholonomic controllablemechanical systems are reported.Criterion and restriction equations determining Mei symmetry after beingdisturbed of the system are established.Form and existence condition of Mei adiabatic invariants are obtained.展开更多
A feedforward approach for generating near time optimal controller for flexible spacecraft rest-to-rest maneuvers is presented with the objective insensitivity to modeling errors, parameter uncertainty and minimizing ...A feedforward approach for generating near time optimal controller for flexible spacecraft rest-to-rest maneuvers is presented with the objective insensitivity to modeling errors, parameter uncertainty and minimizing the residual energy of the flexible modes. The perturbation estimation of flexible appendages to the rigid-hub is accomplished simply via compare the output of real plant with the reference model, and the approach is based on combine this estimation with the bang-bang control for the rigid-hub modes through analysis the basic constraint and the additional constraint, i.e. zero coupling torque and zero coupling torque derivative for general two orders system and three orders system with considerate attitude acceleration mode near time optimal controls. These time optimal controls with control constraints and state constraints leads to forming a boundary-value problem, and resolved the problem using an iterative numerical algorithm. The near time optimal control with perturbation estimation shows a good robust to parameter uncertainty and can suppress the vibration and minimizing the residual energy. The capability of this approach is demonstrated through a numerical example in detail.展开更多
Wind turbine employs pitch angle control to maintain captured power at its rated value when the wind speed is higher than rated value.This work adopts a perturbation observer based sliding-mode control(POSMC)strategy ...Wind turbine employs pitch angle control to maintain captured power at its rated value when the wind speed is higher than rated value.This work adopts a perturbation observer based sliding-mode control(POSMC)strategy to realize robust variable-pitch control of permanent magnet synchronous generator(PMSG).POSMC combines system nonlinearities,parametric uncertainties,unmodelled dynamics,and time-varying external disturbances into a perturbation,which aims to estimate the perturbation via a perturbation observer without an accurate system model.Subsequently,sliding mode control(SMC)is designed to completely compensate perturbation estimation in real-time for the sake of achieving a global consistent control performance and improving system robustness under complicated environments.Simulation results indicate that,compared with vector control(VC),feedback linearization control(FLC),and nonlinear adaptive control(NAC),POSMC has the best control performance in ramp wind and random wind and the highest robustness in terms of parameter uncertainty.Specially,the integral absolute error index of!m of POSMC is only 11.69%,12.10%and 15.14%of that of VC,FLC and NAC in random wind speed.展开更多
This paper proposes an adaptive synchronization problem for the master and slave structure of linear systems with nonlinear perturbations and mixed time-varying delays comprising different discrete and distributed tim...This paper proposes an adaptive synchronization problem for the master and slave structure of linear systems with nonlinear perturbations and mixed time-varying delays comprising different discrete and distributed time delays. Using an appropriate Lyapunov-Krasovskii functional, some delay-dependent sufficient conditions and an adaptation law including the master-slave parame- ters are established for designing a delayed synchronization law in terms of linear matrix inequalities(LMIs). The time-varying controller guarantees the H ∞ synchronization of the two coupled master and slave systems regardless of their initial states. Particularly, it is shown that the synchronization speed can be controlled by adjusting the updated gain of the synchronization signal. Two numerical examples are given to demonstrate the effectiveness of the method.展开更多
On the basis of singular perturbation theory, a composite control approach is proposed for constrained flexible manipulators in this paper. The dynamics equation of a constrained two link flexible manipulator is divid...On the basis of singular perturbation theory, a composite control approach is proposed for constrained flexible manipulators in this paper. The dynamics equation of a constrained two link flexible manipulator is divided into slow subsystem and fast subsystem. Based on the adaptive theory, the slow controller is designed. For the fast subsystem, a robust optimal controller is presented. Under the slow time scale and the fast time scale, a composite control strategy is constructed. Some results of numerical simulations are presented to show the effectiveness of this design procedure.展开更多
A body force resembling the streamwise Lorentz force which decays exponentially in the wall-normalwise direction is applied in the primary and secondary separation bubbles to modify the base flow and thereby adjust th...A body force resembling the streamwise Lorentz force which decays exponentially in the wall-normalwise direction is applied in the primary and secondary separation bubbles to modify the base flow and thereby adjust the amplification rate of the perturbation energy.The amplification mechanisms are investigated numerically via analyzing the characteristics of the terms in the Reynolds-Orr equation which describes the growth rate of the perturbation energy.The results demonstrate that the main convective term always promotes the increase in the growth rate while the viscous terms usually play the reverse role.The contours of the product of the wall-normalwise and streamwise perturbation velocities distribute on both sides of the isoline,which represents the zero wall-normalwise gradient of the streamwise velocity in the base flow,due to the Kelvin-Helmholtz(KH)instability.For the case without control,the isoline downstream the reattachment point of the primary separation bubble is closer to the lower wall,and thus the viscous term near the lower wall might suppress the amplification rate.For the case in which the body force only acts on the secondary separation bubble,the secondary separation bubble is removed,and the magnitude of the negative wall-normalwise gradient of the base flow streamwise velocity decreases along the streamwise direction,and thus the growth rate of the perturbation energy is smaller than that for the case without control.For the case where the body force acts on both the separation bubbles,the secondary separation bubble is removed,the isoline stays in the central part of the channel,and thereby the viscous term has less effects on the amplification rate of which the peak value could be the maximum one for some control number.展开更多
The hydraulic flexible manipulator system is divided into two parts: flexible arm dynamics and hydraulic servomechanism, a driving Jacobian is derived to connect these two parts. Taking hydraulic actuator force as vir...The hydraulic flexible manipulator system is divided into two parts: flexible arm dynamics and hydraulic servomechanism, a driving Jacobian is derived to connect these two parts. Taking hydraulic actuator force as virtual input, a singular perturbed composite model is formulated and used to design composite controllers for the flexible link, in which the slow subsystem controller dominates the trajectory tracking, and then a fast controller is designed to damp out the vibration of the flexible structure. Moreover, the backstepping technique is applied to regulate the spool position of a hydraulic valve to provide the required force. Simulation results are provided to show the effectiveness of the presented approach.展开更多
In this paper, Homotopy perturbation method is used to find the approximate solution of the optimal control of linear systems. In this method the initial approximations are freely chosen, and a Homotopy is constructed...In this paper, Homotopy perturbation method is used to find the approximate solution of the optimal control of linear systems. In this method the initial approximations are freely chosen, and a Homotopy is constructed with an embedding parameter , which is considered as a “small parameter”. Some examples are given in order to find the approximate solution and verify the efficiency of the proposed method.展开更多
This paper proposes a systematic method to design general integral control with the generic integrator and integral control action. No longer resorting to an ordinary control along with a known Lyapunov function, but ...This paper proposes a systematic method to design general integral control with the generic integrator and integral control action. No longer resorting to an ordinary control along with a known Lyapunov function, but synthesizing singular perturbation technique, mean value theorem, stability theorem of interval matrix and Lyapunov method, a universal theorem to ensure regionally as well as semi-globally asymptotic stability is established in terms of some bounded information. Its highlight point is that the error of integrator output can be used to stabilize the system, just like the system state, such that it does not need to take an extra and special effort to deal with the integral dynamic. Theoretical analysis and simulation results demonstrated that: general integral controller, which is tuned by this design method, has super strong robustness and can deal with nonlinearity and uncertainties of dynamics more forcefully.展开更多
This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of...This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of a static output feedback H ∞ controller are given in terms of LMIs. Furthermore, the design method of H ∞ controllers is provided using the solutions to the LMIs.展开更多
基金supported by the National Natural Science Foundation of China (62073327,62273350)the Natural Science Foundation of Jiangsu Province (BK20221112)。
文摘This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the slow and fast characteristics among system states,the interconnected SPS is decomposed into the slow time-scale dynamics and the fast timescale dynamics through singular perturbation theory.For the fast time-scale dynamics with interconnections,we devise a decentralized optimal control strategy by selecting appropriate weight matrices in the cost function.For the slow time-scale dynamics with unknown system parameters,an off-policy RL algorithm with convergence guarantee is given to learn the optimal control strategy in terms of measurement data.By combining the slow and fast controllers,we establish the composite decentralized adaptive optimal output regulator,and rigorously analyze the stability and optimality of the closed-loop system.The proposed decomposition design not only bypasses the numerical stiffness but also alleviates the high-dimensionality.The efficacy of the proposed methodology is validated by a load-frequency control application of a two-area power system.
基金Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number (IF2-PSAU/2022/01/22797).
文摘The generation of electricity,considering environmental and eco-nomic factors is one of the most important challenges of recent years.In this article,a thermoelectric generator(TEG)is proposed to use the thermal energy of an electric water heater(EWH)to generate electricity independently.To improve the energy conversion efficiency of the TEG,a fuzzy logic con-troller(FLC)-based perturb&observe(P&O)type maximum power point tracking(MPPT)control algorithm is used in this study.An EWH is one of the major electricity consuming household appliances which causes a higher electricity price for consumers.Also,a significant amount of thermal energy generated by EWH is wasted every day,especially during the winter season.In recent years,TEGs have been widely developed to convert surplus or unused thermal energy into usable electricity.In this context,the proposed model is designed to use the thermal energy stored in the EWH to generate electricity.In addition,the generated electricity can be easily stored in a battery storage system to supply electricity to various household appliances with low-power-consumption.The proposed MPPT control algorithm helps the system to quickly reach the optimal point corresponding to the maximum power output and maintains the system operating point at the maximum power output level.To validate the usefulness of the proposed scheme,a study model was developed in the MATLAB Simulink environment and its performance was investigated by simulation under steady state and transient conditions.The results of the study confirmed that the system is capable of generating adequate power from the available thermal energy of EWH.It was also found that the output power and efficiency of the system can be improved by maintaining a higher temperature difference at the input terminals of the TEG.Moreover,the real-time temperature data of Abha city in Saudi Arabia is considered to analyze the feasibility of the proposed system for practical implementation.
基金Supported by the Scholarship Foundation of China Scholarship Council~~
文摘The attitude control problem and the guidance problem are solved in 3-D for a buoyancy-driven airship actuated by the combined effects of an internal air bladder which modulates the airshiprs net weight and of two moving masses which modulate its center of mass. A simple and clear modeling is introduced to derive the 8 degree of freedom (DOF) mathematical model. Nonlinear control loops are derived through maximal feedback linearization with internal stability for both dynamics in the longitudinal plane and in the lateral plane. Based on a singular perturbation approach, the superposition of these two control actions in the longitudinal plane and in the lateral plane is shown to achieve the control of the dynamics in 3-D space. The simulations of the airship tracking specified attitude, moving direction and speed in 3-D space are presented.
基金Supported by the National Natural Science Foundation of China (60404012, 60674064), UK EPSRC (GR/N13319 and GR/R10875), the National High Technology Research and Development Program of China (2007AA04Z193), New Star of Science and Technology of Beijing City (2006A62), and IBM China Research Lab 2007 UR-Program.
文摘A batch-to-batch optimal iterative learning control (ILC) strategy for the tracking control of product quality in batch processes is presented. The linear time-varying perturbation (LTVP) model is built for product quality around the nominal trajectories. To address problems of model-plant mismatches, model prediction errors in the previous batch run are added to the model predictions for the current batch run. Then tracking error transition models can be built, and the ILC law with direct error feedback is explicitly obtained, A rigorous theorem is proposed, to prove the convergence of tracking error under ILC, The proposed methodology is illustrated on a typical batch reactor and the results show that the performance of trajectory tracking is gradually improved by the ILC.
基金supported by National Natural Science Foundation of China (No. 60934007, No. 61074060)China Postdoctoral Science Foundation (No. 20090460627)+1 种基金Shanghai Postdoctoral Scientific Program (No. 10R21414600)China Postdoctoral Science Foundation Special Support (No. 201003272)
文摘In this paper, a robust model predictive control approach is proposed for a class of uncertain systems with time-varying, linear fractional transformation perturbations. By adopting a sequence of feedback control laws instead of a single one, the control performance can be improved and the region of attraction can be enlarged compared with the existing model predictive control (MPC) approaches. Moreover, a synthesis approach of MPC is developed to achieve high performance with lower on-line computational burden. The effectiveness of the proposed approach is verified by simulation examples.
文摘This paper studies the perturbation to symmetries and adiabatic invariant for nonholonomic controllable mechanical systems with non-Chetaev type constraints. It gives the exact invariants introduced by the Lie symmetries of the nonholonomic controllable mechanical system with non-Chetaev type constraints without perturbation. Based on the definition of high-order adiabatic invarlants of mechanical system, the perturbation of Lie symmetries for nonholonomic controllable mechanical system with non-Chetaev type constraints with the action of small disturbances is investigated, and a new type of adiabatic invariant of system are obtained. In the end of this paper, an example is given to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China(60674018)
文摘Perturbation and robust controllability of the singular distributed parameter control system are discussed via functional analysis and the theory of GE-semigroup in Hilbert space. The perturbation principle of GE-semigroup and the sufficient condition concerning the robust controllability of the singular distributed parameter control system are obtained, in which the controllability for singular distributed parameter control system is not destroyed, if we perturb the equation by small bounded linear operator.
基金Supported by the Natural Science Foundation of Shandong Province under Grant No.ZR2009AQ011 Science Foundation of Binzhou University under Grant No.BZXYG0903
文摘Two types of Mei adiabatic invariants induced by perturbation of Mei symmetry for nonholonomic controllablemechanical systems are reported.Criterion and restriction equations determining Mei symmetry after beingdisturbed of the system are established.Form and existence condition of Mei adiabatic invariants are obtained.
文摘A feedforward approach for generating near time optimal controller for flexible spacecraft rest-to-rest maneuvers is presented with the objective insensitivity to modeling errors, parameter uncertainty and minimizing the residual energy of the flexible modes. The perturbation estimation of flexible appendages to the rigid-hub is accomplished simply via compare the output of real plant with the reference model, and the approach is based on combine this estimation with the bang-bang control for the rigid-hub modes through analysis the basic constraint and the additional constraint, i.e. zero coupling torque and zero coupling torque derivative for general two orders system and three orders system with considerate attitude acceleration mode near time optimal controls. These time optimal controls with control constraints and state constraints leads to forming a boundary-value problem, and resolved the problem using an iterative numerical algorithm. The near time optimal control with perturbation estimation shows a good robust to parameter uncertainty and can suppress the vibration and minimizing the residual energy. The capability of this approach is demonstrated through a numerical example in detail.
基金support of the Noise problem of electric vehicle brushless DC motor starting(S202010641109).
文摘Wind turbine employs pitch angle control to maintain captured power at its rated value when the wind speed is higher than rated value.This work adopts a perturbation observer based sliding-mode control(POSMC)strategy to realize robust variable-pitch control of permanent magnet synchronous generator(PMSG).POSMC combines system nonlinearities,parametric uncertainties,unmodelled dynamics,and time-varying external disturbances into a perturbation,which aims to estimate the perturbation via a perturbation observer without an accurate system model.Subsequently,sliding mode control(SMC)is designed to completely compensate perturbation estimation in real-time for the sake of achieving a global consistent control performance and improving system robustness under complicated environments.Simulation results indicate that,compared with vector control(VC),feedback linearization control(FLC),and nonlinear adaptive control(NAC),POSMC has the best control performance in ramp wind and random wind and the highest robustness in terms of parameter uncertainty.Specially,the integral absolute error index of!m of POSMC is only 11.69%,12.10%and 15.14%of that of VC,FLC and NAC in random wind speed.
文摘This paper proposes an adaptive synchronization problem for the master and slave structure of linear systems with nonlinear perturbations and mixed time-varying delays comprising different discrete and distributed time delays. Using an appropriate Lyapunov-Krasovskii functional, some delay-dependent sufficient conditions and an adaptation law including the master-slave parame- ters are established for designing a delayed synchronization law in terms of linear matrix inequalities(LMIs). The time-varying controller guarantees the H ∞ synchronization of the two coupled master and slave systems regardless of their initial states. Particularly, it is shown that the synchronization speed can be controlled by adjusting the updated gain of the synchronization signal. Two numerical examples are given to demonstrate the effectiveness of the method.
文摘On the basis of singular perturbation theory, a composite control approach is proposed for constrained flexible manipulators in this paper. The dynamics equation of a constrained two link flexible manipulator is divided into slow subsystem and fast subsystem. Based on the adaptive theory, the slow controller is designed. For the fast subsystem, a robust optimal controller is presented. Under the slow time scale and the fast time scale, a composite control strategy is constructed. Some results of numerical simulations are presented to show the effectiveness of this design procedure.
基金the National Natural Science Foundation of China (Nos. 51776087 and 51979125)。
文摘A body force resembling the streamwise Lorentz force which decays exponentially in the wall-normalwise direction is applied in the primary and secondary separation bubbles to modify the base flow and thereby adjust the amplification rate of the perturbation energy.The amplification mechanisms are investigated numerically via analyzing the characteristics of the terms in the Reynolds-Orr equation which describes the growth rate of the perturbation energy.The results demonstrate that the main convective term always promotes the increase in the growth rate while the viscous terms usually play the reverse role.The contours of the product of the wall-normalwise and streamwise perturbation velocities distribute on both sides of the isoline,which represents the zero wall-normalwise gradient of the streamwise velocity in the base flow,due to the Kelvin-Helmholtz(KH)instability.For the case without control,the isoline downstream the reattachment point of the primary separation bubble is closer to the lower wall,and thus the viscous term near the lower wall might suppress the amplification rate.For the case in which the body force only acts on the secondary separation bubble,the secondary separation bubble is removed,and the magnitude of the negative wall-normalwise gradient of the base flow streamwise velocity decreases along the streamwise direction,and thus the growth rate of the perturbation energy is smaller than that for the case without control.For the case where the body force acts on both the separation bubbles,the secondary separation bubble is removed,the isoline stays in the central part of the channel,and thereby the viscous term has less effects on the amplification rate of which the peak value could be the maximum one for some control number.
文摘The hydraulic flexible manipulator system is divided into two parts: flexible arm dynamics and hydraulic servomechanism, a driving Jacobian is derived to connect these two parts. Taking hydraulic actuator force as virtual input, a singular perturbed composite model is formulated and used to design composite controllers for the flexible link, in which the slow subsystem controller dominates the trajectory tracking, and then a fast controller is designed to damp out the vibration of the flexible structure. Moreover, the backstepping technique is applied to regulate the spool position of a hydraulic valve to provide the required force. Simulation results are provided to show the effectiveness of the presented approach.
文摘In this paper, Homotopy perturbation method is used to find the approximate solution of the optimal control of linear systems. In this method the initial approximations are freely chosen, and a Homotopy is constructed with an embedding parameter , which is considered as a “small parameter”. Some examples are given in order to find the approximate solution and verify the efficiency of the proposed method.
文摘This paper proposes a systematic method to design general integral control with the generic integrator and integral control action. No longer resorting to an ordinary control along with a known Lyapunov function, but synthesizing singular perturbation technique, mean value theorem, stability theorem of interval matrix and Lyapunov method, a universal theorem to ensure regionally as well as semi-globally asymptotic stability is established in terms of some bounded information. Its highlight point is that the error of integrator output can be used to stabilize the system, just like the system state, such that it does not need to take an extra and special effort to deal with the integral dynamic. Theoretical analysis and simulation results demonstrated that: general integral controller, which is tuned by this design method, has super strong robustness and can deal with nonlinearity and uncertainties of dynamics more forcefully.
文摘This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of a static output feedback H ∞ controller are given in terms of LMIs. Furthermore, the design method of H ∞ controllers is provided using the solutions to the LMIs.