火星感应磁层边界的等离子体不稳定性,如边界层处速度剪切激发的Kelvin-Helmholtz(K-H)不稳定性,对火星感应磁层结构和磁层离子输运过程具有重要的影响.本文利用Mars Atmosphere and Volatile EvolutioN(MAVEN)卫星搭载的Magnetometer(M...火星感应磁层边界的等离子体不稳定性,如边界层处速度剪切激发的Kelvin-Helmholtz(K-H)不稳定性,对火星感应磁层结构和磁层离子输运过程具有重要的影响.本文利用Mars Atmosphere and Volatile EvolutioN(MAVEN)卫星搭载的Magnetometer(MAG)和Super Thermal and Thermal Ion Composition(STATIC)仪器所提供的磁场和等离子数据,分析了2018年5月21日火星感应磁层边界处观测到的K-H不稳定性事件,发现在磁场、重离子通量、离子成分与密度、和离子速度上存在五个连续的准周期变化,估算K-H波的周期为~100 s,同时在其中两个K-H涡旋内发现了磁通量绳结构.磁通量绳的轴向方向与边界层法向准垂直,且其中的离子成分与涡旋内电离层等离子体成分接近,表明此处的磁通量绳有可能是在K-H波的发展过程中形成.磁通量绳的整体速度也远大于此处的离子逃逸速度,这可能导致重离子O^(+)和O_(2)^(+)从火星大气中快速逃逸.展开更多
Non-alcoholic fatty liver disease(NAFLD)is associated with mutations in lipopolysaccharide-binding protein(LBP),but the underlying epigenetic mechanisms remain understudied.Herein,LBP^(-/-)rats with NAFLD were establi...Non-alcoholic fatty liver disease(NAFLD)is associated with mutations in lipopolysaccharide-binding protein(LBP),but the underlying epigenetic mechanisms remain understudied.Herein,LBP^(-/-)rats with NAFLD were established and used to conduct integrative targetingactive enhancer histone H3 lysine 27 acetylation(H3K27ac)chromatin immunoprecipitation coupled with high-throughput and transcriptomic sequencing analysis to explore the potential epigenetic pathomechanisms of active enhancers of NAFLD exacerbation upon LBP deficiency.Notably,LBP^(-/-)reduced the inflammatory response but markedly aggravated high-fat diet(HFD)-induced NAFLD in rats,with pronounced alterations in the histone acetylome and regulatory transcriptome.In total,1128 differential enhancer-target genes significantly enriched in cholesterol and fatty acid metabolism were identified between wild-type(WT)and LBP^(-/-)NAFLD rats.Based on integrative analysis,CCAAT/enhancer-binding proteinβ(C/EBPβ)was identified as a pivotal transcription factor(TF)and contributor to dysregulated histone acetylome H3K27ac,and the lipid metabolism gene SCD was identified as a downstream effector exacerbating NAFLD.This study not only broadens our understanding of the essential role of LBP in the pathogenesis of NAFLD from an epigenetics perspective but also identifies key TF C/EBPβand functional gene SCD as potential regulators and therapeutic targets.展开更多
Bud dormancy facilitates the survival of meristems under harsh environmental conditions.To elucidate how molecular responses to chilling accumulation controlling dormancy in peach buds,chromatin immunoprecipitation se...Bud dormancy facilitates the survival of meristems under harsh environmental conditions.To elucidate how molecular responses to chilling accumulation controlling dormancy in peach buds,chromatin immunoprecipitation sequencing to identify the H3K27me3 modifications and RNA sequencing of two peach cultivars with pronounced differences in chilling requirement were carried out,the results showed that genes associated with abscisic acid and gibberellic acid signal pathways play key roles in dormancy regulation.The results demonstrated that peach flower bud differentiation occurred continuously in both cultivars during chilling accumulation,which was correlated with the transcript abundance of key genes involved in phytohormone metabolism and flower bud development under adverse conditions.The more increased strength in high chillingrequirement cultivar along with the chilling accumulation at the genome-wide level.The function of the dormancy-associated MADS-box gene PpDAM6 was identified,which is involved in leaf bud break in peach and flower development in transgenic Nicotiana tabacum(NC89).In addition,PpDAM6 was positively regulated by PpCBF,and the genes of putative dormancy-related and associated with metabolic pathways were proposed.Taken together,these results constituted a theoretical basis for elucidating the regulation of peach bud dormancy transition.展开更多
Flower organ identity in rice is mainly determined by the A-,B-,C-and E-class genes,with the majority encoding MADS-box transcription factors.However,few studies have investigated how the expression of these floral or...Flower organ identity in rice is mainly determined by the A-,B-,C-and E-class genes,with the majority encoding MADS-box transcription factors.However,few studies have investigated how the expression of these floral organ identity genes is regulated during flower development.In this study,we identified a gene named SUPER WOMAN 2(SPW2),which is necessary for spikelet/floret development in rice by participating in the regulation of the expression of pistil identity genes such as OsMADS3,OsMADS13,OsMADS58 and DL.In the spw2 mutant,ectopic stigma/ovary-like tissues were observed in the non-pistil organs,including sterile lemma,lemma,palea,lodicule,and stamen,suggesting that the identities of these organs were severely affected by mutations in SPW2.SPW2 was shown to encode a plant-specific EMF1-like protein that is involved in H3K27me3 modification as an important component of the PRC2 complex.Expression analysis showed that the SPW2 mutation led to the ectopic expression of OsMADS3,OsMADS13,OsMADS58,and DL in non-pistil organs of the spikelet.The ChIP-qPCR results showed significant reductions in the levels of H3K27me3 modification on the chromatin of these genes.Thus,we demonstrated that SPW2 can mediate the process of H3K27me3 modification of pistil-related genes to regulate their expression in non-pistil organs of spikelets in rice.The results of this study expand our understanding of the molecular mechanism by which SPW2 regulates floral organ identity genes through epigenetic regulation.展开更多
卵母细胞成熟过程受组蛋白H3K4me3(trimethylation of lysine 4 on histone 3)和H3K27me3(trimethylation of lysine 27 on histone 3)及其相关的甲基化和去甲基化酶的调控,因此考虑对鸡的卵泡发育也存在一定的影响。选取“苏禽3号”配...卵母细胞成熟过程受组蛋白H3K4me3(trimethylation of lysine 4 on histone 3)和H3K27me3(trimethylation of lysine 27 on histone 3)及其相关的甲基化和去甲基化酶的调控,因此考虑对鸡的卵泡发育也存在一定的影响。选取“苏禽3号”配套系第一母本为研究对象,采用Western blot法探究组蛋白H3K4me3和H3K27me3在鸡卵泡不同发育阶段颗粒层中蛋白的表达模式。结果表明:在苏禽3号卵泡颗粒层中,组蛋白H3K4me3在卵泡发育不同阶段表达模式呈降低→升高→降低→升高的波浪形趋势,波浪变化较为平缓,在F5、F2和F13个表达高点的表达量与SWF(small white follicle)、LWF(large white follicle)、SYF(small yellow follicle)和F34个表达低点的表达差异显著(P<0.05)。组蛋白H3K27me3在不同发育阶段表达模式亦呈波浪形表达趋势,波浪变化起伏较明显,在SWF、SYF和F33个表达高点的表达量与F5、F4、F1和F24个表达低点的表达差异显著(P<0.05)。相关性分析显示,组蛋白H3K4me3与H3K27me3在不同发育阶段卵泡颗粒细胞中的表达呈较强的负线性相关(R=-0.808,P=0.000)。结果提示:组蛋白H3K4me3和H3K27me3在不同发育阶段卵泡颗粒层中的表达具有组织差异性,呈负相关的动态修饰性,可能共同协调卵泡生长过程中各基因的表达与功能,研究结果为鸡繁殖性状调控机理提供了理论依据。展开更多
文摘火星感应磁层边界的等离子体不稳定性,如边界层处速度剪切激发的Kelvin-Helmholtz(K-H)不稳定性,对火星感应磁层结构和磁层离子输运过程具有重要的影响.本文利用Mars Atmosphere and Volatile EvolutioN(MAVEN)卫星搭载的Magnetometer(MAG)和Super Thermal and Thermal Ion Composition(STATIC)仪器所提供的磁场和等离子数据,分析了2018年5月21日火星感应磁层边界处观测到的K-H不稳定性事件,发现在磁场、重离子通量、离子成分与密度、和离子速度上存在五个连续的准周期变化,估算K-H波的周期为~100 s,同时在其中两个K-H涡旋内发现了磁通量绳结构.磁通量绳的轴向方向与边界层法向准垂直,且其中的离子成分与涡旋内电离层等离子体成分接近,表明此处的磁通量绳有可能是在K-H波的发展过程中形成.磁通量绳的整体速度也远大于此处的离子逃逸速度,这可能导致重离子O^(+)和O_(2)^(+)从火星大气中快速逃逸.
基金supported by the National Natural Science Foundation of China(81971875,82300661)Natural Science Foundation of Anhui province(2308085QH246)+3 种基金Natural Science Foundation of the Anhui Higher Education Institutions(KJ2021A0205)Basic and Clinical Cooperative Research Program of Anhui Medical University(2019xkjT002,2019xkjT022,2022xkjT013)Talent Training Program,School of Basic Medical Sciences,Anhui Medical University(2022YPJH102)National College Students Innovation and Entrepreneurship Training Program of China(202210366024)。
文摘Non-alcoholic fatty liver disease(NAFLD)is associated with mutations in lipopolysaccharide-binding protein(LBP),but the underlying epigenetic mechanisms remain understudied.Herein,LBP^(-/-)rats with NAFLD were established and used to conduct integrative targetingactive enhancer histone H3 lysine 27 acetylation(H3K27ac)chromatin immunoprecipitation coupled with high-throughput and transcriptomic sequencing analysis to explore the potential epigenetic pathomechanisms of active enhancers of NAFLD exacerbation upon LBP deficiency.Notably,LBP^(-/-)reduced the inflammatory response but markedly aggravated high-fat diet(HFD)-induced NAFLD in rats,with pronounced alterations in the histone acetylome and regulatory transcriptome.In total,1128 differential enhancer-target genes significantly enriched in cholesterol and fatty acid metabolism were identified between wild-type(WT)and LBP^(-/-)NAFLD rats.Based on integrative analysis,CCAAT/enhancer-binding proteinβ(C/EBPβ)was identified as a pivotal transcription factor(TF)and contributor to dysregulated histone acetylome H3K27ac,and the lipid metabolism gene SCD was identified as a downstream effector exacerbating NAFLD.This study not only broadens our understanding of the essential role of LBP in the pathogenesis of NAFLD from an epigenetics perspective but also identifies key TF C/EBPβand functional gene SCD as potential regulators and therapeutic targets.
基金supported by the National Natural Science Foundation of China(Grant No.32001996)Central Publicinterest Scientific Institution Basal Research Fund(Grant No.Y2022QC23)+2 种基金Agricultural Science and Technology Innovation Program(Grant No.CAAS-ASTIP-2021-ZFRI-01)the Crop Germplasm Resources Conservation Project(Grant No.2016NWB041)the Science and Technology Major Project of Yunnan(Gene mining and breeding of peach at highaltitude and low-latitude regions)。
文摘Bud dormancy facilitates the survival of meristems under harsh environmental conditions.To elucidate how molecular responses to chilling accumulation controlling dormancy in peach buds,chromatin immunoprecipitation sequencing to identify the H3K27me3 modifications and RNA sequencing of two peach cultivars with pronounced differences in chilling requirement were carried out,the results showed that genes associated with abscisic acid and gibberellic acid signal pathways play key roles in dormancy regulation.The results demonstrated that peach flower bud differentiation occurred continuously in both cultivars during chilling accumulation,which was correlated with the transcript abundance of key genes involved in phytohormone metabolism and flower bud development under adverse conditions.The more increased strength in high chillingrequirement cultivar along with the chilling accumulation at the genome-wide level.The function of the dormancy-associated MADS-box gene PpDAM6 was identified,which is involved in leaf bud break in peach and flower development in transgenic Nicotiana tabacum(NC89).In addition,PpDAM6 was positively regulated by PpCBF,and the genes of putative dormancy-related and associated with metabolic pathways were proposed.Taken together,these results constituted a theoretical basis for elucidating the regulation of peach bud dormancy transition.
基金supported by the Chongqing Modern Agricultural Industry Technology System,China(CQMAITS202301)the National Natural Science Foundation of China(32100287 and 31971919)+2 种基金the Natural Science Foundation of Chongqing,China(cstc2020jcyj-jq X0020 and cstc2021ycjh-bgzxm0066)the China Postdoctoral Science Foundation Funded Project(2020M683219)the Fundamental Research Funds for the Central Universities,China(SWU-XDJH202315)。
文摘Flower organ identity in rice is mainly determined by the A-,B-,C-and E-class genes,with the majority encoding MADS-box transcription factors.However,few studies have investigated how the expression of these floral organ identity genes is regulated during flower development.In this study,we identified a gene named SUPER WOMAN 2(SPW2),which is necessary for spikelet/floret development in rice by participating in the regulation of the expression of pistil identity genes such as OsMADS3,OsMADS13,OsMADS58 and DL.In the spw2 mutant,ectopic stigma/ovary-like tissues were observed in the non-pistil organs,including sterile lemma,lemma,palea,lodicule,and stamen,suggesting that the identities of these organs were severely affected by mutations in SPW2.SPW2 was shown to encode a plant-specific EMF1-like protein that is involved in H3K27me3 modification as an important component of the PRC2 complex.Expression analysis showed that the SPW2 mutation led to the ectopic expression of OsMADS3,OsMADS13,OsMADS58,and DL in non-pistil organs of the spikelet.The ChIP-qPCR results showed significant reductions in the levels of H3K27me3 modification on the chromatin of these genes.Thus,we demonstrated that SPW2 can mediate the process of H3K27me3 modification of pistil-related genes to regulate their expression in non-pistil organs of spikelets in rice.The results of this study expand our understanding of the molecular mechanism by which SPW2 regulates floral organ identity genes through epigenetic regulation.
文摘卵母细胞成熟过程受组蛋白H3K4me3(trimethylation of lysine 4 on histone 3)和H3K27me3(trimethylation of lysine 27 on histone 3)及其相关的甲基化和去甲基化酶的调控,因此考虑对鸡的卵泡发育也存在一定的影响。选取“苏禽3号”配套系第一母本为研究对象,采用Western blot法探究组蛋白H3K4me3和H3K27me3在鸡卵泡不同发育阶段颗粒层中蛋白的表达模式。结果表明:在苏禽3号卵泡颗粒层中,组蛋白H3K4me3在卵泡发育不同阶段表达模式呈降低→升高→降低→升高的波浪形趋势,波浪变化较为平缓,在F5、F2和F13个表达高点的表达量与SWF(small white follicle)、LWF(large white follicle)、SYF(small yellow follicle)和F34个表达低点的表达差异显著(P<0.05)。组蛋白H3K27me3在不同发育阶段表达模式亦呈波浪形表达趋势,波浪变化起伏较明显,在SWF、SYF和F33个表达高点的表达量与F5、F4、F1和F24个表达低点的表达差异显著(P<0.05)。相关性分析显示,组蛋白H3K4me3与H3K27me3在不同发育阶段卵泡颗粒细胞中的表达呈较强的负线性相关(R=-0.808,P=0.000)。结果提示:组蛋白H3K4me3和H3K27me3在不同发育阶段卵泡颗粒层中的表达具有组织差异性,呈负相关的动态修饰性,可能共同协调卵泡生长过程中各基因的表达与功能,研究结果为鸡繁殖性状调控机理提供了理论依据。