Tonoplast-enriched vesicles were prepared from suspension-cultured Populus euphratica Oliv. cells by differential centrifugation and discontinuous sucrose density gradient centrifugation. The properties of the proton ...Tonoplast-enriched vesicles were prepared from suspension-cultured Populus euphratica Oliv. cells by differential centrifugation and discontinuous sucrose density gradient centrifugation. The properties of the proton pumping activity of H+-ATPases in tonoplast vesicles were studied by acridine orange fluorescent quenching measured at 22 degreesC. The proton pumping activity of ATPase was ATP-dependent with apparent Michaelis-Menten Constant (K-m) for ATP about 0.65 mmol/L. The optimal pH for H+-ATPases activity was 7.5. The proton pumping activity of H+-ATPase could be initiated by some divalent cations, Mg2+ being highly efficient, much more than Fe2+; and Ca2+, Cu2+ and Zn2+ were inefficient under the experimental condition. The proton translocation could be stimulated by halide anions, with potencies decreasing in the order Cl- > Br- > I- > F-. The proton pumping activity was greatly inhibited by N-ethylmaleimide (NEM), N, N'-dicyclohexylcarbodiimide (DCCD), NO3- and Bafilomycin A(1), but not by orthovanadate and azide. These results demonstrated that the H+-ATPase in the tonoplast of Populus euphratica belonged to vacuolar type ATPase. This work was the first time that tonoplast-enriched vesicles were isolated from Populus euphratica cells.展开更多
Under NaCl stress for 2 d, H+-ATPase activity increased, and H+-PPase activity decreased in the tonoplast of salt-tolerant barley ( Hordeum vulgare L. cv. 'Tanyin 2') roots. La3+ (1 mmol/L), an inhibitor of Ca...Under NaCl stress for 2 d, H+-ATPase activity increased, and H+-PPase activity decreased in the tonoplast of salt-tolerant barley ( Hordeum vulgare L. cv. 'Tanyin 2') roots. La3+ (1 mmol/L), an inhibitor of Ca2+ channel in plasma membrane, and EGTA (5 mmol/L), a Ca2+ chelator, inhibited this NaCl-induced increase in H+-ATPase activity but stimulated the H+-PPase activity. Treatment of barley roots with CaM antagonist (trifluoperazine, TFP, 20 mumol/L) also diminished the increase of H+-ATPase activity induced by NaCl. La3+, TFP or La3+ + TFP increased Na+ uptake and decreased K+ and Ca2+ uptake in barley roots under NaCl stress. These results suggested that the activation of tonoplast H+-ATPase and the regulation of Na+ and K+ uptake under NaCl stress may be related to Ca2+-CaM system.展开更多
Peach fruit easily soften and have a short storage time at normal temperature. In this study, peach fruit (Prunus persica sieb et Zucc cv. Yingqing) were picked and stored at 25 and 4℃ to investigate the senescence...Peach fruit easily soften and have a short storage time at normal temperature. In this study, peach fruit (Prunus persica sieb et Zucc cv. Yingqing) were picked and stored at 25 and 4℃ to investigate the senescence in correlation with Ca^2+- ATPase activity of microsomal membrane and lipid peroxidation during ripening and senescence. In comparison with that stored at 25~C, the fruit stored at 4℃ exhibited a higher flesh firmness, lower respiration rate, and generated the late bigger peak value of Ca^2+-ATPase activity as well as maintained the higher activity of the enzyme. Meanwhile, the lower levels of super oxygen radical (O2^-.) production and content of malondialdehyde (MDA), a product of membrane lipid peroxidation were observed. Sodium orthovanadate (SO) and erythrosin B (EB), as Ca^2+-ATPase inhibitors, could stimulate the respiration rate. The results suggested that the slower senescence rate of peach fruit was closely related to the higher peak value and longer duration of Ca^2+-ATPase activity in microsomal membrane, with the slighter membrane lipid peroxidation and lower O2^-. production rate.展开更多
Objective: To study the significance of Leptin and the activity of erythrocyte membrane Ca^2+-ATPase(EMCA) in the development of hypertensive disorder complicating pregnancy. Methods: Radioimmunoassay was used to...Objective: To study the significance of Leptin and the activity of erythrocyte membrane Ca^2+-ATPase(EMCA) in the development of hypertensive disorder complicating pregnancy. Methods: Radioimmunoassay was used to test the level of serum Leptin, and the activity of EMCA was determined chemically in 38 pregnant women with hypertensive disorder complicating pregnancy and 36 normotensive pregnant women. Results: The level of serum Leptin in hypertensive disorder complicating pregnancy(gestational hypertension: 13.76 ± 3.46 ng/ml; preeclampsia: 15.76 ± 5.47 ng/ml; eclampsia: 18.32 ± 6.38 ng/ml)was significantly higher than that in normotensive pregnant women (11.33 ± 2.93 ng/ml) ,respectively. The average EMCA activity of patients with hypertensive disorder complicating pregnancy (gestational hypertension: 1.65 ± 0.24 μmol·pi/mg.h ; preeclampsia: 1.37 ± 0.19 μ mol·pi/mg·h;eclampsia:1.12 ± 0.14 μmol·pi/mg·h) was significantly lower than that of normotensive pregnant women(1.83 ± 0.38 μ mol·pi/mg·h),respectively. There was a negative correlation between the level of serum Leptin and the activity of RMCA in hypertensive disorder complicating pregnancy (r = -0.63). Conclusion: Inhibition of EMCA activity of erythrocyte in hypertensive disorder complicating pregnancy may increase cytoplasmic free calcium, which contributes to the development of hypertensive disorder complicating pregnancy. The negative correlation between the level of serum Leptin and the activity of EMCA, also suggested that serum Leptin and the activity of EMCA may play a role in the development of hypertensive disorder complicating pregnancy.展开更多
Experiments were conducted to examine the effects of salinity fluctuation frequency on the osmolarity, Na^+-K^+-ATPase activity and HSP70 of Chinese shrimp Fenneropenaeus chinensis ruth initial wet body weight of 1....Experiments were conducted to examine the effects of salinity fluctuation frequency on the osmolarity, Na^+-K^+-ATPase activity and HSP70 of Chinese shrimp Fenneropenaeus chinensis ruth initial wet body weight of 1.460g±0.091 g. The salinity in the control group (DO) was 28 throughout the experiment, whereas treatments D2, D4, D6 and D8 were subjected to different salinity fluctuation frequencies of 2, 4, 6 and 8d, respectively. The salinity in treatments D2, D4, D6 and D8 was kept at 28 for 2, 4, 6 and 8d, respectively, decreased abruptly to salinity 24, lasted for another 2 d, and then was raised to its initial value 28. This was a complete salinity fluctuation cycle that afterwards repeated itself. After 32 days, the osmolarity in treatments D2, D4, D6 and D8 was significantly lower than that in treatment DO (P〈0.05). There were significant differences in both muscle and eyestalks HSP70 expression among groups. The HSP70 expressions in muscle and eyestalks in group D4 were 61.4% and 57.0% higher, respectively, than that in the control group DO (P〈0.05). There were, however, no significant differences in gill or hepatopancreas Na^+-K^+-ATPase activity between the treatments and the control.展开更多
The effects of various salinity fluctuation amplitudes (2, 4, 6 and 8) on the growth, osmolarity, Na+-K+-ATPase activity and Hsp70 of juvenile Fenneropenaeus chinensis cultured in seawater with a salinity of 20 we...The effects of various salinity fluctuation amplitudes (2, 4, 6 and 8) on the growth, osmolarity, Na+-K+-ATPase activity and Hsp70 of juvenile Fenneropenaeus chinensis cultured in seawater with a salinity of 20 were studied. The results show that weight gain in the salinity fluctuation treatments was better than that in control; in particular, the weight gain of treatments S4 and SO, at 231.8% and 196.3%, respectively, was significantly different (P〈0.05). The hemolymph osmolarity of treatments SO, S2, S4, S6 and S8 was 635.4, 630.8, 623.6, 614.4 and 600.3 mOsm/kg, respectively, and decreased with increasing salinity fluctuation amplitude. The level of Na+-K+-ATPase activity in gills ofE chinensis was higher than that in hepatopancreas, but there were no significant differences among all treatments, either in gills or hepatopancreas (P〉0.05). The relative level of Hsp70 in treatment $4 was 48.4% and 40.4% higher than control in muscle and eyestalks, respectively, with the highest values being recorded under a salinity fluctuation amplitude of 4.展开更多
The H-K-ATPase (HKA), a potassium-dependent proton transporter in the outer medullary collecting duct (OMCD) plays an important role in acid-base homeostasis. The OMCD contains two HKA isoforms;gastric (HKAα1), domin...The H-K-ATPase (HKA), a potassium-dependent proton transporter in the outer medullary collecting duct (OMCD) plays an important role in acid-base homeostasis. The OMCD contains two HKA isoforms;gastric (HKAα1), dominant under normal dietary conditions (ND), and colonic (HKAα2), induced under a K-free diet (KD). The enzymatic activity (EA) of HKA in the OMCD is incompletely understood. The focus of the present study is elucidating the EA of the HKA in HKAα1 and HKAα2 knockout (KO) mice under ND and KD. KO mice were subjected to ND or KD for 10 days. Ten OMCD tubules were extracted, half placed in potassium-free media (Solution 2), half in potassium-containing media (Solution 3). Fluorescence measurements are based on the hydrolysis of ATP to ADP, coupled with the oxidation of NADH. ADP is determined by a decrease in NADH fluorescence. In K presence, NADH fluorescence of HKAα1 KO mice read 13.5 ± 0.7 ppm for ND and 10.3 ± 0.2 ppm for KD, indicating stimulation of the colonic isoform. HKAα2 KO mice averaged 6.8 ± 0.3 ppm for ND and 5.4 ± 0.3 ppm for KD in solution 2 (p p α2 isoform. A significant difference in ATP production in HKAα2 KO mice is likely due to enhanced EA of H-ATPase under potassium depletion.展开更多
Acidic digestion is an important digestive process of marine fish.In fish stomach,two enzymes are involved in the secretion of hydrochloric acid(HCl)and proteomic digestion:H^(+)/K^(+)-ATPase and pepsinogen.However,th...Acidic digestion is an important digestive process of marine fish.In fish stomach,two enzymes are involved in the secretion of hydrochloric acid(HCl)and proteomic digestion:H^(+)/K^(+)-ATPase and pepsinogen.However,the starting of digestive function in fish is still unclear.To reveal the details of acidic digestion of turbot Scophthalmus maximus in early development,a 40 day of turbot larvae culture was conducted.The H^(+)/K^(+)-ATPase gene from the turbot S.maximus(smH^(+)/K^(+)-ATPase)was identified and characterized.Based on our previous discription on pepsinogen of turbot S.maximus,we combined pepsinogen and H^(+)/K^(+)-ATPase and analyzed the mechanism of acidic digestion in turbot.Results show that the spatial and temporal expression profiles of H^(+)/K^(+)-ATPase agreed with pepsinogen A and C in turbot,indicating a synergetic action between H^(+)/K^(+)-ATPase and pepsinogen during the acidic digestion process.In addition,the turbot juveniles showed a faster growth after the expressions of H^(+)/K^(+)-ATPase gene and pepsinogen gene,demonstrating that pepsin had a higher digestive efficiency,for which a compound diet should be provided to the fish from Day 22 onward.This study provided a reference for biology research and aquaculture of turbot and other marine fishes.展开更多
Plants are sources of medicinal compounds,and they play a crucial role in human health maintenance.Abrus precatorius is one of the important medicinal plants that have been alleged for their medicinal properties.This ...Plants are sources of medicinal compounds,and they play a crucial role in human health maintenance.Abrus precatorius is one of the important medicinal plants that have been alleged for their medicinal properties.This research unraveled the pharmacological effect of ethanolic extract of Abrus precatorius on lipid peroxidation,liver parameters,and Na^(+)/K^(+)-ATPase activity in HgCl_(2) treated wistar rats.Twenty-four(24)albino wistar rats weighing between 150-200 g were distributed into four groups of 6 animals each.Group A(control)received normal saline(0.9% NaCl),group B received 400 mg/kg of the extract only,group C received 4 mg/kg HgCl_(2) only,and group D received 400 mg/kg of extract+4 mg/kg of HgCl_(2).The treatment lasted for two weeks,and the animals were sacrificed on the 15th day.The blood,brains and livers were collected and used for assay of lipid peroxidation,liver function,and sodium pump activity.The results of liver function test revealed an elevated(P<0.05)level of serum aspartate transaminase,alanine transaminase,alkaline phosphatase,and total bilirubin in the group that received HgCl_(2) only(group C)when compared with the normal control(group A)that received normal saline only.However,the administration of extract in group D led to a marked(P<0.05)reduction in the activities of these enzymes and the level of total bilirubin when compared to the negative control(group C).On the contrary,HgCl_(2) caused a significant(P<0.05)reduction in serum total protein and albumin levels,but the extract reversed the effect of HgCl_(2) by elevating their concentrations.Nonetheless,the effect elicited by this extract is comparable to group A which received normal saline.Moreso,the result of lipid peroxidation revealed that HgCl_(2) treatment caused a marked(P<0.05)increase in the formation of lipid peroxidation adducts in both liver and brain homogenates in group C.On the contrary,administration of Abrus precatorius extract profoundly(P<0.05)inhibited HgCl_(2)-induced lipid peroxidation in group D.In addition,HgCl_(2) inhibited the activity of cerebral Na^(+)/K^(+)-ATPase,but the extract restored normalcy by increasing the activity of the enzyme in group D.Consequently,the results obtained justify the traditional use of Abrus precatorius and suggest that Abrus precatorius leaves may be used for management of liver diseases,oxidative stress-linked diseases and some neurodegenerative ailments.展开更多
The effects of NaCl stress on the H +-ATPase, H +-PPase activity and lipid composition of plasma membrane(PM) and tonoplast(TP) vesicles isolated from roots and leaves of two soybean cultivars(Glycine max L.) differ...The effects of NaCl stress on the H +-ATPase, H +-PPase activity and lipid composition of plasma membrane(PM) and tonoplast(TP) vesicles isolated from roots and leaves of two soybean cultivars(Glycine max L.) differing in salt tolerance(Wenfeng7, salt-tolerant; Union, salt-sensitive) were investigated. When Wenfeng7 was treated with 0.3%(W/V) NaCl for 3 d, the H +-ATPase activities in PM and TP from roots and leaves exhibited a reduction and an enhancement, respectively. The H +-PPase activity in TP from roots also increased. Similar effects were not observed in roots of Union. In addition, the increases of phospholipid content and ratios of phospholipid to galactolipid in PM and TP from roots and leaves of Wenfeng7 may also change membrane permeability and hence affect salt tolerance.展开更多
Objective To test whether in the absence of actin, actin-binding proteins such as caldesmon, calponin, and tropomyosin interact with the myosin of unphosphorylation, Ca 2+ -dependent phosphorylation (CDP), and Ca 2+ -...Objective To test whether in the absence of actin, actin-binding proteins such as caldesmon, calponin, and tropomyosin interact with the myosin of unphosphorylation, Ca 2+ -dependent phosphorylation (CDP), and Ca 2+ -independent phosphorylati-on (CIP) and stimulate myosin Mg 2+ -ATPase activities. Methods Mg 2+ -ATPase activities were measured to evaluate the effects of caldesmon, calponin, and tropomyosin on the myosin in unphosphorylation, CDP by myosin light chain kinase (MLCK), and CIP by MLCK. Results (1) At different incubation-time, i.e., 5, 10, 20, 40, and 60 minutes, the highest Mg 2+ -ATPase activity was ob-served when myosin was in the state of CDP, the medium was CIP of myosin, and the lowest was the unphosphorylated myosin. (2) In the absence of caldesmon, calponin, and tropomyosin, the Mg 2+ -ATPase activities from high to low were in the following order: CDP, CIP, and unphosphorylated myosin. However, in the presence of caldesmon, calponin, and tropo-myosin, the order of relative value of Mg 2+ -ATPase activities from high to low was unphosphorylated, CIP, and CDP of myosin respectively compared to the corresponding controls. Conclusions The results propose that caldesmon, calponin, and tropomyosin are capable of stimulating Mg 2+ -ATPase activity of smooth muscle myosin in Ca 2+ -independent manner, since Ca 2+ is not obligating for the stimulating effects of the three proteins. The common characteristic of the three proteins is that when myosin activities are low, their activations are relatively strong and this property might be involved in smooth muscle tension keeping.展开更多
本文克隆了RIN4(RPM1-interacting protein 4)在胡杨中的同源基因PeRIN4,并在拟南芥中进行过表达,通过研究转基因株系的耐盐表型、质膜H^+-ATPsae活性及H^+、Na^+、K^+等的动态离子流,揭示了PeRIN4基因在植物响应和适应盐胁迫环境中的...本文克隆了RIN4(RPM1-interacting protein 4)在胡杨中的同源基因PeRIN4,并在拟南芥中进行过表达,通过研究转基因株系的耐盐表型、质膜H^+-ATPsae活性及H^+、Na^+、K^+等的动态离子流,揭示了PeRIN4基因在植物响应和适应盐胁迫环境中的作用。利用定位载体p Green0029-PeRIN4-GFP瞬时转化拟南芥叶肉细胞原生质体的方法,对胡杨PeRIN4蛋白进行亚细胞定位,发现该蛋白定位在细胞的胞质中。耐盐表型实验结果显示,在100 mmol/L NaCl处理下,拟南芥PeRIN4过表达株系(OE1和OE8)的生存率和根长均明显高于野生型(WT)和转空载体拟南芥(VC),说明PeRIN4基因能够提高拟南芥的耐盐性。与WT和VC相比,拟南芥PeRIN4过表达株系质膜H^+-ATPsae的活性较高。动态离子流数据显示,在盐胁迫下,PeRIN4过表达株系外排H^+和Na^+离子的能力强于野生型和转空载体拟南芥,然而K+的外流却弱于WT和VC。因此,PeRIN4蛋白具有调节质膜H^+-ATPsae活性的功能。拟南芥质膜H^+-ATPsae活性的提高主要有两方面的作用:一是可以增强H+泵的质子动力势,驱动Na^+/H^+逆向转运蛋白,提高Na^+外排的能力;二是抑制质膜的去极化,减少K+离子通过去极化激活的外向型K^+通道(DA-KORCs)和非选择性阳离子通道(DA-NSCCs)外流,维持了K^+/Na^+平衡,从而提高PeRIN4转基因拟南芥的耐盐性。展开更多
文摘Tonoplast-enriched vesicles were prepared from suspension-cultured Populus euphratica Oliv. cells by differential centrifugation and discontinuous sucrose density gradient centrifugation. The properties of the proton pumping activity of H+-ATPases in tonoplast vesicles were studied by acridine orange fluorescent quenching measured at 22 degreesC. The proton pumping activity of ATPase was ATP-dependent with apparent Michaelis-Menten Constant (K-m) for ATP about 0.65 mmol/L. The optimal pH for H+-ATPases activity was 7.5. The proton pumping activity of H+-ATPase could be initiated by some divalent cations, Mg2+ being highly efficient, much more than Fe2+; and Ca2+, Cu2+ and Zn2+ were inefficient under the experimental condition. The proton translocation could be stimulated by halide anions, with potencies decreasing in the order Cl- > Br- > I- > F-. The proton pumping activity was greatly inhibited by N-ethylmaleimide (NEM), N, N'-dicyclohexylcarbodiimide (DCCD), NO3- and Bafilomycin A(1), but not by orthovanadate and azide. These results demonstrated that the H+-ATPase in the tonoplast of Populus euphratica belonged to vacuolar type ATPase. This work was the first time that tonoplast-enriched vesicles were isolated from Populus euphratica cells.
文摘Under NaCl stress for 2 d, H+-ATPase activity increased, and H+-PPase activity decreased in the tonoplast of salt-tolerant barley ( Hordeum vulgare L. cv. 'Tanyin 2') roots. La3+ (1 mmol/L), an inhibitor of Ca2+ channel in plasma membrane, and EGTA (5 mmol/L), a Ca2+ chelator, inhibited this NaCl-induced increase in H+-ATPase activity but stimulated the H+-PPase activity. Treatment of barley roots with CaM antagonist (trifluoperazine, TFP, 20 mumol/L) also diminished the increase of H+-ATPase activity induced by NaCl. La3+, TFP or La3+ + TFP increased Na+ uptake and decreased K+ and Ca2+ uptake in barley roots under NaCl stress. These results suggested that the activation of tonoplast H+-ATPase and the regulation of Na+ and K+ uptake under NaCl stress may be related to Ca2+-CaM system.
基金This work was supported by the National Natural Science Foundation of China (30270933)Natural Science Foundation of Hebei Province, China (303600).
文摘Peach fruit easily soften and have a short storage time at normal temperature. In this study, peach fruit (Prunus persica sieb et Zucc cv. Yingqing) were picked and stored at 25 and 4℃ to investigate the senescence in correlation with Ca^2+- ATPase activity of microsomal membrane and lipid peroxidation during ripening and senescence. In comparison with that stored at 25~C, the fruit stored at 4℃ exhibited a higher flesh firmness, lower respiration rate, and generated the late bigger peak value of Ca^2+-ATPase activity as well as maintained the higher activity of the enzyme. Meanwhile, the lower levels of super oxygen radical (O2^-.) production and content of malondialdehyde (MDA), a product of membrane lipid peroxidation were observed. Sodium orthovanadate (SO) and erythrosin B (EB), as Ca^2+-ATPase inhibitors, could stimulate the respiration rate. The results suggested that the slower senescence rate of peach fruit was closely related to the higher peak value and longer duration of Ca^2+-ATPase activity in microsomal membrane, with the slighter membrane lipid peroxidation and lower O2^-. production rate.
文摘Objective: To study the significance of Leptin and the activity of erythrocyte membrane Ca^2+-ATPase(EMCA) in the development of hypertensive disorder complicating pregnancy. Methods: Radioimmunoassay was used to test the level of serum Leptin, and the activity of EMCA was determined chemically in 38 pregnant women with hypertensive disorder complicating pregnancy and 36 normotensive pregnant women. Results: The level of serum Leptin in hypertensive disorder complicating pregnancy(gestational hypertension: 13.76 ± 3.46 ng/ml; preeclampsia: 15.76 ± 5.47 ng/ml; eclampsia: 18.32 ± 6.38 ng/ml)was significantly higher than that in normotensive pregnant women (11.33 ± 2.93 ng/ml) ,respectively. The average EMCA activity of patients with hypertensive disorder complicating pregnancy (gestational hypertension: 1.65 ± 0.24 μmol·pi/mg.h ; preeclampsia: 1.37 ± 0.19 μ mol·pi/mg·h;eclampsia:1.12 ± 0.14 μmol·pi/mg·h) was significantly lower than that of normotensive pregnant women(1.83 ± 0.38 μ mol·pi/mg·h),respectively. There was a negative correlation between the level of serum Leptin and the activity of RMCA in hypertensive disorder complicating pregnancy (r = -0.63). Conclusion: Inhibition of EMCA activity of erythrocyte in hypertensive disorder complicating pregnancy may increase cytoplasmic free calcium, which contributes to the development of hypertensive disorder complicating pregnancy. The negative correlation between the level of serum Leptin and the activity of EMCA, also suggested that serum Leptin and the activity of EMCA may play a role in the development of hypertensive disorder complicating pregnancy.
基金supported by funds from the National Natural Science Foundation of China (No. 30571441)the Project of The Talented Youth Scientist of Shandong Province (No. 2006BS07002)the National Eleventh Five-Year Scientific and Technological Key Project (No.2006BAD09A07).
文摘Experiments were conducted to examine the effects of salinity fluctuation frequency on the osmolarity, Na^+-K^+-ATPase activity and HSP70 of Chinese shrimp Fenneropenaeus chinensis ruth initial wet body weight of 1.460g±0.091 g. The salinity in the control group (DO) was 28 throughout the experiment, whereas treatments D2, D4, D6 and D8 were subjected to different salinity fluctuation frequencies of 2, 4, 6 and 8d, respectively. The salinity in treatments D2, D4, D6 and D8 was kept at 28 for 2, 4, 6 and 8d, respectively, decreased abruptly to salinity 24, lasted for another 2 d, and then was raised to its initial value 28. This was a complete salinity fluctuation cycle that afterwards repeated itself. After 32 days, the osmolarity in treatments D2, D4, D6 and D8 was significantly lower than that in treatment DO (P〈0.05). There were significant differences in both muscle and eyestalks HSP70 expression among groups. The HSP70 expressions in muscle and eyestalks in group D4 were 61.4% and 57.0% higher, respectively, than that in the control group DO (P〈0.05). There were, however, no significant differences in gill or hepatopancreas Na^+-K^+-ATPase activity between the treatments and the control.
基金Supported by the National Natural Science Foundation of China (No. 30571441)Reward Research Foundation for Talented Young and Middle Aged Scientists of Shandong,China (No. 2006BS07002)National Key Technology Research and Development Program of China (No. 2006BAD09A07)
文摘The effects of various salinity fluctuation amplitudes (2, 4, 6 and 8) on the growth, osmolarity, Na+-K+-ATPase activity and Hsp70 of juvenile Fenneropenaeus chinensis cultured in seawater with a salinity of 20 were studied. The results show that weight gain in the salinity fluctuation treatments was better than that in control; in particular, the weight gain of treatments S4 and SO, at 231.8% and 196.3%, respectively, was significantly different (P〈0.05). The hemolymph osmolarity of treatments SO, S2, S4, S6 and S8 was 635.4, 630.8, 623.6, 614.4 and 600.3 mOsm/kg, respectively, and decreased with increasing salinity fluctuation amplitude. The level of Na+-K+-ATPase activity in gills ofE chinensis was higher than that in hepatopancreas, but there were no significant differences among all treatments, either in gills or hepatopancreas (P〉0.05). The relative level of Hsp70 in treatment $4 was 48.4% and 40.4% higher than control in muscle and eyestalks, respectively, with the highest values being recorded under a salinity fluctuation amplitude of 4.
文摘The H-K-ATPase (HKA), a potassium-dependent proton transporter in the outer medullary collecting duct (OMCD) plays an important role in acid-base homeostasis. The OMCD contains two HKA isoforms;gastric (HKAα1), dominant under normal dietary conditions (ND), and colonic (HKAα2), induced under a K-free diet (KD). The enzymatic activity (EA) of HKA in the OMCD is incompletely understood. The focus of the present study is elucidating the EA of the HKA in HKAα1 and HKAα2 knockout (KO) mice under ND and KD. KO mice were subjected to ND or KD for 10 days. Ten OMCD tubules were extracted, half placed in potassium-free media (Solution 2), half in potassium-containing media (Solution 3). Fluorescence measurements are based on the hydrolysis of ATP to ADP, coupled with the oxidation of NADH. ADP is determined by a decrease in NADH fluorescence. In K presence, NADH fluorescence of HKAα1 KO mice read 13.5 ± 0.7 ppm for ND and 10.3 ± 0.2 ppm for KD, indicating stimulation of the colonic isoform. HKAα2 KO mice averaged 6.8 ± 0.3 ppm for ND and 5.4 ± 0.3 ppm for KD in solution 2 (p p α2 isoform. A significant difference in ATP production in HKAα2 KO mice is likely due to enhanced EA of H-ATPase under potassium depletion.
基金Supported by the National Key Research and Development Program(No.2018YFD0901204)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0402)+3 种基金the Major Agricultural Application Technology Innovation Project of Shandong Province(No.SD2019YY011)the Qingdao National Laboratory for Marine Science and Technology(No.2018SDKJ0502-2)the China Agriculture Research System(No.CARS-47),the Major Science and Technology for Scientific and Technological Innovation Projects(Shandong)(No.2019JZZY020710)the STS Project(Nos.KFZD-SW-106,ZSSD-019,2017T3017,2019T3022)。
文摘Acidic digestion is an important digestive process of marine fish.In fish stomach,two enzymes are involved in the secretion of hydrochloric acid(HCl)and proteomic digestion:H^(+)/K^(+)-ATPase and pepsinogen.However,the starting of digestive function in fish is still unclear.To reveal the details of acidic digestion of turbot Scophthalmus maximus in early development,a 40 day of turbot larvae culture was conducted.The H^(+)/K^(+)-ATPase gene from the turbot S.maximus(smH^(+)/K^(+)-ATPase)was identified and characterized.Based on our previous discription on pepsinogen of turbot S.maximus,we combined pepsinogen and H^(+)/K^(+)-ATPase and analyzed the mechanism of acidic digestion in turbot.Results show that the spatial and temporal expression profiles of H^(+)/K^(+)-ATPase agreed with pepsinogen A and C in turbot,indicating a synergetic action between H^(+)/K^(+)-ATPase and pepsinogen during the acidic digestion process.In addition,the turbot juveniles showed a faster growth after the expressions of H^(+)/K^(+)-ATPase gene and pepsinogen gene,demonstrating that pepsin had a higher digestive efficiency,for which a compound diet should be provided to the fish from Day 22 onward.This study provided a reference for biology research and aquaculture of turbot and other marine fishes.
文摘Plants are sources of medicinal compounds,and they play a crucial role in human health maintenance.Abrus precatorius is one of the important medicinal plants that have been alleged for their medicinal properties.This research unraveled the pharmacological effect of ethanolic extract of Abrus precatorius on lipid peroxidation,liver parameters,and Na^(+)/K^(+)-ATPase activity in HgCl_(2) treated wistar rats.Twenty-four(24)albino wistar rats weighing between 150-200 g were distributed into four groups of 6 animals each.Group A(control)received normal saline(0.9% NaCl),group B received 400 mg/kg of the extract only,group C received 4 mg/kg HgCl_(2) only,and group D received 400 mg/kg of extract+4 mg/kg of HgCl_(2).The treatment lasted for two weeks,and the animals were sacrificed on the 15th day.The blood,brains and livers were collected and used for assay of lipid peroxidation,liver function,and sodium pump activity.The results of liver function test revealed an elevated(P<0.05)level of serum aspartate transaminase,alanine transaminase,alkaline phosphatase,and total bilirubin in the group that received HgCl_(2) only(group C)when compared with the normal control(group A)that received normal saline only.However,the administration of extract in group D led to a marked(P<0.05)reduction in the activities of these enzymes and the level of total bilirubin when compared to the negative control(group C).On the contrary,HgCl_(2) caused a significant(P<0.05)reduction in serum total protein and albumin levels,but the extract reversed the effect of HgCl_(2) by elevating their concentrations.Nonetheless,the effect elicited by this extract is comparable to group A which received normal saline.Moreso,the result of lipid peroxidation revealed that HgCl_(2) treatment caused a marked(P<0.05)increase in the formation of lipid peroxidation adducts in both liver and brain homogenates in group C.On the contrary,administration of Abrus precatorius extract profoundly(P<0.05)inhibited HgCl_(2)-induced lipid peroxidation in group D.In addition,HgCl_(2) inhibited the activity of cerebral Na^(+)/K^(+)-ATPase,but the extract restored normalcy by increasing the activity of the enzyme in group D.Consequently,the results obtained justify the traditional use of Abrus precatorius and suggest that Abrus precatorius leaves may be used for management of liver diseases,oxidative stress-linked diseases and some neurodegenerative ailments.
文摘The effects of NaCl stress on the H +-ATPase, H +-PPase activity and lipid composition of plasma membrane(PM) and tonoplast(TP) vesicles isolated from roots and leaves of two soybean cultivars(Glycine max L.) differing in salt tolerance(Wenfeng7, salt-tolerant; Union, salt-sensitive) were investigated. When Wenfeng7 was treated with 0.3%(W/V) NaCl for 3 d, the H +-ATPase activities in PM and TP from roots and leaves exhibited a reduction and an enhancement, respectively. The H +-PPase activity in TP from roots also increased. Similar effects were not observed in roots of Union. In addition, the increases of phospholipid content and ratios of phospholipid to galactolipid in PM and TP from roots and leaves of Wenfeng7 may also change membrane permeability and hence affect salt tolerance.
基金Supported by the National Natural Science Foundation of China ( 30070203).
文摘Objective To test whether in the absence of actin, actin-binding proteins such as caldesmon, calponin, and tropomyosin interact with the myosin of unphosphorylation, Ca 2+ -dependent phosphorylation (CDP), and Ca 2+ -independent phosphorylati-on (CIP) and stimulate myosin Mg 2+ -ATPase activities. Methods Mg 2+ -ATPase activities were measured to evaluate the effects of caldesmon, calponin, and tropomyosin on the myosin in unphosphorylation, CDP by myosin light chain kinase (MLCK), and CIP by MLCK. Results (1) At different incubation-time, i.e., 5, 10, 20, 40, and 60 minutes, the highest Mg 2+ -ATPase activity was ob-served when myosin was in the state of CDP, the medium was CIP of myosin, and the lowest was the unphosphorylated myosin. (2) In the absence of caldesmon, calponin, and tropomyosin, the Mg 2+ -ATPase activities from high to low were in the following order: CDP, CIP, and unphosphorylated myosin. However, in the presence of caldesmon, calponin, and tropo-myosin, the order of relative value of Mg 2+ -ATPase activities from high to low was unphosphorylated, CIP, and CDP of myosin respectively compared to the corresponding controls. Conclusions The results propose that caldesmon, calponin, and tropomyosin are capable of stimulating Mg 2+ -ATPase activity of smooth muscle myosin in Ca 2+ -independent manner, since Ca 2+ is not obligating for the stimulating effects of the three proteins. The common characteristic of the three proteins is that when myosin activities are low, their activations are relatively strong and this property might be involved in smooth muscle tension keeping.