Cloud detection from satellite and drone imagery is crucial for applications such as weather forecasting and environmentalmonitoring.Addressing the limitations of conventional convolutional neural networks,we propose ...Cloud detection from satellite and drone imagery is crucial for applications such as weather forecasting and environmentalmonitoring.Addressing the limitations of conventional convolutional neural networks,we propose an innovative transformer-based method.This method leverages transformers,which are adept at processing data sequences,to enhance cloud detection accuracy.Additionally,we introduce a Cyclic Refinement Architecture that improves the resolution and quality of feature extraction,thereby aiding in the retention of critical details often lost during cloud detection.Our extensive experimental validation shows that our approach significantly outperforms established models,excelling in high-resolution feature extraction and precise cloud segmentation.By integrating Positional Visual Transformers(PVT)with this architecture,our method advances high-resolution feature delineation and segmentation accuracy.Ultimately,our research offers a novel perspective for surmounting traditional challenges in cloud detection and contributes to the advancement of precise and dependable image analysis across various domains.展开更多
The layeredδ-MnO_(2)(dMO)is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance(~0.7 nm),high capacity,and low cost;however,such cathodes suffer from struc...The layeredδ-MnO_(2)(dMO)is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance(~0.7 nm),high capacity,and low cost;however,such cathodes suffer from structural degradation during the long-term cycling process,leading to capacity fading.In this study,a Co-doped dMO composite with reduced graphene oxide(GC-dMO)is developed using a simple cost-effective hydrothermal method.The degree of disorderness increases owing to the hetero-atom doping and graphene oxide composites.It is demonstrated that layered dMO and GC-dMO undergo a structural transition from K-birnessite to the Zn-buserite phase upon the first discharge,which enhances the intercalation of Zn^(2+)ions,H_(2)O molecules in the layered structure.The GC-dMO cathode exhibits an excellent capacity of 302 mAh g^(-1)at a current density of 100 mAg^(-1)after 100 cycles as compared with the dMO cathode(159 mAhg^(-1)).The excellent electrochemical performance of the GC-dMO cathode owing to Co-doping and graphene oxide sheets enhances the interlayer gap and disorderness,and maintains structural stability,which facilitates the easy reverse intercalation and de-intercalation of Zn^(2+)ions and H_(2)O molecules.Therefore,GC-dMO is a promising cathode material for large-scale aqueous ZIBs.展开更多
Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input t...Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input to augment the RGB images.Depth-based methods attempt to convert estimated depth maps to pseudo-LiDAR and then use LiDAR-based object detectors or focus on the perspective of image and depth fusion learning.However,they demonstrate limited performance and efficiency as a result of depth inaccuracy and complex fusion mode with convolutions.Different from these approaches,our proposed depth-guided vision transformer with a normalizing flows(NF-DVT)network uses normalizing flows to build priors in depth maps to achieve more accurate depth information.Then we develop a novel Swin-Transformer-based backbone with a fusion module to process RGB image patches and depth map patches with two separate branches and fuse them using cross-attention to exchange information with each other.Furthermore,with the help of pixel-wise relative depth values in depth maps,we develop new relative position embeddings in the cross-attention mechanism to capture more accurate sequence ordering of input tokens.Our method is the first Swin-Transformer-based backbone architecture for monocular 3D object detection.The experimental results on the KITTI and the challenging Waymo Open datasets show the effectiveness of our proposed method and superior performance over previous counterparts.展开更多
This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a disti...This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.展开更多
基金funded by the Chongqing Normal University Startup Foundation for PhD(22XLB021)supported by the Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China(No.ICT2023B40).
文摘Cloud detection from satellite and drone imagery is crucial for applications such as weather forecasting and environmentalmonitoring.Addressing the limitations of conventional convolutional neural networks,we propose an innovative transformer-based method.This method leverages transformers,which are adept at processing data sequences,to enhance cloud detection accuracy.Additionally,we introduce a Cyclic Refinement Architecture that improves the resolution and quality of feature extraction,thereby aiding in the retention of critical details often lost during cloud detection.Our extensive experimental validation shows that our approach significantly outperforms established models,excelling in high-resolution feature extraction and precise cloud segmentation.By integrating Positional Visual Transformers(PVT)with this architecture,our method advances high-resolution feature delineation and segmentation accuracy.Ultimately,our research offers a novel perspective for surmounting traditional challenges in cloud detection and contributes to the advancement of precise and dependable image analysis across various domains.
基金supported by the National Research Foundation of Korea(NRF)grants funded by the Korean Government(NRF-2021R1A4A1030318,NRF-2022R1C1C1011386,NRF-2020M3H4A1A03084258)supported by the"Regional Innovation Strategy(RIS)"through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-003)
文摘The layeredδ-MnO_(2)(dMO)is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance(~0.7 nm),high capacity,and low cost;however,such cathodes suffer from structural degradation during the long-term cycling process,leading to capacity fading.In this study,a Co-doped dMO composite with reduced graphene oxide(GC-dMO)is developed using a simple cost-effective hydrothermal method.The degree of disorderness increases owing to the hetero-atom doping and graphene oxide composites.It is demonstrated that layered dMO and GC-dMO undergo a structural transition from K-birnessite to the Zn-buserite phase upon the first discharge,which enhances the intercalation of Zn^(2+)ions,H_(2)O molecules in the layered structure.The GC-dMO cathode exhibits an excellent capacity of 302 mAh g^(-1)at a current density of 100 mAg^(-1)after 100 cycles as compared with the dMO cathode(159 mAhg^(-1)).The excellent electrochemical performance of the GC-dMO cathode owing to Co-doping and graphene oxide sheets enhances the interlayer gap and disorderness,and maintains structural stability,which facilitates the easy reverse intercalation and de-intercalation of Zn^(2+)ions and H_(2)O molecules.Therefore,GC-dMO is a promising cathode material for large-scale aqueous ZIBs.
基金supported in part by the Major Project for New Generation of AI (2018AAA0100400)the National Natural Science Foundation of China (61836014,U21B2042,62072457,62006231)the InnoHK Program。
文摘Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input to augment the RGB images.Depth-based methods attempt to convert estimated depth maps to pseudo-LiDAR and then use LiDAR-based object detectors or focus on the perspective of image and depth fusion learning.However,they demonstrate limited performance and efficiency as a result of depth inaccuracy and complex fusion mode with convolutions.Different from these approaches,our proposed depth-guided vision transformer with a normalizing flows(NF-DVT)network uses normalizing flows to build priors in depth maps to achieve more accurate depth information.Then we develop a novel Swin-Transformer-based backbone with a fusion module to process RGB image patches and depth map patches with two separate branches and fuse them using cross-attention to exchange information with each other.Furthermore,with the help of pixel-wise relative depth values in depth maps,we develop new relative position embeddings in the cross-attention mechanism to capture more accurate sequence ordering of input tokens.Our method is the first Swin-Transformer-based backbone architecture for monocular 3D object detection.The experimental results on the KITTI and the challenging Waymo Open datasets show the effectiveness of our proposed method and superior performance over previous counterparts.
基金supported by the National Natural Science Foundation of China(51767012)Curriculum Ideological and Political Connotation Construction Project of Kunming University of Science and Technology(2021KS009)Kunming University of Science and Technology Online Open Course(MOOC)Construction Project(202107).
文摘This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.