The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestre...The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestress ratio (PPR) are considered, and three pairs of two-span continuous beams with box sections varying in size are designed. The major parameters involved in the study include the PPR and the fiber location. It is concluded that the prestressed high strength concrete beam exhibits satisfactory ductility; the influences of steel fiber on the crack behaviors for partially prestressed beams are not as obvious as those for fully prestressed ones; steel fibers can improve the structural stiffness after cracking for fully prestressed high strength concrete beams; the moment redistribution from mid-span to intermediate support in the first stage should be mainly considered in practical design.展开更多
A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is locate...A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is located in the core joint region and the connections between concrete members. This paper presents an experimental study of a series of PPSRC specimens. These specimens are tested under low cyclic loading.Experimental results demonstrate that the bearing capacity of the PPSRC specimens is 3 times that of the ordinary reinforced concrete( RC) beam-column joints. The strength and stiffness degradation rates are slower compared with that of the RC beam-column joints. In addition,the strength of the core joint region and the connections is higher than other parts of the PPSRC specimens. Beam failure occurs firstly for the PPSRC specimens,followed by column failure and connections failure. The failure of the core joint region occurs finally.Test results show that the seismic performance of the PPSRC is better than that of the ordinary RC beam-column joints.展开更多
By the nonlinear finite element analysis (FEA) method, the mechanical properties of the steel fiber reinforced concrete (SFRC) deep beams were discussed in terms of the crack load and ultimate bearing capacity. In...By the nonlinear finite element analysis (FEA) method, the mechanical properties of the steel fiber reinforced concrete (SFRC) deep beams were discussed in terms of the crack load and ultimate bearing capacity. In the simulation process, the ANSYS parametric design language (APDL) was used to set up the finite element model; the model of bond stress-slip relationship between steel bar and concrete was established. The nonlinear FEA results and test results demonstrated that the steel fiber can not only significantly improve the cracking load and ultimate bearing capacity of the concrete but also repress the development of the cracks. Meanwhile, good agreement was found between the experimental data and FEA results, if the unit type, the parameter model and the failure criterion are selected reasonably.展开更多
Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated ...Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated composite layer tensile strain under the hogging bending of inverted loading composite beams, giving the relationship under the different fatigue stress ratios between fatigue cycles and steel bar’s stress range, crack width, stiffness loss and damage, etc., in composite layer. This article established fatigue life equation, and analyzed SFRSC reinforced mechanism to crack width and stiffness loss. The results show that SFRSC as the composite beam concrete has excellent properties of crack resistance and tensile, can reinforce the fatigue crack width and stiffness loss of composite beams, and improve the durability and in normal use of composite beams in the hogging bending zone.展开更多
In this study, the blast performance of steel reinforced concrete(RC) beams was experimentally and analytically investigated. The experiment consists of a total of 10 one-half-scale beams subjected to different levels...In this study, the blast performance of steel reinforced concrete(RC) beams was experimentally and analytically investigated. The experiment consists of a total of 10 one-half-scale beams subjected to different levels of blast loading using live explosives. The reflected pressure-time histories were recorded and different damage levels and modes were observed. The blast resilience of the damaged beams was quantified by measuring the time-dependent displacements. Experiment results show that the damage in steel reinforced concrete beams with higher explosive mass is enhanced compared with that of the beams with smaller explosive mass at the same scaled distance. Based on the experiment data, an empirical expression is developed via dimensional analysis to correct the relationship between the midspan displacement and scaled distance. Besides, a complex single degree of freedom model(SDOF)incorporating complex features of the material behavior, high strain-rate effect and the column geometry was proposed and validated by test results.展开更多
Through the flexural behavior test of coral aggregate reinforced concrete beams(CARCB) and ordinary Portland reinforced concrete beams(OPRCB), and based on the parameters of concrete types, concrete strength grades an...Through the flexural behavior test of coral aggregate reinforced concrete beams(CARCB) and ordinary Portland reinforced concrete beams(OPRCB), and based on the parameters of concrete types, concrete strength grades and reinforcement ratios, the crack development, failure mode, midspan deflection and flexural capacity were studied, the relationships of bending moment-midspan deflection, load-longitudinal tensile reinforcement strain, load-maximum crack width were established, and a calculation model for the flexural capacity of CARCB was suggested. The results showed that with the increase in the reinforcement ratio and concrete strength grade, the crack bending moment(Mcr)and ultimate bending moment(Mu) of CARCB gradually increased. The characteristics of CARCB and OPRCB are basically the same. Furthermore, through increasing the concrete strength grade and reinforcement ratio, Mcr/Mu could be increased to delay the cracking of CARCB. As the load increased, crack width(w) would also increase. At the beginning of the loading, w increased slowly. And then it increased rapidly when the load reached to the ultimate load, which then led to beam failure. Meanwhile, with a comprehensive consideration of the effects of steel corrosion on the loss of steel section and the decrease of steel yield strength, a more reasonable calculation model for the flexural capacity of CARCB was proposed.展开更多
To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens...To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.展开更多
The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interfa...The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interface. Fatigue properties of the composite beam under the action of negative moment were experimentally studied. Through inverted loading mode the load-beating state of a composite beam was simulated under the action of negative moment. With the ratios of constructional bars being 0, 0.082% and 0.164% respectively as parameters, the effects of constructional bars on the properties of composite beam, such as fatigue life, crack propagation, rigidity loss as well as damage behavior of bonding interface, were studied. The mechanism of the constructional bars on the fatigue properties of the composite beams and the restriction mechanism of crack widths and rigidity loss were analyzed. The test results show that the constructional bars can enhance the shear resistance of the bonding interface between composite layer and old concrete beam and restrict expanding of steel fiber reinforced self-stressing concrete, which are beneficial to synergistic action of composite layer and old concrete beam, to reducing the stress amplitude of bars and the crack width of composite layer, and to increasing the durability and fatigue life of the composite beam.展开更多
The deterioration of concrete over time is the result of various mechanical, physical, chemical and biological processes, with the corrosion of reinforcement being the most serious problem of durability of reinforced ...The deterioration of concrete over time is the result of various mechanical, physical, chemical and biological processes, with the corrosion of reinforcement being the most serious problem of durability of reinforced concrete structures. Over the last 50 years, a tremendous effort has been spent by the international scientific community with laboratory research and experimental field studies in order to increase the resistance of concrete over corrosion. This paper presents an experimental study of the corrosion behaviour of reinforced concrete beams with simultaneous sustained flexural loading. For this purpose, 40 reinforced concrete beams of 5 different compositions were constructed and exposed in simulated harmful environmental conditions in 3 different stress ratios for a total period of 42 months. Their behavior against corrosion was determined via regular measurements of the electrical resistance of concrete (according to ASTM G57) and the corrosion potential of the steel-reinforced bars with the use of copper sulphate (CSE) as reference electrode (according to ASTM C876). A theoretical calculation of the corrosion rate was conducted based on the electrochemical measurements of the beams. The results indicate that the corrosion potential of steel decreased in time and more rapidly after the initiation of the corrosion process;the electrical resistance firstly increased, remained stable for a short period and then decreased with the corrosion development, as expected. An inversely proportional relationship of the water/cement ratio of a composition with its corrosion behaviour as well as an analogous relationship between the cement content of a composition and its corrosion behaviour was observed. Also, the corrosion rate of steel is increased gradually with increasing load.展开更多
Based on comparative test of two transfer story models, in one of which the transfer beam and basement column is constructed of steel reinforced concrete, and the other is constructed of ordinary reinforced concrete, ...Based on comparative test of two transfer story models, in one of which the transfer beam and basement column is constructed of steel reinforced concrete, and the other is constructed of ordinary reinforced concrete, its force behavior, ductility and failure mechanism under vertical and horizontal loads are studied. The results show that loading bearing and seismic behavior of transfer story structure with steel reinforced concrete beam and basement column is good. The relative design suggestion is put forward.展开更多
In order to study the performances of high-strength concrete beams including steel fibers and large-particle recycled aggregates,four different beams have been designed,tested experimentally and simulated numerically....In order to study the performances of high-strength concrete beams including steel fibers and large-particle recycled aggregates,four different beams have been designed,tested experimentally and simulated numerically.As varying parameters,the replacement rates of recycled coarse aggregates and CFRP(carbon fiber reinforced polymer)sheets have been considered.The failure mode of these beams,related load deflection curves,stirrup strain and shear capacity have been determined through monotonic loading tests.The simulations have been conducted using the ABAQUS finite element software.The results show that the shear failure mode of recycled concrete beams is similar to that of ordinary concrete beams.The shear carrying capacity of high-strength concrete beams including steel fibers and large-particle recycled coarse aggregates grows with an increase in the replacement rate of recycled coarse aggregates.Reinforcement with CFRP sheets can significantly improve the beam’s shear carrying capacity and overall resistance to deformation.展开更多
In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is p...In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is proposed. In order to study the multi-energy dissipation behavior and restorability after an earthquake, two stages of low cyclic loading tests were carded out on ten test specimens. In the first stage, test on five specimens with different number of SP deep beams was carried out, and the test lasted until the displacement drift reached 2%. In the second stage, thin SPs were welded to both sides of the five specimens tested in the first stage, and the same test was carried out on the repaired specimens (designated as new specimens). The load-bearing capacity, stiffness, ductility, hysteretic behavior and failure characteristics were analyzed for both stages and the results are discussed herein. Extrapolating from these results, strength calculation models and formulas are proposed herein and simulations using ABAQUS carried out, they show good agreement with the test results. The study demonstrates that SRC columns, SP deep beams, concrete wall and energy dissipation strips cooperate well and play an important role in energy dissipation. In addition, this study shows that the shear wall has good recoverability after an earthquake, and that the welding of thin SP's to repair a deformed wall is a practicable technique.展开更多
Textile-reinforced concrete (TRC) is a new high performance cementitious composite material,which not only has superior corrosion resistance but also can effectively limit the development of concrete cracks and make t...Textile-reinforced concrete (TRC) is a new high performance cementitious composite material,which not only has superior corrosion resistance but also can effectively limit the development of concrete cracks and make the crack width and spacing of concrete become smaller.However,due to the brittle feature of fiber materials,the TRC structural member has no distinct failure symptom when it arrives at its ultimate load.At the same time,ordinary reinforced concrete (RC) elements have large dead weight and can not efficiently restrict the expansion of the main crack of structures because of the restriction of their special cover thickness.In order to overcome the disadvantages of both the TRC and the RC,a new architecture reinforced with textile-combined steel is proposed in this study,making full use of the advantages of the above two structures.The cover concrete at the tension zone of an RC element is partially replaced with TRC and thus the steel reinforcements replaced with textiles are subtracted.Compared with the old one,the new structure has less dead weight and has the merits of service safety and good durability.The flexural development process of the proper beam with this new structure is investigated in this paper and based on the plane section assumption,analytical equations are derived by using nonlinear analysis theory,including the load-carrying capacity at different stages and moment-curvature relationship and mid-span deflection during the entire loading process.Comparison between the calculated and the experimental results reveals satisfactory agreement and thus verifies the feasibility of the equations.展开更多
The objective of this work is to investigate the fatigue behavior of reinforced concrete(RC) beams strengthened with externally bonded carbon fiber reinforced polymer(CFRP) and steel plate. An experimental investigati...The objective of this work is to investigate the fatigue behavior of reinforced concrete(RC) beams strengthened with externally bonded carbon fiber reinforced polymer(CFRP) and steel plate. An experimental investigation and theoretical analysis were made on the law of deflection development and stiffness degradation, as well as the influence of fatigue load ranges. Test results indicate that the law of three-stage change under fatigue loading is followed by both midspan deflection and permanent deflection, which also have positive correlation with fatigue load amplitude. Fatigue stiffness of composite strengthened beams degrades gradually with the increasing of number of cycles. Based on the experimental results, a theoretical model by effective moment of inertia method is developed for calculating the sectional stiffness of such composite strengthened beams under fatigue loading, and the calculated results are in good agreement with the experimental results.展开更多
文摘The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestress ratio (PPR) are considered, and three pairs of two-span continuous beams with box sections varying in size are designed. The major parameters involved in the study include the PPR and the fiber location. It is concluded that the prestressed high strength concrete beam exhibits satisfactory ductility; the influences of steel fiber on the crack behaviors for partially prestressed beams are not as obvious as those for fully prestressed ones; steel fibers can improve the structural stiffness after cracking for fully prestressed high strength concrete beams; the moment redistribution from mid-span to intermediate support in the first stage should be mainly considered in practical design.
文摘A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is located in the core joint region and the connections between concrete members. This paper presents an experimental study of a series of PPSRC specimens. These specimens are tested under low cyclic loading.Experimental results demonstrate that the bearing capacity of the PPSRC specimens is 3 times that of the ordinary reinforced concrete( RC) beam-column joints. The strength and stiffness degradation rates are slower compared with that of the RC beam-column joints. In addition,the strength of the core joint region and the connections is higher than other parts of the PPSRC specimens. Beam failure occurs firstly for the PPSRC specimens,followed by column failure and connections failure. The failure of the core joint region occurs finally.Test results show that the seismic performance of the PPSRC is better than that of the ordinary RC beam-column joints.
基金the Science Foundation for Young Scientists of Hubei Province Educational Committee of China (B200514003)
文摘By the nonlinear finite element analysis (FEA) method, the mechanical properties of the steel fiber reinforced concrete (SFRC) deep beams were discussed in terms of the crack load and ultimate bearing capacity. In the simulation process, the ANSYS parametric design language (APDL) was used to set up the finite element model; the model of bond stress-slip relationship between steel bar and concrete was established. The nonlinear FEA results and test results demonstrated that the steel fiber can not only significantly improve the cracking load and ultimate bearing capacity of the concrete but also repress the development of the cracks. Meanwhile, good agreement was found between the experimental data and FEA results, if the unit type, the parameter model and the failure criterion are selected reasonably.
基金Project supported by the Science and Technology of Department of Communications of Liaoning Province (Grant No.200514)the Science and Technology of Department of Education of Liaoning Province (Grant No.L2010378)
文摘Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated composite layer tensile strain under the hogging bending of inverted loading composite beams, giving the relationship under the different fatigue stress ratios between fatigue cycles and steel bar’s stress range, crack width, stiffness loss and damage, etc., in composite layer. This article established fatigue life equation, and analyzed SFRSC reinforced mechanism to crack width and stiffness loss. The results show that SFRSC as the composite beam concrete has excellent properties of crack resistance and tensile, can reinforce the fatigue crack width and stiffness loss of composite beams, and improve the durability and in normal use of composite beams in the hogging bending zone.
基金supported by The National Natural Science Foundation of China under Grant No.11390362 and No.11221202
文摘In this study, the blast performance of steel reinforced concrete(RC) beams was experimentally and analytically investigated. The experiment consists of a total of 10 one-half-scale beams subjected to different levels of blast loading using live explosives. The reflected pressure-time histories were recorded and different damage levels and modes were observed. The blast resilience of the damaged beams was quantified by measuring the time-dependent displacements. Experiment results show that the damage in steel reinforced concrete beams with higher explosive mass is enhanced compared with that of the beams with smaller explosive mass at the same scaled distance. Based on the experiment data, an empirical expression is developed via dimensional analysis to correct the relationship between the midspan displacement and scaled distance. Besides, a complex single degree of freedom model(SDOF)incorporating complex features of the material behavior, high strain-rate effect and the column geometry was proposed and validated by test results.
基金financially supported by the National Key Basic Research Development Plan of China(973 Program,Grant No.2015CB655102)the National Natural Science Foundation of China(Grant Nos.51508272 and 51678304)+2 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20180433)the Project funded by China Postdoctoral Science Foundation(Grant No.2018M630558)the Open Research Funds for State Key Laboratory of High Performance Civil Engineering Materials(Grant No.2015CEM001)
文摘Through the flexural behavior test of coral aggregate reinforced concrete beams(CARCB) and ordinary Portland reinforced concrete beams(OPRCB), and based on the parameters of concrete types, concrete strength grades and reinforcement ratios, the crack development, failure mode, midspan deflection and flexural capacity were studied, the relationships of bending moment-midspan deflection, load-longitudinal tensile reinforcement strain, load-maximum crack width were established, and a calculation model for the flexural capacity of CARCB was suggested. The results showed that with the increase in the reinforcement ratio and concrete strength grade, the crack bending moment(Mcr)and ultimate bending moment(Mu) of CARCB gradually increased. The characteristics of CARCB and OPRCB are basically the same. Furthermore, through increasing the concrete strength grade and reinforcement ratio, Mcr/Mu could be increased to delay the cracking of CARCB. As the load increased, crack width(w) would also increase. At the beginning of the loading, w increased slowly. And then it increased rapidly when the load reached to the ultimate load, which then led to beam failure. Meanwhile, with a comprehensive consideration of the effects of steel corrosion on the loss of steel section and the decrease of steel yield strength, a more reasonable calculation model for the flexural capacity of CARCB was proposed.
基金National Natural Science Foundation of China Under Grant No.50878037
文摘To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.
基金Project(50578027) supported by the National Natural Science Foundation of China
文摘The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interface. Fatigue properties of the composite beam under the action of negative moment were experimentally studied. Through inverted loading mode the load-beating state of a composite beam was simulated under the action of negative moment. With the ratios of constructional bars being 0, 0.082% and 0.164% respectively as parameters, the effects of constructional bars on the properties of composite beam, such as fatigue life, crack propagation, rigidity loss as well as damage behavior of bonding interface, were studied. The mechanism of the constructional bars on the fatigue properties of the composite beams and the restriction mechanism of crack widths and rigidity loss were analyzed. The test results show that the constructional bars can enhance the shear resistance of the bonding interface between composite layer and old concrete beam and restrict expanding of steel fiber reinforced self-stressing concrete, which are beneficial to synergistic action of composite layer and old concrete beam, to reducing the stress amplitude of bars and the crack width of composite layer, and to increasing the durability and fatigue life of the composite beam.
文摘The deterioration of concrete over time is the result of various mechanical, physical, chemical and biological processes, with the corrosion of reinforcement being the most serious problem of durability of reinforced concrete structures. Over the last 50 years, a tremendous effort has been spent by the international scientific community with laboratory research and experimental field studies in order to increase the resistance of concrete over corrosion. This paper presents an experimental study of the corrosion behaviour of reinforced concrete beams with simultaneous sustained flexural loading. For this purpose, 40 reinforced concrete beams of 5 different compositions were constructed and exposed in simulated harmful environmental conditions in 3 different stress ratios for a total period of 42 months. Their behavior against corrosion was determined via regular measurements of the electrical resistance of concrete (according to ASTM G57) and the corrosion potential of the steel-reinforced bars with the use of copper sulphate (CSE) as reference electrode (according to ASTM C876). A theoretical calculation of the corrosion rate was conducted based on the electrochemical measurements of the beams. The results indicate that the corrosion potential of steel decreased in time and more rapidly after the initiation of the corrosion process;the electrical resistance firstly increased, remained stable for a short period and then decreased with the corrosion development, as expected. An inversely proportional relationship of the water/cement ratio of a composition with its corrosion behaviour as well as an analogous relationship between the cement content of a composition and its corrosion behaviour was observed. Also, the corrosion rate of steel is increased gradually with increasing load.
文摘Based on comparative test of two transfer story models, in one of which the transfer beam and basement column is constructed of steel reinforced concrete, and the other is constructed of ordinary reinforced concrete, its force behavior, ductility and failure mechanism under vertical and horizontal loads are studied. The results show that loading bearing and seismic behavior of transfer story structure with steel reinforced concrete beam and basement column is good. The relative design suggestion is put forward.
基金the Natural Science Foundation of Shandong Province[Grant Nos.ZR2015EQ017,ZR2018MEE044]the Key Laboratory Open Project of the Ministry of Education of Beijing University of Technology[Grant No.2020B03].
文摘In order to study the performances of high-strength concrete beams including steel fibers and large-particle recycled aggregates,four different beams have been designed,tested experimentally and simulated numerically.As varying parameters,the replacement rates of recycled coarse aggregates and CFRP(carbon fiber reinforced polymer)sheets have been considered.The failure mode of these beams,related load deflection curves,stirrup strain and shear capacity have been determined through monotonic loading tests.The simulations have been conducted using the ABAQUS finite element software.The results show that the shear failure mode of recycled concrete beams is similar to that of ordinary concrete beams.The shear carrying capacity of high-strength concrete beams including steel fibers and large-particle recycled coarse aggregates grows with an increase in the replacement rate of recycled coarse aggregates.Reinforcement with CFRP sheets can significantly improve the beam’s shear carrying capacity and overall resistance to deformation.
基金Beijing Natural Science Foundation of China under Grant No.8122004the National Natural Science Foundation of China under Grant No.51178010the National Science and Technology Support Program of China under Grant No.2012BAJ13B02
文摘In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is proposed. In order to study the multi-energy dissipation behavior and restorability after an earthquake, two stages of low cyclic loading tests were carded out on ten test specimens. In the first stage, test on five specimens with different number of SP deep beams was carried out, and the test lasted until the displacement drift reached 2%. In the second stage, thin SPs were welded to both sides of the five specimens tested in the first stage, and the same test was carried out on the repaired specimens (designated as new specimens). The load-bearing capacity, stiffness, ductility, hysteretic behavior and failure characteristics were analyzed for both stages and the results are discussed herein. Extrapolating from these results, strength calculation models and formulas are proposed herein and simulations using ABAQUS carried out, they show good agreement with the test results. The study demonstrates that SRC columns, SP deep beams, concrete wall and energy dissipation strips cooperate well and play an important role in energy dissipation. In addition, this study shows that the shear wall has good recoverability after an earthquake, and that the welding of thin SP's to repair a deformed wall is a practicable technique.
基金support from the Key Program of the National Natural Science Foundation of China (Grant No.50438010)
文摘Textile-reinforced concrete (TRC) is a new high performance cementitious composite material,which not only has superior corrosion resistance but also can effectively limit the development of concrete cracks and make the crack width and spacing of concrete become smaller.However,due to the brittle feature of fiber materials,the TRC structural member has no distinct failure symptom when it arrives at its ultimate load.At the same time,ordinary reinforced concrete (RC) elements have large dead weight and can not efficiently restrict the expansion of the main crack of structures because of the restriction of their special cover thickness.In order to overcome the disadvantages of both the TRC and the RC,a new architecture reinforced with textile-combined steel is proposed in this study,making full use of the advantages of the above two structures.The cover concrete at the tension zone of an RC element is partially replaced with TRC and thus the steel reinforcements replaced with textiles are subtracted.Compared with the old one,the new structure has less dead weight and has the merits of service safety and good durability.The flexural development process of the proper beam with this new structure is investigated in this paper and based on the plane section assumption,analytical equations are derived by using nonlinear analysis theory,including the load-carrying capacity at different stages and moment-curvature relationship and mid-span deflection during the entire loading process.Comparison between the calculated and the experimental results reveals satisfactory agreement and thus verifies the feasibility of the equations.
基金Project(51108355)supported by the National Natural Science Foundation of ChinaProject(2011CDB269)supported by the Natural Science Foundation of Hubei Province,China
文摘The objective of this work is to investigate the fatigue behavior of reinforced concrete(RC) beams strengthened with externally bonded carbon fiber reinforced polymer(CFRP) and steel plate. An experimental investigation and theoretical analysis were made on the law of deflection development and stiffness degradation, as well as the influence of fatigue load ranges. Test results indicate that the law of three-stage change under fatigue loading is followed by both midspan deflection and permanent deflection, which also have positive correlation with fatigue load amplitude. Fatigue stiffness of composite strengthened beams degrades gradually with the increasing of number of cycles. Based on the experimental results, a theoretical model by effective moment of inertia method is developed for calculating the sectional stiffness of such composite strengthened beams under fatigue loading, and the calculated results are in good agreement with the experimental results.