The fault diagnosis problem is investigated for a class of nonlinear neutral systems with multiple disturbances.Time-varying faults are considered and multiple disturbances are supposed to include the unknown disturba...The fault diagnosis problem is investigated for a class of nonlinear neutral systems with multiple disturbances.Time-varying faults are considered and multiple disturbances are supposed to include the unknown disturbance modeled by an exo-system and norm bounded uncertain disturbance.A nonlinear disturbance observer is designed to estimate the modeled disturbance.Then,the fault diagnosis observer is constructed by integrating disturbance observer with disturbance attenuation and rejection performances.The augmented Lyapunov functional approach,which involves the tuning parameter and slack variable,is applied to make the solution of inequality more flexible.Finally,applications for a two-link robotic manipulator system are given to show the efficiency of the proposed approach.展开更多
Active power filter (APF) based on voltage source inverter (VSI) is one of the important measures for handling the power quality problem. Mathematically, the APF model in a power grid is a typical nonlinear one. T...Active power filter (APF) based on voltage source inverter (VSI) is one of the important measures for handling the power quality problem. Mathematically, the APF model in a power grid is a typical nonlinear one. The idea of passivity is a powerful tool to study the stabilization of such a nonlinear system. In this paper, a state-space model of the four-leg APF is derived, based on which a new H-infinity controller for current tracking is proposed from the passivity point of view. It can achieve not only asymptotic tracking, but also disturbance attenuation in the sense of L2-gain. Subsequently, a sufficient condition to guarantee the boundedness and desired mean of the DC voltage is also given. This straightforward condition is consistent with the power-balancing law of electrical circuits. Simulations performed on PSCAD platform verify the validity of the new approach.展开更多
The robust control problem for a class of underactuated mechanical systems called acrobots is addressed. The goal is to drive the acrobots away from the straight-down position and balance them at the straight-up unsta...The robust control problem for a class of underactuated mechanical systems called acrobots is addressed. The goal is to drive the acrobots away from the straight-down position and balance them at the straight-up unstable equilibrium position in the presence of parametric uncertainties and external disturbance. First, in the swing-up area, it is shown that the time derivative of energy is independent of the parameter uncertainties, but exogenous disturbance may destroy the characteristic of increase in mechanical energy. So, a swing-up controller with compensator is designed to suppress the influence of the disturbance. Then, in the attractive area, the control problem is formulated into a H~ control framework by introducing a proper error signal, and a sufficient condition of the existence of Hoo state feedback control law based on linear matrix inequality (LMI) is proposed to guarantee the quadratic stability of the control system. Finally, the simulation results show that the proposed control approach can simultaneously handle a maximum ±10% parameter perturbation and a big disturbance simultaneously.展开更多
在这篇论文,一个概括加速反馈控制(声频抗流圈) 设计方法,命名声频抗流圈提高了 H ∞控制器,为两个被建议完整激活并且在激活的非线性的自治车辆系统下面。声频抗流圈基于已知的动力学作为柔韧的改进被设计到正常控制。首先,以便拒...在这篇论文,一个概括加速反馈控制(声频抗流圈) 设计方法,命名声频抗流圈提高了 H ∞控制器,为两个被建议完整激活并且在激活的非线性的自治车辆系统下面。声频抗流圈基于已知的动力学作为柔韧的改进被设计到正常控制。首先,以便拒绝不确定性和外部骚乱,线性 prefilter 在新声频抗流圈设计方法被使用在正常声频抗流圈代替高获得。然后,背走算法被用于 AFC 设计在激活的系统下面。两个的分析在有限获得 L2 稳定性显示出的频率领域和输入产量的骚乱变细新控制器设计方法是适用的。最后,模拟关于无人的模型直升飞机的追踪的控制被进行。结果与没有声频抗流圈,追踪的控制获得验证新方法的可行性的那些相比。展开更多
In this paper,nonlinear observers are incorporated into the adaptive control to synthesize controllers for a class of uncertain nonlinear systems with unknown sinusoidal disturbances which are presented in matched and...In this paper,nonlinear observers are incorporated into the adaptive control to synthesize controllers for a class of uncertain nonlinear systems with unknown sinusoidal disturbances which are presented in matched and unmatched forms.In addition to magnitudes and phases,frequencies of the sinusoidal disturbances need not be known as well,so long as the overall order is known.Nonlinear observers are constructed to eliminate the effect of unknown sinusoidal disturbances to improve the steady-state output tracking performance-asymptotic output tracking is achieved.The adaptation law is used to obtain the estimate of all unknown parameters.The presented disturbance decoupling algorithms can deal with matched and unmatched unknown sinusoidal disturbances.展开更多
This paper considers the problem of robust disturbance attenuation for a class of uncertain nonlinear networked control systems. Takagi-Sugeno fuzzy models are firstly employed to describe the nonlinear plant. Markov ...This paper considers the problem of robust disturbance attenuation for a class of uncertain nonlinear networked control systems. Takagi-Sugeno fuzzy models are firstly employed to describe the nonlinear plant. Markov processes are used to model the random network-induced delays and data packet dropouts. The Lyapunov-Razumikhin method has been used to derive such a controller for this class of nonlinear systems such that it is stochastically stabilizable with a disturbance attenuation level. Sufficient conditions for the existence of such a controller are derived in terms of the solvability of bilinear matrix inequalities. An iterative algorithm is proposed to change this non-convex problem into quasi-convex optimization problems, which can be solved effectively by available mathematical tools. The effectiveness of the proposed design methodology is verified by a numerical example.展开更多
This paper focuses on the robust H-infinity reliable control for a class of nonlinear neutral delay systems with uncertainties and actuator failures. We design a state feedback controller in terms of linear matrix ine...This paper focuses on the robust H-infinity reliable control for a class of nonlinear neutral delay systems with uncertainties and actuator failures. We design a state feedback controller in terms of linear matrix inequality(LMI)such that the plant satisfies robust H-infinity performance for all admissible uncertainties, and actuator failures among a prespecified subset of actuators. An example is also given to illustrate the effectiveness of the proposed approach.展开更多
This paper studies the problem of designing adaptive fault-tolerant H-infinity controllers for linear timeinvariant systems with actuator saturation. The disturbance tolerance ability of the closed-loop system is meas...This paper studies the problem of designing adaptive fault-tolerant H-infinity controllers for linear timeinvariant systems with actuator saturation. The disturbance tolerance ability of the closed-loop system is measured by an optimal index. The notion of an adaptive H-infinity performance index is proposed to describe the disturbance attenuation performances of closed-loop systems. New methods for designing indirect adaptive fault-tolerant controllers via state feedback are presented for actuator fault compensations. Based on the on-line estimation of eventual faults, the adaptive fault-tolerant controller parameters are updated automatically to compensate for the fault effects on systems. The designs are developed in the framework of the linear matrix inequality (LMI) approach, which can guarantee the disturbance tolerance ability and adaptive H-infinity performances of closed-loop systems in the cases of actuator saturation and actuator failures. An example is given to illustrate the efficiency of the design method.展开更多
This paper is devoted to the finite-time disturbance attenuation problem of affine nonlinear systems. Based on the finite time Lyapunov stability theory, some finite-time H∞ performance criterions are derived. Then t...This paper is devoted to the finite-time disturbance attenuation problem of affine nonlinear systems. Based on the finite time Lyapunov stability theory, some finite-time H∞ performance criterions are derived. Then the state-feedback control law is designed and the structure of such a controller is investigated. Furthermore, it is shown that the H∞ controller can also make the closed-loop system satisfy finite-time H∞ performance for nonlinear homogeneous systems. An example is provided to demonstrate the effectiveness of the presented results.展开更多
This paper considers the problem of L2-disturbance attenuation for a class of time-delay port-controlled Hamiltonian systems. A v-dissipative inequality is established by using a proper control law and a storage funct...This paper considers the problem of L2-disturbance attenuation for a class of time-delay port-controlled Hamiltonian systems. A v-dissipative inequality is established by using a proper control law and a storage function. Then based on the Razumikhin stability theorem, a sufficient condition is proposed for the asymptotically stability of the closed-loop system. Finally, the authors investigate the case that there are time-invariant uncertainties belonging to some convex bounded polytypic domain and an L2 disturbance attenuation control law is proposed. Study of illustrative example with simulation shows that the presented method in this paper works very well in the disturbance attenuation of time-delay Hamiltonian systems.展开更多
This paper focuses on the H optimal control problem in which the wholestate is available for feedback. We show that in attenuating the disturbance, the Hoptimal performance of dynamic state-feedback is no better than ...This paper focuses on the H optimal control problem in which the wholestate is available for feedback. We show that in attenuating the disturbance, the Hoptimal performance of dynamic state-feedback is no better than that of static state-feedback, which generalizes current results for linear time-invariant systems with no directtransmission from the disturbance and control input to the controlled output.展开更多
This paperinvestigatesthe dissipative performance ofa class ofpowersystems with disturbances,when viewedfrom afixed setofinputs and outputs.Apassivityresultis obtainedfora specialregulation output,andthe Hamilton J...This paperinvestigatesthe dissipative performance ofa class ofpowersystems with disturbances,when viewedfrom afixed setofinputs and outputs.Apassivityresultis obtainedfora specialregulation output,andthe Hamilton Jacobiinequality is solved by means of variable gradient approach so thatthe power system has finiteL2 gainlessthan or equalto a prescribed value .展开更多
Generator excitation control plays an important role in improving the dynamic performance and stability of power systems. This paper is concerned with nonlinear decentralized adaptive excitation control for multi-mach...Generator excitation control plays an important role in improving the dynamic performance and stability of power systems. This paper is concerned with nonlinear decentralized adaptive excitation control for multi-machine power systems. Based on a recursive design method, an adaptive excitation control law with L2 disturbance attenuation is constructed. Furthermore, it is verified that the proposed control scheme possesses the property of decentralization and the robustness in the sense of L2-gain. As a consequence, transient stability of a multi-machine power system is guaranteed, regardless of system parameters variation and faults.展开更多
Maintenance of high performance formation control is important for low Earth orbit (LEO) formation missions of small spacecraft.In this paper,a model of nonlinear relative motion dynamics is built,and then nonlinear a...Maintenance of high performance formation control is important for low Earth orbit (LEO) formation missions of small spacecraft.In this paper,a model of nonlinear relative motion dynamics is built,and then nonlinear and important perturbations affecting the formation configuration,such as J 2 and atmospheric drag,are analyzed as disturbances.Global navigation satellite system based relative positioning with nonlinear filtering is adopted to provide state information associated with the perturbations.By combining disturbance observer based control with H ∞ state feedback,a composite disturbance attenuation controller is proposed for maintenance of continuous and accurate formation.With consideration of precise control relying on micro thrusters,a composite disturbance attenuation based saturated controller is designed and its stability is proved.Finally,through numerical simulations,we demonstrate that control accuracy is improved after effectively avoiding perturbations and that stabilization can be satisfied using this method.展开更多
In present paper, the disturbance attenuation problem of uncertain nonlinear cascaded systems is studied. Based on the adding one power integrator technique and recursive design, a feedback controller that solves the ...In present paper, the disturbance attenuation problem of uncertain nonlinear cascaded systems is studied. Based on the adding one power integrator technique and recursive design, a feedback controller that solves the disturbance attenuation problem is constructed for uncertain nonlinear cascaded systems with internal stability.展开更多
This paper investigates the H∞ controller design method for a class of singular networked control systems (SNCS) based on the singular plant. In view of the network-induced delay less than or equal to a sampling peri...This paper investigates the H∞ controller design method for a class of singular networked control systems (SNCS) based on the singular plant. In view of the network-induced delay less than or equal to a sampling period, finite external disturbance, clock-driven sensors, event-driven controller and actuators as well as impulse behavior and structural instability of singular plants, the H∞ controller design method of SNCS with state feed- back way and dynamic output feedback way is investigated respectively by means of the linear matrix inequality method. The existence condition of H∞ control law, the solving approaches of H∞ controller parameters and disturbance attenuation degree are presented. Finally, a simulation example is given to illustrate the effectiveness and feasibility of the presented method.展开更多
基金supported by the National Natural Science Foundation of China(6077401360925012)+1 种基金the National High Technology Research and Development Program of China(863 Program) (2008AA12A216)the National Basic Research Program of China (973 Program)(2009CB 724002)
文摘The fault diagnosis problem is investigated for a class of nonlinear neutral systems with multiple disturbances.Time-varying faults are considered and multiple disturbances are supposed to include the unknown disturbance modeled by an exo-system and norm bounded uncertain disturbance.A nonlinear disturbance observer is designed to estimate the modeled disturbance.Then,the fault diagnosis observer is constructed by integrating disturbance observer with disturbance attenuation and rejection performances.The augmented Lyapunov functional approach,which involves the tuning parameter and slack variable,is applied to make the solution of inequality more flexible.Finally,applications for a two-link robotic manipulator system are given to show the efficiency of the proposed approach.
基金This work was supported by the National Natural Science Foundation of China(No.50377018, K5112515E1).
文摘Active power filter (APF) based on voltage source inverter (VSI) is one of the important measures for handling the power quality problem. Mathematically, the APF model in a power grid is a typical nonlinear one. The idea of passivity is a powerful tool to study the stabilization of such a nonlinear system. In this paper, a state-space model of the four-leg APF is derived, based on which a new H-infinity controller for current tracking is proposed from the passivity point of view. It can achieve not only asymptotic tracking, but also disturbance attenuation in the sense of L2-gain. Subsequently, a sufficient condition to guarantee the boundedness and desired mean of the DC voltage is also given. This straightforward condition is consistent with the power-balancing law of electrical circuits. Simulations performed on PSCAD platform verify the validity of the new approach.
基金Projects(61074112,60674044) supported by the National Natural Science Foundation of China
文摘The robust control problem for a class of underactuated mechanical systems called acrobots is addressed. The goal is to drive the acrobots away from the straight-down position and balance them at the straight-up unstable equilibrium position in the presence of parametric uncertainties and external disturbance. First, in the swing-up area, it is shown that the time derivative of energy is independent of the parameter uncertainties, but exogenous disturbance may destroy the characteristic of increase in mechanical energy. So, a swing-up controller with compensator is designed to suppress the influence of the disturbance. Then, in the attractive area, the control problem is formulated into a H~ control framework by introducing a proper error signal, and a sufficient condition of the existence of Hoo state feedback control law based on linear matrix inequality (LMI) is proposed to guarantee the quadratic stability of the control system. Finally, the simulation results show that the proposed control approach can simultaneously handle a maximum ±10% parameter perturbation and a big disturbance simultaneously.
文摘在这篇论文,一个概括加速反馈控制(声频抗流圈) 设计方法,命名声频抗流圈提高了 H ∞控制器,为两个被建议完整激活并且在激活的非线性的自治车辆系统下面。声频抗流圈基于已知的动力学作为柔韧的改进被设计到正常控制。首先,以便拒绝不确定性和外部骚乱,线性 prefilter 在新声频抗流圈设计方法被使用在正常声频抗流圈代替高获得。然后,背走算法被用于 AFC 设计在激活的系统下面。两个的分析在有限获得 L2 稳定性显示出的频率领域和输入产量的骚乱变细新控制器设计方法是适用的。最后,模拟关于无人的模型直升飞机的追踪的控制被进行。结果与没有声频抗流圈,追踪的控制获得验证新方法的可行性的那些相比。
基金supported by the National Natural Science Foundation of China(No.60874041,60834001)the Youth Foundation of Henan University of Science and Technology(No.13440018)
文摘In this paper,nonlinear observers are incorporated into the adaptive control to synthesize controllers for a class of uncertain nonlinear systems with unknown sinusoidal disturbances which are presented in matched and unmatched forms.In addition to magnitudes and phases,frequencies of the sinusoidal disturbances need not be known as well,so long as the overall order is known.Nonlinear observers are constructed to eliminate the effect of unknown sinusoidal disturbances to improve the steady-state output tracking performance-asymptotic output tracking is achieved.The adaptation law is used to obtain the estimate of all unknown parameters.The presented disturbance decoupling algorithms can deal with matched and unmatched unknown sinusoidal disturbances.
文摘This paper considers the problem of robust disturbance attenuation for a class of uncertain nonlinear networked control systems. Takagi-Sugeno fuzzy models are firstly employed to describe the nonlinear plant. Markov processes are used to model the random network-induced delays and data packet dropouts. The Lyapunov-Razumikhin method has been used to derive such a controller for this class of nonlinear systems such that it is stochastically stabilizable with a disturbance attenuation level. Sufficient conditions for the existence of such a controller are derived in terms of the solvability of bilinear matrix inequalities. An iterative algorithm is proposed to change this non-convex problem into quasi-convex optimization problems, which can be solved effectively by available mathematical tools. The effectiveness of the proposed design methodology is verified by a numerical example.
基金This work was supported by the National Natural Science Foundation of China (No. 60274009)the SRFDP (No. 20020145007)the Natural Science Foundation of Liaoning Province (No.20032020).
文摘This paper focuses on the robust H-infinity reliable control for a class of nonlinear neutral delay systems with uncertainties and actuator failures. We design a state feedback controller in terms of linear matrix inequality(LMI)such that the plant satisfies robust H-infinity performance for all admissible uncertainties, and actuator failures among a prespecified subset of actuators. An example is also given to illustrate the effectiveness of the proposed approach.
基金partly supported by Program for New Century Excellent Talents in University (No.NCET-04-0283)the Funds for Creative Research Groups of China (No.60521003)+4 种基金Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0421)the State Key Program of National Natural Science of China (No.60534010)the Funds of National Science of China (No.60674021)the Funds of PhD program of MOE,China (No.20060145019)the 111 Project (No.B08015)
文摘This paper studies the problem of designing adaptive fault-tolerant H-infinity controllers for linear timeinvariant systems with actuator saturation. The disturbance tolerance ability of the closed-loop system is measured by an optimal index. The notion of an adaptive H-infinity performance index is proposed to describe the disturbance attenuation performances of closed-loop systems. New methods for designing indirect adaptive fault-tolerant controllers via state feedback are presented for actuator fault compensations. Based on the on-line estimation of eventual faults, the adaptive fault-tolerant controller parameters are updated automatically to compensate for the fault effects on systems. The designs are developed in the framework of the linear matrix inequality (LMI) approach, which can guarantee the disturbance tolerance ability and adaptive H-infinity performances of closed-loop systems in the cases of actuator saturation and actuator failures. An example is given to illustrate the efficiency of the design method.
基金Supported by the National Basic Research Program of China (Grant No. 2005CB321902)the National Natural Science Foundation of China(Grant No. 60374001)the Doctoral Fund of Ministry of Education of China (Grant No. 20030006003)
文摘This paper is devoted to the finite-time disturbance attenuation problem of affine nonlinear systems. Based on the finite time Lyapunov stability theory, some finite-time H∞ performance criterions are derived. Then the state-feedback control law is designed and the structure of such a controller is investigated. Furthermore, it is shown that the H∞ controller can also make the closed-loop system satisfy finite-time H∞ performance for nonlinear homogeneous systems. An example is provided to demonstrate the effectiveness of the presented results.
基金supported by the National Natural Science Foundation of China under Grant Nos.61074068, 61004013 and 61034007the Research Fund the Doctoral Program of Chinese Higher Education under Grant No.200804220028+2 种基金China Postdoctoral Science Foundation under Grant No.20100481300the Postdoctoral Innovation Program of Shandong Province under Grant No.200902014the Natural Science Foundation of Shandong Province under Grant No.ZB2010FM013
文摘This paper considers the problem of L2-disturbance attenuation for a class of time-delay port-controlled Hamiltonian systems. A v-dissipative inequality is established by using a proper control law and a storage function. Then based on the Razumikhin stability theorem, a sufficient condition is proposed for the asymptotically stability of the closed-loop system. Finally, the authors investigate the case that there are time-invariant uncertainties belonging to some convex bounded polytypic domain and an L2 disturbance attenuation control law is proposed. Study of illustrative example with simulation shows that the presented method in this paper works very well in the disturbance attenuation of time-delay Hamiltonian systems.
文摘This paper focuses on the H optimal control problem in which the wholestate is available for feedback. We show that in attenuating the disturbance, the Hoptimal performance of dynamic state-feedback is no better than that of static state-feedback, which generalizes current results for linear time-invariant systems with no directtransmission from the disturbance and control input to the controlled output.
文摘This paperinvestigatesthe dissipative performance ofa class ofpowersystems with disturbances,when viewedfrom afixed setofinputs and outputs.Apassivityresultis obtainedfora specialregulation output,andthe Hamilton Jacobiinequality is solved by means of variable gradient approach so thatthe power system has finiteL2 gainlessthan or equalto a prescribed value .
基金Supported by the National Natural Science Foundation of China (Nos. 59837270 and 50377018) and the National Key Basic Re-search Special Fund of China (No. G1998020309)
文摘Generator excitation control plays an important role in improving the dynamic performance and stability of power systems. This paper is concerned with nonlinear decentralized adaptive excitation control for multi-machine power systems. Based on a recursive design method, an adaptive excitation control law with L2 disturbance attenuation is constructed. Furthermore, it is verified that the proposed control scheme possesses the property of decentralization and the robustness in the sense of L2-gain. As a consequence, transient stability of a multi-machine power system is guaranteed, regardless of system parameters variation and faults.
基金supported by the National High-Tech R & D Program (863) of China (No.2008AA12A216)the National Basic Research Program (973) of China (No.2009CB72400101C)
文摘Maintenance of high performance formation control is important for low Earth orbit (LEO) formation missions of small spacecraft.In this paper,a model of nonlinear relative motion dynamics is built,and then nonlinear and important perturbations affecting the formation configuration,such as J 2 and atmospheric drag,are analyzed as disturbances.Global navigation satellite system based relative positioning with nonlinear filtering is adopted to provide state information associated with the perturbations.By combining disturbance observer based control with H ∞ state feedback,a composite disturbance attenuation controller is proposed for maintenance of continuous and accurate formation.With consideration of precise control relying on micro thrusters,a composite disturbance attenuation based saturated controller is designed and its stability is proved.Finally,through numerical simulations,we demonstrate that control accuracy is improved after effectively avoiding perturbations and that stabilization can be satisfied using this method.
文摘In present paper, the disturbance attenuation problem of uncertain nonlinear cascaded systems is studied. Based on the adding one power integrator technique and recursive design, a feedback controller that solves the disturbance attenuation problem is constructed for uncertain nonlinear cascaded systems with internal stability.
文摘This paper investigates the H∞ controller design method for a class of singular networked control systems (SNCS) based on the singular plant. In view of the network-induced delay less than or equal to a sampling period, finite external disturbance, clock-driven sensors, event-driven controller and actuators as well as impulse behavior and structural instability of singular plants, the H∞ controller design method of SNCS with state feed- back way and dynamic output feedback way is investigated respectively by means of the linear matrix inequality method. The existence condition of H∞ control law, the solving approaches of H∞ controller parameters and disturbance attenuation degree are presented. Finally, a simulation example is given to illustrate the effectiveness and feasibility of the presented method.