This paper proposes an adaptive joint source and channel coding scheme for H.264 video multicast over wireless LAN which takes into account the user topology changes and varying channel conditions of multiple users, a...This paper proposes an adaptive joint source and channel coding scheme for H.264 video multicast over wireless LAN which takes into account the user topology changes and varying channel conditions of multiple users, and dynamically allocates available bandwidth between source coding and channel coding, with the goal to optimize the overall system performance. In particular, source resilience and error correction are considered jointly in the scheme to achieve the optimal performance. And a channel estimation algorithm based on the average packet loss rate and the variance of packet loss rate is proposed also. Two overall performance criteria for video multicast are investigated and experimental results are presented to show the improvement obtained by the scheme.展开更多
In this paper, we propose a new method for very low bit-rate video coding that combines H.264/AVC standard and two-dimensional discrete wavelet transform. In this method, first a two dimensional wavelet transform is a...In this paper, we propose a new method for very low bit-rate video coding that combines H.264/AVC standard and two-dimensional discrete wavelet transform. In this method, first a two dimensional wavelet transform is applied on each video frame independently to extract the low frequency components for each frame and then the low frequency parts of all frames are coded using H.264/AVC codec. On the other hand, the high frequency parts of the video frames are coded by Run Length Coding algorithm, after applying a threshold to neglect the low value coefficients. Experiments show that our proposed method can achieve better rate-distortion performance at very low bit-rate applications below 16 kbits/s compared to applying H.264/AVC standard directly to all frames. Applications of our proposed video coding technique include video telephony, video-conferencing, transmitting or receiving video over half-rate traffic channels of GSM networks.展开更多
The scalable extension of H.264/AVC, known as scalable video coding or SVC, is currently the main focus of the Joint Video Team’s work. In its present working draft, the higher level syntax of SVC follows the design ...The scalable extension of H.264/AVC, known as scalable video coding or SVC, is currently the main focus of the Joint Video Team’s work. In its present working draft, the higher level syntax of SVC follows the design principles of H.264/AVC. Self-contained network abstraction layer units (NAL units) form natural entities for packetization. The SVC specification is by no means finalized yet, but nevertheless the work towards an optimized RTP payload format has already started. RFC 3984, the RTP payload specification for H.264/AVC has been taken as a starting point, but it became quickly clear that the scalable features of SVC require adaptation in at least the areas of capability/operation point signaling and documentation of the extended NAL unit header. This paper first gives an overview of the history of scalable video coding, and then reviews the video coding layer (VCL) and NAL of the latest SVC draft specification. Finally, it discusses different aspects of the draft SVC RTP payload format, in- cluding the design criteria, use cases, signaling and payload structure.展开更多
The dilemma of the quantization parameter (QP) being involved in both rate control and rate-distortion optimization (RDO) prevents using the traditional rate control scheme. Although some rate control schemes are prop...The dilemma of the quantization parameter (QP) being involved in both rate control and rate-distortion optimization (RDO) prevents using the traditional rate control scheme. Although some rate control schemes are proposed to circumvent the dilemma, the inaccurate prediction model and improper bit allocation deter H.264 application on low bandwidth channel. To resolve this issue, this paper proposes a novel rate control scheme by considering the macroblock (MB) encoding complexity variation and buffer variation and by exploiting the spatio-temporal correlation sufficiently well. Simulations showed that this scheme improves the perceptual quality of the pictures with similar or smaller PSNR deviations when compared to that of rate control in JVT-O016.展开更多
In order to reduce the encoding complexity of macroblock coding mode decision in H.264/AVC, a selective smaller block-size searching algorithm and a selective intra coding mode searching algorithm are proposed by usin...In order to reduce the encoding complexity of macroblock coding mode decision in H.264/AVC, a selective smaller block-size searching algorithm and a selective intra coding mode searching algorithm are proposed by using the high correlation among coding modes and in spatial and temporal domains of video sequence. Simulation results demonstrate that the proposed algorithm can provide significant improvement in computational requirement, with negligible small picture quality degradation and slight bit rate increase.展开更多
This paper proposes an integrated joint source-channel decoder (I-JSCD) using Max-Log-MAP method for sources encoded with exp-Golomb codes and convolutional codes, and proposes a system applying this method to decod...This paper proposes an integrated joint source-channel decoder (I-JSCD) using Max-Log-MAP method for sources encoded with exp-Golomb codes and convolutional codes, and proposes a system applying this method to decoding the VLC data, e.g. motion vector differences (MVDs), of H.264 across an AWGN channel. This method combines the source code state-space and the channel code state-space together to construct a joint state-space, develops a 3-D trellis and a maximum a-posterior (MAP) algorithm to estimate the source sequence symbol by symbol, and then uses max-log approximation to simplify the algorithm. Experiments indicate that the proposed system gives significant improvements on peak signal-to-noise ratio (PSNR) (maximum about 15 dB) than a separate scheme. This also leads to a higher visual quality of video stream over a highly noisy channel.展开更多
This paper presents a reversible data hiding(RDH)method,which is designed by combining histogram modification(HM)with run-level coding in H.264/advanced video coding(AVC).In this scheme,the run-level is changed for em...This paper presents a reversible data hiding(RDH)method,which is designed by combining histogram modification(HM)with run-level coding in H.264/advanced video coding(AVC).In this scheme,the run-level is changed for embedding data into H.264/AVC video sequences.In order to guarantee the reversibility of the proposed scheme,the last nonzero quantized discrete cosine transform(DCT)coefficients in embeddable 4×4 blocks are shifted by the technology of histogram modification.The proposed scheme is realized after quantization and before entropy coding of H.264/AVC compression standard.Therefore,the embedded information can be correctly extracted at the decoding side.Peak-signal-noise-to-ratio(PSNR)and Structure similarity index(SSIM),embedding payload and bit-rate variation are exploited to measure the performance of the proposed scheme.Experimental results have shown that the proposed scheme leads to less SSIM variation and bit-rate increase.展开更多
To improve the coding performance of H.264/AVC, this paper proposes a rate control scheme composed of a novel flame complexity optimized selection and a quantization parameter (QP) value computation approach. First,...To improve the coding performance of H.264/AVC, this paper proposes a rate control scheme composed of a novel flame complexity optimized selection and a quantization parameter (QP) value computation approach. First, it extracts the frame coding complexity from two rate distortion models, and then introduces five statistic modes to estimate the frame coding complexity. An optimal mode is selected according to the coding efficiency. Finally the paper presents a novel QP calculation method for the H.264/AVC rate control. Experimental results show that the proposed algorithra outperforms the algorithm integrated in the 3M model in obtaining precise frame coding complexity, achieving robust buffer control and improving coding quality. And the improving visual quality is high up to 0.90dB for CIF sequences.展开更多
In this paper, the complexity of intra coding is first analyzed so as to achieve a weight of complexity measurement for each intra mode. Then, a new complexity scalable control algorithm for intra coding in H. 264 is ...In this paper, the complexity of intra coding is first analyzed so as to achieve a weight of complexity measurement for each intra mode. Then, a new complexity scalable control algorithm for intra coding in H. 264 is proposed, based on the rearrangement of the order of candidate modes and an efficient complexity allocation and control (CAAC) scheme at the macroblock (MB) level. The candidate modes of each MB are rearranged according to the local-edge information. Experimental results show that our proposed algorithm can make an appropriate cut-off point of the candidate modes sequence adaptively according to the current energy condition of a mobile device, so as to adjust the complexity at any level while maximizing the video quality, which can prolong the operational lifetime of the battery with minimum degradation in video quality.展开更多
作为视频通信中非常重要的关键技术之一,码率控制用于调整视频码流以满足带宽受限的条件,能够直接影响视频编码器输出码率的稳定性和保证视频质量。首先描述码率控制问题,给出码率控制算法的分类准则;然后对众多的H.264/先进视频编码(ad...作为视频通信中非常重要的关键技术之一,码率控制用于调整视频码流以满足带宽受限的条件,能够直接影响视频编码器输出码率的稳定性和保证视频质量。首先描述码率控制问题,给出码率控制算法的分类准则;然后对众多的H.264/先进视频编码(advanced video coding,AVC)码率控制算法根据应用目的进行具体描述;最后从适用标准和应用目的两个方面,详细指出码率控制技术今后的研究方向。展开更多
文摘This paper proposes an adaptive joint source and channel coding scheme for H.264 video multicast over wireless LAN which takes into account the user topology changes and varying channel conditions of multiple users, and dynamically allocates available bandwidth between source coding and channel coding, with the goal to optimize the overall system performance. In particular, source resilience and error correction are considered jointly in the scheme to achieve the optimal performance. And a channel estimation algorithm based on the average packet loss rate and the variance of packet loss rate is proposed also. Two overall performance criteria for video multicast are investigated and experimental results are presented to show the improvement obtained by the scheme.
文摘In this paper, we propose a new method for very low bit-rate video coding that combines H.264/AVC standard and two-dimensional discrete wavelet transform. In this method, first a two dimensional wavelet transform is applied on each video frame independently to extract the low frequency components for each frame and then the low frequency parts of all frames are coded using H.264/AVC codec. On the other hand, the high frequency parts of the video frames are coded by Run Length Coding algorithm, after applying a threshold to neglect the low value coefficients. Experiments show that our proposed method can achieve better rate-distortion performance at very low bit-rate applications below 16 kbits/s compared to applying H.264/AVC standard directly to all frames. Applications of our proposed video coding technique include video telephony, video-conferencing, transmitting or receiving video over half-rate traffic channels of GSM networks.
文摘The scalable extension of H.264/AVC, known as scalable video coding or SVC, is currently the main focus of the Joint Video Team’s work. In its present working draft, the higher level syntax of SVC follows the design principles of H.264/AVC. Self-contained network abstraction layer units (NAL units) form natural entities for packetization. The SVC specification is by no means finalized yet, but nevertheless the work towards an optimized RTP payload format has already started. RFC 3984, the RTP payload specification for H.264/AVC has been taken as a starting point, but it became quickly clear that the scalable features of SVC require adaptation in at least the areas of capability/operation point signaling and documentation of the extended NAL unit header. This paper first gives an overview of the history of scalable video coding, and then reviews the video coding layer (VCL) and NAL of the latest SVC draft specification. Finally, it discusses different aspects of the draft SVC RTP payload format, in- cluding the design criteria, use cases, signaling and payload structure.
文摘The dilemma of the quantization parameter (QP) being involved in both rate control and rate-distortion optimization (RDO) prevents using the traditional rate control scheme. Although some rate control schemes are proposed to circumvent the dilemma, the inaccurate prediction model and improper bit allocation deter H.264 application on low bandwidth channel. To resolve this issue, this paper proposes a novel rate control scheme by considering the macroblock (MB) encoding complexity variation and buffer variation and by exploiting the spatio-temporal correlation sufficiently well. Simulations showed that this scheme improves the perceptual quality of the pictures with similar or smaller PSNR deviations when compared to that of rate control in JVT-O016.
基金National Natural Science Foundation of China (60372018)
文摘In order to reduce the encoding complexity of macroblock coding mode decision in H.264/AVC, a selective smaller block-size searching algorithm and a selective intra coding mode searching algorithm are proposed by using the high correlation among coding modes and in spatial and temporal domains of video sequence. Simulation results demonstrate that the proposed algorithm can provide significant improvement in computational requirement, with negligible small picture quality degradation and slight bit rate increase.
基金Supported by the Foundation of Ministry of Education of China (211CERS10)
文摘This paper proposes an integrated joint source-channel decoder (I-JSCD) using Max-Log-MAP method for sources encoded with exp-Golomb codes and convolutional codes, and proposes a system applying this method to decoding the VLC data, e.g. motion vector differences (MVDs), of H.264 across an AWGN channel. This method combines the source code state-space and the channel code state-space together to construct a joint state-space, develops a 3-D trellis and a maximum a-posterior (MAP) algorithm to estimate the source sequence symbol by symbol, and then uses max-log approximation to simplify the algorithm. Experiments indicate that the proposed system gives significant improvements on peak signal-to-noise ratio (PSNR) (maximum about 15 dB) than a separate scheme. This also leads to a higher visual quality of video stream over a highly noisy channel.
基金This work was supported by the National Natural Science Foundation of China(NSFC)under the grant No.61972269the Fundamental Research Funds for the Central Universities under the grant No.YJ201881Doctoral Innovation Fund Program of Southwest Jiaotong University under the grant No.DCX201824.
文摘This paper presents a reversible data hiding(RDH)method,which is designed by combining histogram modification(HM)with run-level coding in H.264/advanced video coding(AVC).In this scheme,the run-level is changed for embedding data into H.264/AVC video sequences.In order to guarantee the reversibility of the proposed scheme,the last nonzero quantized discrete cosine transform(DCT)coefficients in embeddable 4×4 blocks are shifted by the technology of histogram modification.The proposed scheme is realized after quantization and before entropy coding of H.264/AVC compression standard.Therefore,the embedded information can be correctly extracted at the decoding side.Peak-signal-noise-to-ratio(PSNR)and Structure similarity index(SSIM),embedding payload and bit-rate variation are exploited to measure the performance of the proposed scheme.Experimental results have shown that the proposed scheme leads to less SSIM variation and bit-rate increase.
基金Supported by the Nat:onal Natural Science Foundation of China (No. 60873185) and the Foundation of Science & Technology Department of Sichuan Province (No. 2011HH0037).
文摘To improve the coding performance of H.264/AVC, this paper proposes a rate control scheme composed of a novel flame complexity optimized selection and a quantization parameter (QP) value computation approach. First, it extracts the frame coding complexity from two rate distortion models, and then introduces five statistic modes to estimate the frame coding complexity. An optimal mode is selected according to the coding efficiency. Finally the paper presents a novel QP calculation method for the H.264/AVC rate control. Experimental results show that the proposed algorithra outperforms the algorithm integrated in the 3M model in obtaining precise frame coding complexity, achieving robust buffer control and improving coding quality. And the improving visual quality is high up to 0.90dB for CIF sequences.
基金Supported by the National High Technology Research and Development Program of China (2008AA01A313 ), the National Natural Science Foundation of China (60772069), and a Grant from the Centre for Signal Processing of the Hang Kong Polytechnic University (1-BB9c).
文摘In this paper, the complexity of intra coding is first analyzed so as to achieve a weight of complexity measurement for each intra mode. Then, a new complexity scalable control algorithm for intra coding in H. 264 is proposed, based on the rearrangement of the order of candidate modes and an efficient complexity allocation and control (CAAC) scheme at the macroblock (MB) level. The candidate modes of each MB are rearranged according to the local-edge information. Experimental results show that our proposed algorithm can make an appropriate cut-off point of the candidate modes sequence adaptively according to the current energy condition of a mobile device, so as to adjust the complexity at any level while maximizing the video quality, which can prolong the operational lifetime of the battery with minimum degradation in video quality.
文摘作为视频通信中非常重要的关键技术之一,码率控制用于调整视频码流以满足带宽受限的条件,能够直接影响视频编码器输出码率的稳定性和保证视频质量。首先描述码率控制问题,给出码率控制算法的分类准则;然后对众多的H.264/先进视频编码(advanced video coding,AVC)码率控制算法根据应用目的进行具体描述;最后从适用标准和应用目的两个方面,详细指出码率控制技术今后的研究方向。