The transmission of video content over a network raises various issues relating to copyright authenticity,ethics,legality,and privacy.The protection of copyrighted video content is a significant issue in the video ind...The transmission of video content over a network raises various issues relating to copyright authenticity,ethics,legality,and privacy.The protection of copyrighted video content is a significant issue in the video industry,and it is essential to find effective solutions to prevent tampering and modification of digital video content during its transmission through digital media.However,there are stillmany unresolved challenges.This paper aims to address those challenges by proposing a new technique for detectingmoving objects in digital videos,which can help prove the credibility of video content by detecting any fake objects inserted by hackers.The proposed technique involves using two methods,the H.264 and the extraction color features methods,to embed and extract watermarks in video frames.The study tested the performance of the system against various attacks and found it to be robust.The evaluation was done using different metrics such as Peak-Signal-to-Noise Ratio(PSNR),Mean Squared Error(MSE),Structural Similarity Index Measure(SSIM),Bit Correction Ratio(BCR),and Normalized Correlation.The accuracy of identifying moving objects was high,ranging from 96.3%to 98.7%.The system was also able to embed a fragile watermark with a success rate of over 93.65%and had an average capacity of hiding of 78.67.The reconstructed video frames had high quality with a PSNR of at least 65.45 dB and SSIMof over 0.97,making them imperceptible to the human eye.The system also had an acceptable average time difference(T=1.227/s)compared with other state-of-the-art methods.展开更多
The scalable extension of H.264/AVC, known as scalable video coding or SVC, is currently the main focus of the Joint Video Team’s work. In its present working draft, the higher level syntax of SVC follows the design ...The scalable extension of H.264/AVC, known as scalable video coding or SVC, is currently the main focus of the Joint Video Team’s work. In its present working draft, the higher level syntax of SVC follows the design principles of H.264/AVC. Self-contained network abstraction layer units (NAL units) form natural entities for packetization. The SVC specification is by no means finalized yet, but nevertheless the work towards an optimized RTP payload format has already started. RFC 3984, the RTP payload specification for H.264/AVC has been taken as a starting point, but it became quickly clear that the scalable features of SVC require adaptation in at least the areas of capability/operation point signaling and documentation of the extended NAL unit header. This paper first gives an overview of the history of scalable video coding, and then reviews the video coding layer (VCL) and NAL of the latest SVC draft specification. Finally, it discusses different aspects of the draft SVC RTP payload format, in- cluding the design criteria, use cases, signaling and payload structure.展开更多
This paper proposes an adaptive joint source and channel coding scheme for H.264 video multicast over wireless LAN which takes into account the user topology changes and varying channel conditions of multiple users, a...This paper proposes an adaptive joint source and channel coding scheme for H.264 video multicast over wireless LAN which takes into account the user topology changes and varying channel conditions of multiple users, and dynamically allocates available bandwidth between source coding and channel coding, with the goal to optimize the overall system performance. In particular, source resilience and error correction are considered jointly in the scheme to achieve the optimal performance. And a channel estimation algorithm based on the average packet loss rate and the variance of packet loss rate is proposed also. Two overall performance criteria for video multicast are investigated and experimental results are presented to show the improvement obtained by the scheme.展开更多
This paper proposes an integrated joint source-channel decoder (I-JSCD) using Max-Log-MAP method for sources encoded with exp-Golomb codes and convolutional codes, and proposes a system applying this method to decod...This paper proposes an integrated joint source-channel decoder (I-JSCD) using Max-Log-MAP method for sources encoded with exp-Golomb codes and convolutional codes, and proposes a system applying this method to decoding the VLC data, e.g. motion vector differences (MVDs), of H.264 across an AWGN channel. This method combines the source code state-space and the channel code state-space together to construct a joint state-space, develops a 3-D trellis and a maximum a-posterior (MAP) algorithm to estimate the source sequence symbol by symbol, and then uses max-log approximation to simplify the algorithm. Experiments indicate that the proposed system gives significant improvements on peak signal-to-noise ratio (PSNR) (maximum about 15 dB) than a separate scheme. This also leads to a higher visual quality of video stream over a highly noisy channel.展开更多
This paper presents a reversible data hiding(RDH)method,which is designed by combining histogram modification(HM)with run-level coding in H.264/advanced video coding(AVC).In this scheme,the run-level is changed for em...This paper presents a reversible data hiding(RDH)method,which is designed by combining histogram modification(HM)with run-level coding in H.264/advanced video coding(AVC).In this scheme,the run-level is changed for embedding data into H.264/AVC video sequences.In order to guarantee the reversibility of the proposed scheme,the last nonzero quantized discrete cosine transform(DCT)coefficients in embeddable 4×4 blocks are shifted by the technology of histogram modification.The proposed scheme is realized after quantization and before entropy coding of H.264/AVC compression standard.Therefore,the embedded information can be correctly extracted at the decoding side.Peak-signal-noise-to-ratio(PSNR)and Structure similarity index(SSIM),embedding payload and bit-rate variation are exploited to measure the performance of the proposed scheme.Experimental results have shown that the proposed scheme leads to less SSIM variation and bit-rate increase.展开更多
In this paper, we propose a new method for very low bit-rate video coding that combines H.264/AVC standard and two-dimensional discrete wavelet transform. In this method, first a two dimensional wavelet transform is a...In this paper, we propose a new method for very low bit-rate video coding that combines H.264/AVC standard and two-dimensional discrete wavelet transform. In this method, first a two dimensional wavelet transform is applied on each video frame independently to extract the low frequency components for each frame and then the low frequency parts of all frames are coded using H.264/AVC codec. On the other hand, the high frequency parts of the video frames are coded by Run Length Coding algorithm, after applying a threshold to neglect the low value coefficients. Experiments show that our proposed method can achieve better rate-distortion performance at very low bit-rate applications below 16 kbits/s compared to applying H.264/AVC standard directly to all frames. Applications of our proposed video coding technique include video telephony, video-conferencing, transmitting or receiving video over half-rate traffic channels of GSM networks.展开更多
To improve the coding performance of H.264/AVC, this paper proposes a rate control scheme composed of a novel flame complexity optimized selection and a quantization parameter (QP) value computation approach. First,...To improve the coding performance of H.264/AVC, this paper proposes a rate control scheme composed of a novel flame complexity optimized selection and a quantization parameter (QP) value computation approach. First, it extracts the frame coding complexity from two rate distortion models, and then introduces five statistic modes to estimate the frame coding complexity. An optimal mode is selected according to the coding efficiency. Finally the paper presents a novel QP calculation method for the H.264/AVC rate control. Experimental results show that the proposed algorithra outperforms the algorithm integrated in the 3M model in obtaining precise frame coding complexity, achieving robust buffer control and improving coding quality. And the improving visual quality is high up to 0.90dB for CIF sequences.展开更多
The study applied a charge-coupled device (CCD) camera to send video signals to 4 DaVinci<sup>TM</sup> development boards (TMS320DM6446) of Texas Instruments (TI) to carry out H.264 Baseline Profile video ...The study applied a charge-coupled device (CCD) camera to send video signals to 4 DaVinci<sup>TM</sup> development boards (TMS320DM6446) of Texas Instruments (TI) to carry out H.264 Baseline Profile video coding. One of the development boards coded in the Variable Bit Rate (VBR) mode, and the other three development boards coded in the Constant Bit Rate (CBR) mode. In addition, the constant rates are 2 Mbps, 1.5 Mbps and 1 Mbps respectively. The H.264 video compression files produced by the boards were analyzed via video analysis software (CodecVisa) in the study. This software can analyze and present the compression data characteristics of the video files under each video frame, i.e., bits/MB, QP, and PSNR. In this research, the characteristics of data of each frame under four different compression conditions were compared. Their differences were calculated and averaged, and the standard deviation was evaluated. It was further connected with the values of quality characteristics and the peak signal to noise ratio (PSNR) of each frame to analyze the relation among the frame quality, the compression rate of CBR, as well as the quantitative granularity. The preliminary conclusion of the study is that the compression behaviors of CBRs in different coding sources are adjusted in a specific proportion in order to cope with the change in frame complexity. The frame will be severely damaged by a critical value during the process of network transmission while the source rate is less than the value of the characteristic.展开更多
The dilemma of the quantization parameter (QP) being involved in both rate control and rate-distortion optimization (RDO) prevents using the traditional rate control scheme. Although some rate control schemes are prop...The dilemma of the quantization parameter (QP) being involved in both rate control and rate-distortion optimization (RDO) prevents using the traditional rate control scheme. Although some rate control schemes are proposed to circumvent the dilemma, the inaccurate prediction model and improper bit allocation deter H.264 application on low bandwidth channel. To resolve this issue, this paper proposes a novel rate control scheme by considering the macroblock (MB) encoding complexity variation and buffer variation and by exploiting the spatio-temporal correlation sufficiently well. Simulations showed that this scheme improves the perceptual quality of the pictures with similar or smaller PSNR deviations when compared to that of rate control in JVT-O016.展开更多
This letter proposes a rate control algorithm for H.264 video encoder, which is based on block activity and buffer state. Experimental results indicate that it has an excellent performance by providing much accurate b...This letter proposes a rate control algorithm for H.264 video encoder, which is based on block activity and buffer state. Experimental results indicate that it has an excellent performance by providing much accurate bit rate and better coding efficiency compared with H.264. The computational complexity of the algorithm is reduced by adopting a novel block activity description method using the Sum of Absolute Difference (SAD) of 16× 16 mode, and its robustness is enhanced by introducing a feedback circuit at frame layer.展开更多
In this work, we present an evaluation of the performance and error robustness of RTP-based broadcast streaming of high-quality high-definition (HD) H.264/AVC video. Using a fully controlled IP test bed (Hillestad et ...In this work, we present an evaluation of the performance and error robustness of RTP-based broadcast streaming of high-quality high-definition (HD) H.264/AVC video. Using a fully controlled IP test bed (Hillestad et al., 2005), we broadcast high-definition video over RTP/UDP, and use an IP network emulator to introduce a varying amount of randomly distributed packet loss. A high-performance network interface monitoring card is used to capture the video packets into a trace file. Purpose-built software parses the trace file, analyzes the RTP stream and assembles the correctly received NAL units into an H.264/AVC Annex B byte stream file, which is subsequently decoded by JVT JM 10.1 reference software. The proposed measurement setup is a novel, practical and intuitive approach to perform error resilience testing of real-world H.264/AVC broadcast applications. Through a series of experiments, we evaluate some of the error resilience features of the H.264/AVC standard, and see how they perform at packet loss rates from 0.01% to 5%. The results confirmed that an appropriate slice partitioning scheme is essential to have a graceful degradation in received quality in the case of packet loss. While flexible macroblock ordering reduces the compression efficiency about 1 dB for our test material, reconstructed video quality is improved for loss rates above 0.25%.展开更多
The high-efficiency video coding (HEVC) standard is the newest video coding standard currently under joint development by ITU-T Video Coding Experts Group (VCEG) and ISO/IEC Moving Picture Experts Group (MPEG). ...The high-efficiency video coding (HEVC) standard is the newest video coding standard currently under joint development by ITU-T Video Coding Experts Group (VCEG) and ISO/IEC Moving Picture Experts Group (MPEG). HEVC is the next-generation video coding standard after H.264/AVC. The goals of the HEVC standardization effort are to double the video coding efficiency of existing H.264/AVC while supporting all the recognized potential applications, such as, video telephony, storage, broadcast, streaming, especially for large picture size video (4k x 2k). The HEVC standard will be completed as an ISO/iEC and ITU-T standard in January 2013. in February 2012, the HEVC standardization process reached its committee draft (CD) stage. The ever-improving HEVC standard has demonstrated a significant gain in coding efficiency in rate-distortion efficiency relative to the existing H.264/AVC. This paper provides an overview of the technical features of HEVC close to HEVC CD stage, covering high-level structure, coding units, prediction units, transform units, spatial signal transformation and PCM representation, intra-picture prediction, inter-picture prediction, entropy coding and in-loop filtering. The HEVC coding efficiency performances comparing with H.264/AVC are also provided.展开更多
A semi-fragile content authentication algorithm is proposed for low bit-rate H.264/AVC video in VLC domain. Utilizing the intra prediction mode and coded block pattern in VLC domain, the proposed algorithm chooses tho...A semi-fragile content authentication algorithm is proposed for low bit-rate H.264/AVC video in VLC domain. Utilizing the intra prediction mode and coded block pattern in VLC domain, the proposed algorithm chooses those macro-blocks from which the signature is extracted and constructs content signature at macro-block level according to the relationship among the energies of quantized low-frequency coefficients of sub-macroblocks. The signature is embedded by modifying the trailing coefficients. The experimental results show that the proposed algorithm performs well in visual quality impact and keep the bit-rate basically unchanged. In addition, the algorithm can embed signatures into I, P, B slices simultaneously and remarkably enhances the watermark capacity. By verifying the extracted signature, the algorithm can detect and locate video tampering efficiently.展开更多
In order to reduce the encoding complexity of macroblock coding mode decision in H.264/AVC, a selective smaller block-size searching algorithm and a selective intra coding mode searching algorithm are proposed by usin...In order to reduce the encoding complexity of macroblock coding mode decision in H.264/AVC, a selective smaller block-size searching algorithm and a selective intra coding mode searching algorithm are proposed by using the high correlation among coding modes and in spatial and temporal domains of video sequence. Simulation results demonstrate that the proposed algorithm can provide significant improvement in computational requirement, with negligible small picture quality degradation and slight bit rate increase.展开更多
In this paper, we present a spatio-temporal post-processing error concealment (EC) algorithm designed initially for a H.264 video-streaming scheme over packet-lossy networks. It aims at optimizing the subjective quali...In this paper, we present a spatio-temporal post-processing error concealment (EC) algorithm designed initially for a H.264 video-streaming scheme over packet-lossy networks. It aims at optimizing the subjective quality of the restored video under the constraints of low delay and computational complexity, which are critical to real-time applications and portable devices having limited resources. Specifically, it takes into consideration the physical property of motion field in order to achieve more meaningful perceptual video quality, in addition to the improved objective PSNR. Further, a simple bilinear spatial interpolation approach is combined with the improved boundary-match (B-M) based temporal EC approach according to texture and motion activity analysis. Finally, we propose a low complexity temporal EC method based on motion vector interpolation as a replacement of the B-M based approach in the scheme under low-computation requirement, or as a complement to further improve the scheme's performance in applications having enough computation resources. Extensive experiments demonstrated that the proposal features not only better reconstruction, objectively and subjectively, than JM benchmark, but also robustness to different video sequences.展开更多
High Efficiency Video Coding (HEVC) is the latest international video coding standard, which can provide the similar quality with about half bandwidth compared with its predecessor, H.264/MPEG?4 AVC. To meet the requi...High Efficiency Video Coding (HEVC) is the latest international video coding standard, which can provide the similar quality with about half bandwidth compared with its predecessor, H.264/MPEG?4 AVC. To meet the requirement of higher bit depth coding and more chroma sampling formats, range extensions of HEVC were developed. This paper introduces the coding tools in HEVC range extensions and provides experimental results to compare HEVC range extensions with previous video coding standards. Ex?perimental results show that HEVC range extensions improve coding efficiency much over H.264/MPEG?4 AVC High Predictive profile, especially for 4K sequences.展开更多
Multi-frame coding is supported by the emerging H.264. It is important for the enhancement of both coding efficiency and error robustness. In this paper, error resilient schemes for H.264 based on multi-frame were inv...Multi-frame coding is supported by the emerging H.264. It is important for the enhancement of both coding efficiency and error robustness. In this paper, error resilient schemes for H.264 based on multi-frame were investigated. Error robust H.264 video transmission schemes were introduced for the applications with and without a feedback channel. The experimental results demonstrate the effectiveness of the proposed schemes.展开更多
The emergence of third generation mobile system (3G) makes video transmission in wireless environment possible, and the latest 3GPP/3GPP2 standards require 3G terminals support H.264/AVC. Due to high packet loss rate ...The emergence of third generation mobile system (3G) makes video transmission in wireless environment possible, and the latest 3GPP/3GPP2 standards require 3G terminals support H.264/AVC. Due to high packet loss rate in wireless envi- ronment, error resilience for 3G terminals is necessary. Moreover, because of the hardware restrictions, 3G mobile terminals support only part of H.264/AVC error resilience tool. This paper analyzes various error resilience tools and their functions, and presents 2 error resilience strategies for 3G mobile streaming video services and mobile conversational services. Performances of the proposed error resilience strategies were tested using off-line common test conditions. Experiments showed that the proposed error resilience strategies can yield reasonably satisfactory results.展开更多
文摘The transmission of video content over a network raises various issues relating to copyright authenticity,ethics,legality,and privacy.The protection of copyrighted video content is a significant issue in the video industry,and it is essential to find effective solutions to prevent tampering and modification of digital video content during its transmission through digital media.However,there are stillmany unresolved challenges.This paper aims to address those challenges by proposing a new technique for detectingmoving objects in digital videos,which can help prove the credibility of video content by detecting any fake objects inserted by hackers.The proposed technique involves using two methods,the H.264 and the extraction color features methods,to embed and extract watermarks in video frames.The study tested the performance of the system against various attacks and found it to be robust.The evaluation was done using different metrics such as Peak-Signal-to-Noise Ratio(PSNR),Mean Squared Error(MSE),Structural Similarity Index Measure(SSIM),Bit Correction Ratio(BCR),and Normalized Correlation.The accuracy of identifying moving objects was high,ranging from 96.3%to 98.7%.The system was also able to embed a fragile watermark with a success rate of over 93.65%and had an average capacity of hiding of 78.67.The reconstructed video frames had high quality with a PSNR of at least 65.45 dB and SSIMof over 0.97,making them imperceptible to the human eye.The system also had an acceptable average time difference(T=1.227/s)compared with other state-of-the-art methods.
文摘The scalable extension of H.264/AVC, known as scalable video coding or SVC, is currently the main focus of the Joint Video Team’s work. In its present working draft, the higher level syntax of SVC follows the design principles of H.264/AVC. Self-contained network abstraction layer units (NAL units) form natural entities for packetization. The SVC specification is by no means finalized yet, but nevertheless the work towards an optimized RTP payload format has already started. RFC 3984, the RTP payload specification for H.264/AVC has been taken as a starting point, but it became quickly clear that the scalable features of SVC require adaptation in at least the areas of capability/operation point signaling and documentation of the extended NAL unit header. This paper first gives an overview of the history of scalable video coding, and then reviews the video coding layer (VCL) and NAL of the latest SVC draft specification. Finally, it discusses different aspects of the draft SVC RTP payload format, in- cluding the design criteria, use cases, signaling and payload structure.
文摘This paper proposes an adaptive joint source and channel coding scheme for H.264 video multicast over wireless LAN which takes into account the user topology changes and varying channel conditions of multiple users, and dynamically allocates available bandwidth between source coding and channel coding, with the goal to optimize the overall system performance. In particular, source resilience and error correction are considered jointly in the scheme to achieve the optimal performance. And a channel estimation algorithm based on the average packet loss rate and the variance of packet loss rate is proposed also. Two overall performance criteria for video multicast are investigated and experimental results are presented to show the improvement obtained by the scheme.
基金Supported by the Foundation of Ministry of Education of China (211CERS10)
文摘This paper proposes an integrated joint source-channel decoder (I-JSCD) using Max-Log-MAP method for sources encoded with exp-Golomb codes and convolutional codes, and proposes a system applying this method to decoding the VLC data, e.g. motion vector differences (MVDs), of H.264 across an AWGN channel. This method combines the source code state-space and the channel code state-space together to construct a joint state-space, develops a 3-D trellis and a maximum a-posterior (MAP) algorithm to estimate the source sequence symbol by symbol, and then uses max-log approximation to simplify the algorithm. Experiments indicate that the proposed system gives significant improvements on peak signal-to-noise ratio (PSNR) (maximum about 15 dB) than a separate scheme. This also leads to a higher visual quality of video stream over a highly noisy channel.
基金This work was supported by the National Natural Science Foundation of China(NSFC)under the grant No.61972269the Fundamental Research Funds for the Central Universities under the grant No.YJ201881Doctoral Innovation Fund Program of Southwest Jiaotong University under the grant No.DCX201824.
文摘This paper presents a reversible data hiding(RDH)method,which is designed by combining histogram modification(HM)with run-level coding in H.264/advanced video coding(AVC).In this scheme,the run-level is changed for embedding data into H.264/AVC video sequences.In order to guarantee the reversibility of the proposed scheme,the last nonzero quantized discrete cosine transform(DCT)coefficients in embeddable 4×4 blocks are shifted by the technology of histogram modification.The proposed scheme is realized after quantization and before entropy coding of H.264/AVC compression standard.Therefore,the embedded information can be correctly extracted at the decoding side.Peak-signal-noise-to-ratio(PSNR)and Structure similarity index(SSIM),embedding payload and bit-rate variation are exploited to measure the performance of the proposed scheme.Experimental results have shown that the proposed scheme leads to less SSIM variation and bit-rate increase.
文摘In this paper, we propose a new method for very low bit-rate video coding that combines H.264/AVC standard and two-dimensional discrete wavelet transform. In this method, first a two dimensional wavelet transform is applied on each video frame independently to extract the low frequency components for each frame and then the low frequency parts of all frames are coded using H.264/AVC codec. On the other hand, the high frequency parts of the video frames are coded by Run Length Coding algorithm, after applying a threshold to neglect the low value coefficients. Experiments show that our proposed method can achieve better rate-distortion performance at very low bit-rate applications below 16 kbits/s compared to applying H.264/AVC standard directly to all frames. Applications of our proposed video coding technique include video telephony, video-conferencing, transmitting or receiving video over half-rate traffic channels of GSM networks.
基金Supported by the Nat:onal Natural Science Foundation of China (No. 60873185) and the Foundation of Science & Technology Department of Sichuan Province (No. 2011HH0037).
文摘To improve the coding performance of H.264/AVC, this paper proposes a rate control scheme composed of a novel flame complexity optimized selection and a quantization parameter (QP) value computation approach. First, it extracts the frame coding complexity from two rate distortion models, and then introduces five statistic modes to estimate the frame coding complexity. An optimal mode is selected according to the coding efficiency. Finally the paper presents a novel QP calculation method for the H.264/AVC rate control. Experimental results show that the proposed algorithra outperforms the algorithm integrated in the 3M model in obtaining precise frame coding complexity, achieving robust buffer control and improving coding quality. And the improving visual quality is high up to 0.90dB for CIF sequences.
文摘The study applied a charge-coupled device (CCD) camera to send video signals to 4 DaVinci<sup>TM</sup> development boards (TMS320DM6446) of Texas Instruments (TI) to carry out H.264 Baseline Profile video coding. One of the development boards coded in the Variable Bit Rate (VBR) mode, and the other three development boards coded in the Constant Bit Rate (CBR) mode. In addition, the constant rates are 2 Mbps, 1.5 Mbps and 1 Mbps respectively. The H.264 video compression files produced by the boards were analyzed via video analysis software (CodecVisa) in the study. This software can analyze and present the compression data characteristics of the video files under each video frame, i.e., bits/MB, QP, and PSNR. In this research, the characteristics of data of each frame under four different compression conditions were compared. Their differences were calculated and averaged, and the standard deviation was evaluated. It was further connected with the values of quality characteristics and the peak signal to noise ratio (PSNR) of each frame to analyze the relation among the frame quality, the compression rate of CBR, as well as the quantitative granularity. The preliminary conclusion of the study is that the compression behaviors of CBRs in different coding sources are adjusted in a specific proportion in order to cope with the change in frame complexity. The frame will be severely damaged by a critical value during the process of network transmission while the source rate is less than the value of the characteristic.
文摘The dilemma of the quantization parameter (QP) being involved in both rate control and rate-distortion optimization (RDO) prevents using the traditional rate control scheme. Although some rate control schemes are proposed to circumvent the dilemma, the inaccurate prediction model and improper bit allocation deter H.264 application on low bandwidth channel. To resolve this issue, this paper proposes a novel rate control scheme by considering the macroblock (MB) encoding complexity variation and buffer variation and by exploiting the spatio-temporal correlation sufficiently well. Simulations showed that this scheme improves the perceptual quality of the pictures with similar or smaller PSNR deviations when compared to that of rate control in JVT-O016.
基金the National Nature Science Foundation of China(No.90104013) 863 Project(No.2002AA119010, 2001AA121061 and 2002AA123041)
文摘This letter proposes a rate control algorithm for H.264 video encoder, which is based on block activity and buffer state. Experimental results indicate that it has an excellent performance by providing much accurate bit rate and better coding efficiency compared with H.264. The computational complexity of the algorithm is reduced by adopting a novel block activity description method using the Sum of Absolute Difference (SAD) of 16× 16 mode, and its robustness is enhanced by introducing a feedback circuit at frame layer.
基金Project supported by the Research Council of Norway, Norwegian University of Science and Technology (NTNU), and the Norwegian Resarch Network (UNINETT)
文摘In this work, we present an evaluation of the performance and error robustness of RTP-based broadcast streaming of high-quality high-definition (HD) H.264/AVC video. Using a fully controlled IP test bed (Hillestad et al., 2005), we broadcast high-definition video over RTP/UDP, and use an IP network emulator to introduce a varying amount of randomly distributed packet loss. A high-performance network interface monitoring card is used to capture the video packets into a trace file. Purpose-built software parses the trace file, analyzes the RTP stream and assembles the correctly received NAL units into an H.264/AVC Annex B byte stream file, which is subsequently decoded by JVT JM 10.1 reference software. The proposed measurement setup is a novel, practical and intuitive approach to perform error resilience testing of real-world H.264/AVC broadcast applications. Through a series of experiments, we evaluate some of the error resilience features of the H.264/AVC standard, and see how they perform at packet loss rates from 0.01% to 5%. The results confirmed that an appropriate slice partitioning scheme is essential to have a graceful degradation in received quality in the case of packet loss. While flexible macroblock ordering reduces the compression efficiency about 1 dB for our test material, reconstructed video quality is improved for loss rates above 0.25%.
文摘The high-efficiency video coding (HEVC) standard is the newest video coding standard currently under joint development by ITU-T Video Coding Experts Group (VCEG) and ISO/IEC Moving Picture Experts Group (MPEG). HEVC is the next-generation video coding standard after H.264/AVC. The goals of the HEVC standardization effort are to double the video coding efficiency of existing H.264/AVC while supporting all the recognized potential applications, such as, video telephony, storage, broadcast, streaming, especially for large picture size video (4k x 2k). The HEVC standard will be completed as an ISO/iEC and ITU-T standard in January 2013. in February 2012, the HEVC standardization process reached its committee draft (CD) stage. The ever-improving HEVC standard has demonstrated a significant gain in coding efficiency in rate-distortion efficiency relative to the existing H.264/AVC. This paper provides an overview of the technical features of HEVC close to HEVC CD stage, covering high-level structure, coding units, prediction units, transform units, spatial signal transformation and PCM representation, intra-picture prediction, inter-picture prediction, entropy coding and in-loop filtering. The HEVC coding efficiency performances comparing with H.264/AVC are also provided.
基金This paper is sponsored by the National Natural Science Foundation of China (No. 60802057, 61071153), National 863 Plan of China ( 2009AA01Z407 ), Shanghai Rising-Star Program (10QA1403700), and Shanghai Educational Development Foundation.
文摘A semi-fragile content authentication algorithm is proposed for low bit-rate H.264/AVC video in VLC domain. Utilizing the intra prediction mode and coded block pattern in VLC domain, the proposed algorithm chooses those macro-blocks from which the signature is extracted and constructs content signature at macro-block level according to the relationship among the energies of quantized low-frequency coefficients of sub-macroblocks. The signature is embedded by modifying the trailing coefficients. The experimental results show that the proposed algorithm performs well in visual quality impact and keep the bit-rate basically unchanged. In addition, the algorithm can embed signatures into I, P, B slices simultaneously and remarkably enhances the watermark capacity. By verifying the extracted signature, the algorithm can detect and locate video tampering efficiently.
基金National Natural Science Foundation of China (60372018)
文摘In order to reduce the encoding complexity of macroblock coding mode decision in H.264/AVC, a selective smaller block-size searching algorithm and a selective intra coding mode searching algorithm are proposed by using the high correlation among coding modes and in spatial and temporal domains of video sequence. Simulation results demonstrate that the proposed algorithm can provide significant improvement in computational requirement, with negligible small picture quality degradation and slight bit rate increase.
基金Project supported by the Teaching and Research Award Program for Outstanding Young Professor in High Education Institute, Ministration of Education, China
文摘In this paper, we present a spatio-temporal post-processing error concealment (EC) algorithm designed initially for a H.264 video-streaming scheme over packet-lossy networks. It aims at optimizing the subjective quality of the restored video under the constraints of low delay and computational complexity, which are critical to real-time applications and portable devices having limited resources. Specifically, it takes into consideration the physical property of motion field in order to achieve more meaningful perceptual video quality, in addition to the improved objective PSNR. Further, a simple bilinear spatial interpolation approach is combined with the improved boundary-match (B-M) based temporal EC approach according to texture and motion activity analysis. Finally, we propose a low complexity temporal EC method based on motion vector interpolation as a replacement of the B-M based approach in the scheme under low-computation requirement, or as a complement to further improve the scheme's performance in applications having enough computation resources. Extensive experiments demonstrated that the proposal features not only better reconstruction, objectively and subjectively, than JM benchmark, but also robustness to different video sequences.
文摘High Efficiency Video Coding (HEVC) is the latest international video coding standard, which can provide the similar quality with about half bandwidth compared with its predecessor, H.264/MPEG?4 AVC. To meet the requirement of higher bit depth coding and more chroma sampling formats, range extensions of HEVC were developed. This paper introduces the coding tools in HEVC range extensions and provides experimental results to compare HEVC range extensions with previous video coding standards. Ex?perimental results show that HEVC range extensions improve coding efficiency much over H.264/MPEG?4 AVC High Predictive profile, especially for 4K sequences.
文摘Multi-frame coding is supported by the emerging H.264. It is important for the enhancement of both coding efficiency and error robustness. In this paper, error resilient schemes for H.264 based on multi-frame were investigated. Error robust H.264 video transmission schemes were introduced for the applications with and without a feedback channel. The experimental results demonstrate the effectiveness of the proposed schemes.
基金Project supported by the National Natural Science Foundation of China (Nos. 60473106 and 60333010), China Ministry of Education(No. 20030335064), and China Ministry of Science and Technology(No. 2003AA4Z1020)
文摘The emergence of third generation mobile system (3G) makes video transmission in wireless environment possible, and the latest 3GPP/3GPP2 standards require 3G terminals support H.264/AVC. Due to high packet loss rate in wireless envi- ronment, error resilience for 3G terminals is necessary. Moreover, because of the hardware restrictions, 3G mobile terminals support only part of H.264/AVC error resilience tool. This paper analyzes various error resilience tools and their functions, and presents 2 error resilience strategies for 3G mobile streaming video services and mobile conversational services. Performances of the proposed error resilience strategies were tested using off-line common test conditions. Experiments showed that the proposed error resilience strategies can yield reasonably satisfactory results.