To recover titanium from tionite, a new process consisting of NaOH hydrothermal conversion, water washing, and H2SO4 leaching for TiO2 preparation was developed. The experimental results show that under the optimum ...To recover titanium from tionite, a new process consisting of NaOH hydrothermal conversion, water washing, and H2SO4 leaching for TiO2 preparation was developed. The experimental results show that under the optimum hydrothermal conversion conditions, i.e., 50% NaOH (mass fraction) solution, NaOH/tionite mass ratio of 4:1, reaction temperature of 240 ℃reaction time of 1 h and oxygen partial pressure of 0.25 MPa, the titanium was mainly converted into Na2TiO3, and the conversion was 97.2%. The unwanted product Na2TiSiO5 remained stable in water washing, and its formation was prevented by improving NaOH concentration. In water washing process, about 97.6% of Na+ could be recycled by washing the hydrothermal product. The NaOH solutions could be reused after concentration. 96.7% of titanium in the washed product was easily leached in H2SO4 solution at low temperatures, forming titanyl sulfate solution to further prepare TiO2.展开更多
The thermodynamic equilibrium diagrams of CaMoO_(4)-CaSO_(4)-H_(2)SO_(4)-H_(2)O,CaMoO_(4)-HCl-H_(2)O and CaSO_(4)-CaCl_(2)-HCl-H_(2)O systems at 298 K were established.The calculation results demonstrated that HCl dis...The thermodynamic equilibrium diagrams of CaMoO_(4)-CaSO_(4)-H_(2)SO_(4)-H_(2)O,CaMoO_(4)-HCl-H_(2)O and CaSO_(4)-CaCl_(2)-HCl-H_(2)O systems at 298 K were established.The calculation results demonstrated that HCl displays a much higher solubility of CaSO_(4)than H_(2)SO_(4).The leaching mechanism of Mo from CaMoO_(4)calcine was systematically investigated from the perspective of the micro particle properties variation.HCl exhibits an excellent leaching performance for Mo from CaMoO_(4)calcine due to the elimination of surface coating and the dissolution of a mass of Mo embedded in CaSO_(4)matrix.Excellent Mo leaching efficiency of 99.7%was achieved under the optimal conditions of decomposing CaMoO_(4)calcine by 2.4 mol/L HCl with a liquid/solid ratio of 10:1 at 50°C for 60 min.Based on the experimental results,a highly efficient and green cycle leaching process of molybdenum from molybdenite was proposed,which eliminated surface coating and physical entraining,and converted most of the calcium from CaMoO_(4)calcine into high purity gypsum by-product.展开更多
基金Project(51090380)supported by the National Natural Science Foundation of ChinaProjects(2013CB632604,2013CB632601)supported by the National Basic Research Program of China+2 种基金Project(51125018)supported by the National Science Foundation for Distinguished Young Scholars of ChinaProject(KGZD-EW-201-2)supported by the Key Research Program of the Chinese Academy of SciencesProjects(51374191,51402303)supported by the Natural Science Foundation for the Youth,China
文摘To recover titanium from tionite, a new process consisting of NaOH hydrothermal conversion, water washing, and H2SO4 leaching for TiO2 preparation was developed. The experimental results show that under the optimum hydrothermal conversion conditions, i.e., 50% NaOH (mass fraction) solution, NaOH/tionite mass ratio of 4:1, reaction temperature of 240 ℃reaction time of 1 h and oxygen partial pressure of 0.25 MPa, the titanium was mainly converted into Na2TiO3, and the conversion was 97.2%. The unwanted product Na2TiSiO5 remained stable in water washing, and its formation was prevented by improving NaOH concentration. In water washing process, about 97.6% of Na+ could be recycled by washing the hydrothermal product. The NaOH solutions could be reused after concentration. 96.7% of titanium in the washed product was easily leached in H2SO4 solution at low temperatures, forming titanyl sulfate solution to further prepare TiO2.
基金financially supported by the Joint Fund for Nuclear Technology Innovation Sponsored by the National Natural Science Foundation of China and the China National Nuclear Corporation(No.U2067201)。
文摘The thermodynamic equilibrium diagrams of CaMoO_(4)-CaSO_(4)-H_(2)SO_(4)-H_(2)O,CaMoO_(4)-HCl-H_(2)O and CaSO_(4)-CaCl_(2)-HCl-H_(2)O systems at 298 K were established.The calculation results demonstrated that HCl displays a much higher solubility of CaSO_(4)than H_(2)SO_(4).The leaching mechanism of Mo from CaMoO_(4)calcine was systematically investigated from the perspective of the micro particle properties variation.HCl exhibits an excellent leaching performance for Mo from CaMoO_(4)calcine due to the elimination of surface coating and the dissolution of a mass of Mo embedded in CaSO_(4)matrix.Excellent Mo leaching efficiency of 99.7%was achieved under the optimal conditions of decomposing CaMoO_(4)calcine by 2.4 mol/L HCl with a liquid/solid ratio of 10:1 at 50°C for 60 min.Based on the experimental results,a highly efficient and green cycle leaching process of molybdenum from molybdenite was proposed,which eliminated surface coating and physical entraining,and converted most of the calcium from CaMoO_(4)calcine into high purity gypsum by-product.