A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performa...A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performance of the fuel cell was dependent on anode compartment H2S flow rate and concentration. The cell open-circuit voltage increased with increasing H2S flow rate. It was found that increasing both H2S flow rate and H2S concentration improved current-voltage and power density performance. This is resulted from improved gas diffusion in anode and increased concentration of anodic electroactive species. Operation at elevated H2S concentration improved the cell performance at a given gas flow rate. However, as low as 5% H2S in gas mixture can also be utilized as fuel feed to cells. Highest current and power densities, 17500mA·cm-2 and 200mW·cm-2, are obtained with pure H2S flow rate of 50ml·min-1 and air flow rate of 100ml·min-1 at 850℃.展开更多
A building integrated photovoltaic (PV) and fuel cell (FC) system is proposed for assessment of the energy self-sufficiency rate in a city in Japan. The electricity consumed in the building is mainly supplied by solar...A building integrated photovoltaic (PV) and fuel cell (FC) system is proposed for assessment of the energy self-sufficiency rate in a city in Japan. The electricity consumed in the building is mainly supplied by solar panels, while the gap between the energy demand and supply is solved by the FC that is powered by the H2 produced by water electrolysis with surplus power of PV. A desktop case study of using the proposed system in Tsu city which is located in central part of Japan, has been conducted. The results found that the self-sufficiency rates of PV system to electricity demand of households (RPV) during the daytime in April and July are higher than those in January and October. The results also reveal that the self-sufficiency rate of FC system to the electricity demand (RFC) is 15% - 38% for the day when the mean amount of horizontal solar radiation is obtained in January, April, July and October. In addition, it is found the optimum tilt angle of solar panel installed on the roof of the buildings should be 0 degree, i.e., placed horizontally.展开更多
A building integrated energy system (photovoltaic (PV) and fuel cell (FC)) is proposed for assessment of the energy self-sufficiency rate in five cities of Mie prefecture in Japan. In this work, it is considered that ...A building integrated energy system (photovoltaic (PV) and fuel cell (FC)) is proposed for assessment of the energy self-sufficiency rate in five cities of Mie prefecture in Japan. In this work, it is considered that the electricity requirement of the building is provided by the building integrated photovoltaic (BIPV) system and the gap between the energy demand and BIPV supply is fulfilled by the FC. The FC is powered by the electrolytic H2 produced from the surplus power of PV. A design study of using the proposed system in five cities in Mie prefecture, which are in center part of Japan, has been performed. It has been observed that the monthly power production from BIPV is higher in spring and summer, while it is lower in autumn and winter at all considered locations. The self-sufficiency rate of the FC system is higher with decreasing households’ number and it has been observed that the 12 households are more suitable for full cover of the electricity demand by the combined system of PV and FC. The relationship between the households’ number and self-sufficiency rate of the FC system per solar PV installation area can be expressed by exponential curve. The coefficient of the exponential curve can predict the suitable city for the BIPV system with FC system utilizing electrolytic H2 generated by using excess energy from the PV system.展开更多
An integrated energy system (with photovoltaic (PV) and fuel cell (FC) for building) is proposed and assessed in term of its energy self-sufficiency rate in seven cities (Nagoya, Toyota, Tajimi, Takayama, Ogaki, Hamam...An integrated energy system (with photovoltaic (PV) and fuel cell (FC) for building) is proposed and assessed in term of its energy self-sufficiency rate in seven cities (Nagoya, Toyota, Tajimi, Takayama, Ogaki, Hamamatsu, Shizuoka) in Tokai region in Japan in this paper. In this work, it is considered that the electricity requirement of the building for household users is provided by a building integrated photovoltaic (BIPV) system and the gap between the energy demand and BIPV supply is fulfilled by the FC. The FC is powered by the electrolytic H2 produced when PV power was in surplus. Based on the study of applying the proposed system in seven cities, which clarifies the effectiveness of the integrated BIPV, electrolytic H2 and FC power generation system, a universal system model has been developed in this paper. It has been observed that the monthly power production from BIPV as well as FC system are higher in spring and summer, while they are both lower in autumn and winter at all considered locations. The self-sufficiency rate of the FC system is higher with decreasing households’ number and it has been observed that 16 is the most appropriate number of households in a building, whose electricity demand could be fully covered by the integrated PV and FC system. Due to its climate condition, Hamamatsu is the best city in the region for installing the proposed system. The correlation between the households’ number and self-sufficiency rate of the FC system per solar PV installation area can be expressed by the regression curve in the form of y = ax-b well.展开更多
The efficiency of photo-electrocatalytic(PECa) devices for the production of solar fuels depends on several limiting factors such as light harvesting, charge recombination and mass transport diffusion. We analyse he...The efficiency of photo-electrocatalytic(PECa) devices for the production of solar fuels depends on several limiting factors such as light harvesting, charge recombination and mass transport diffusion. We analyse here how they influence the performances in PECa cells having a photo-anode based on Au-modified TiOnanotube(TNT) arrays, with the aim of developing design criteria to optimize the photo-anode and the PECa cell configuration for water photo-electrolysis(splitting) and ethanol photo-reforming processes.The TNT samples were prepared by controlled anodic oxidation of Ti foils and then decorated with gold nanoparticles using different techniques to enhance the visible light response through heterojunction and plasmonic effects. The activity tests were made in a gas-phase reactor, as well as in a PECa cell without applied bias. Results were analysed in terms of photo-generated current, Hproduction rate and photoconversion efficiency. Particularly, a solar-to-hydrogen efficiency of 0.83% and a Faradaic efficiency of 91%were obtained without adding sacrificial reagents.展开更多
In this work, methanol reforming and methanol reformate gas coupled with a proton exchange membrane fuel cell (PEMFC)were investigated.The results of the methanol reforming system showed that the system worked stably....In this work, methanol reforming and methanol reformate gas coupled with a proton exchange membrane fuel cell (PEMFC)were investigated.The results of the methanol reforming system showed that the system worked stably.The H2 concentration at the outlet was 43%~45%, CO concentration was 0—6×10-6, and the system pressure was 0.22—0.25 MPa(gage).The H2 utility of a single PEMFC was 83%, and the H2 emission concentration of the fuel cell was lower than 12%.The PEMFC power was strongly influenced by the purity of H2, particularly in the presence of CO.The PEMFC performance showed a reduction trend in the order of pure H2, reformate gas and mixture gases.A small amount of CH3OH or (CH3)2O had no apparent effect on the performance of the single fuel cell.展开更多
基金Supported by the Natural Science Foundation of Guangdong Province (No. 031424).
文摘A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performance of the fuel cell was dependent on anode compartment H2S flow rate and concentration. The cell open-circuit voltage increased with increasing H2S flow rate. It was found that increasing both H2S flow rate and H2S concentration improved current-voltage and power density performance. This is resulted from improved gas diffusion in anode and increased concentration of anodic electroactive species. Operation at elevated H2S concentration improved the cell performance at a given gas flow rate. However, as low as 5% H2S in gas mixture can also be utilized as fuel feed to cells. Highest current and power densities, 17500mA·cm-2 and 200mW·cm-2, are obtained with pure H2S flow rate of 50ml·min-1 and air flow rate of 100ml·min-1 at 850℃.
文摘A building integrated photovoltaic (PV) and fuel cell (FC) system is proposed for assessment of the energy self-sufficiency rate in a city in Japan. The electricity consumed in the building is mainly supplied by solar panels, while the gap between the energy demand and supply is solved by the FC that is powered by the H2 produced by water electrolysis with surplus power of PV. A desktop case study of using the proposed system in Tsu city which is located in central part of Japan, has been conducted. The results found that the self-sufficiency rates of PV system to electricity demand of households (RPV) during the daytime in April and July are higher than those in January and October. The results also reveal that the self-sufficiency rate of FC system to the electricity demand (RFC) is 15% - 38% for the day when the mean amount of horizontal solar radiation is obtained in January, April, July and October. In addition, it is found the optimum tilt angle of solar panel installed on the roof of the buildings should be 0 degree, i.e., placed horizontally.
文摘A building integrated energy system (photovoltaic (PV) and fuel cell (FC)) is proposed for assessment of the energy self-sufficiency rate in five cities of Mie prefecture in Japan. In this work, it is considered that the electricity requirement of the building is provided by the building integrated photovoltaic (BIPV) system and the gap between the energy demand and BIPV supply is fulfilled by the FC. The FC is powered by the electrolytic H2 produced from the surplus power of PV. A design study of using the proposed system in five cities in Mie prefecture, which are in center part of Japan, has been performed. It has been observed that the monthly power production from BIPV is higher in spring and summer, while it is lower in autumn and winter at all considered locations. The self-sufficiency rate of the FC system is higher with decreasing households’ number and it has been observed that the 12 households are more suitable for full cover of the electricity demand by the combined system of PV and FC. The relationship between the households’ number and self-sufficiency rate of the FC system per solar PV installation area can be expressed by exponential curve. The coefficient of the exponential curve can predict the suitable city for the BIPV system with FC system utilizing electrolytic H2 generated by using excess energy from the PV system.
文摘An integrated energy system (with photovoltaic (PV) and fuel cell (FC) for building) is proposed and assessed in term of its energy self-sufficiency rate in seven cities (Nagoya, Toyota, Tajimi, Takayama, Ogaki, Hamamatsu, Shizuoka) in Tokai region in Japan in this paper. In this work, it is considered that the electricity requirement of the building for household users is provided by a building integrated photovoltaic (BIPV) system and the gap between the energy demand and BIPV supply is fulfilled by the FC. The FC is powered by the electrolytic H2 produced when PV power was in surplus. Based on the study of applying the proposed system in seven cities, which clarifies the effectiveness of the integrated BIPV, electrolytic H2 and FC power generation system, a universal system model has been developed in this paper. It has been observed that the monthly power production from BIPV as well as FC system are higher in spring and summer, while they are both lower in autumn and winter at all considered locations. The self-sufficiency rate of the FC system is higher with decreasing households’ number and it has been observed that 16 is the most appropriate number of households in a building, whose electricity demand could be fully covered by the integrated PV and FC system. Due to its climate condition, Hamamatsu is the best city in the region for installing the proposed system. The correlation between the households’ number and self-sufficiency rate of the FC system per solar PV installation area can be expressed by the regression curve in the form of y = ax-b well.
基金The TERRA(Tandem Electrocatalytic Reactor for energy/Resource efficiency and process intensification,H2020 project 677471)Eco~2CO_2(Eco-friendly biorefinery fine chemicals from CO_2 photo-catalytic reduction,FP7 project 309701)
文摘The efficiency of photo-electrocatalytic(PECa) devices for the production of solar fuels depends on several limiting factors such as light harvesting, charge recombination and mass transport diffusion. We analyse here how they influence the performances in PECa cells having a photo-anode based on Au-modified TiOnanotube(TNT) arrays, with the aim of developing design criteria to optimize the photo-anode and the PECa cell configuration for water photo-electrolysis(splitting) and ethanol photo-reforming processes.The TNT samples were prepared by controlled anodic oxidation of Ti foils and then decorated with gold nanoparticles using different techniques to enhance the visible light response through heterojunction and plasmonic effects. The activity tests were made in a gas-phase reactor, as well as in a PECa cell without applied bias. Results were analysed in terms of photo-generated current, Hproduction rate and photoconversion efficiency. Particularly, a solar-to-hydrogen efficiency of 0.83% and a Faradaic efficiency of 91%were obtained without adding sacrificial reagents.
文摘In this work, methanol reforming and methanol reformate gas coupled with a proton exchange membrane fuel cell (PEMFC)were investigated.The results of the methanol reforming system showed that the system worked stably.The H2 concentration at the outlet was 43%~45%, CO concentration was 0—6×10-6, and the system pressure was 0.22—0.25 MPa(gage).The H2 utility of a single PEMFC was 83%, and the H2 emission concentration of the fuel cell was lower than 12%.The PEMFC power was strongly influenced by the purity of H2, particularly in the presence of CO.The PEMFC performance showed a reduction trend in the order of pure H2, reformate gas and mixture gases.A small amount of CH3OH or (CH3)2O had no apparent effect on the performance of the single fuel cell.