We report comparatively on fabrication of two-section ridge-waveguide tapered 3 quantum well (QW) InGaAsP/InP (1300 nm) and 5 QW AlGaInAs/InP (1550 nm) diode lasers. Gas mixtures of CCl2F2/O2 and H2/CH4 were used to f...We report comparatively on fabrication of two-section ridge-waveguide tapered 3 quantum well (QW) InGaAsP/InP (1300 nm) and 5 QW AlGaInAs/InP (1550 nm) diode lasers. Gas mixtures of CCl2F2/O2 and H2/CH4 were used to form ridge-waveguide on the lasers with InP-based material structures. As known, chlorine- and hydro-carbon based gases are used to fabricate ridge-waveguide structures. Here, we show the difference between the structures obtained by using the both gas mixtures in which surface and sidewall structures as well as performance of the lasers were analysed using scanning electron microscopy. It is demonstrated that gas mixtures of CCl2F2/O2 highly deteriorated the etched structures although different flow rates, rf powers and base pressures were tried. We also show that the structures etched with H2/CH4 gas mixtures produced much better results that led to the successful fabrication of two-section devices with ridge-waveguide. The lasers fabricated using H2/CH4 were characterized using output power-current (P-I) and spectral results.展开更多
在带有输送煤样的管式反应器上进行了霍林河褐煤加压快速氢解实验,分析了H2对煤/半焦的化学键断裂和对CH4生成规律的影响。在加压快速氢解条件下,CH4产率随着热解温度升高、压力的增大而增大;在50%H2气氛下,操作压力为1.0 M Pa、温度为...在带有输送煤样的管式反应器上进行了霍林河褐煤加压快速氢解实验,分析了H2对煤/半焦的化学键断裂和对CH4生成规律的影响。在加压快速氢解条件下,CH4产率随着热解温度升高、压力的增大而增大;在50%H2气氛下,操作压力为1.0 M Pa、温度为900℃时,CH4产率为8.08%,达到最大,较N2气氛下的提高了72.5%。H2或H·自由基诱发了芳环的开裂、侧链、脂肪链和醚键的断裂,促进了煤热解。CH4产率的增加主要是由于外部供H的结果;热解温度低于700℃时,H2对煤结构中活性基团的作用促进了煤热解,导致了CH4产率的增加;而热解温度高于700℃后,煤/半焦加氢气化促进了CH4产率的增加。展开更多
Monte Carlo simulations are adopted to study the electron motion in the mixture of H2 and CH4 during diamond synthesis via Glow Plasma-assisted Chemical Vapor Deposition (GPCVD). The non-uniform electric field is used...Monte Carlo simulations are adopted to study the electron motion in the mixture of H2 and CH4 during diamond synthesis via Glow Plasma-assisted Chemical Vapor Deposition (GPCVD). The non-uniform electric field is used and the avalanche of electrons is taken into account in this simulation. The average energy distribution of electrons and the space distribution of effective species such as CH3, CH+3, CH+ and H at various gas pressures are given in this paper, and optimum experimental conditions are inferred from these results.展开更多
A computational study was firstly performed in this work to examine the applicability of an acid-functionalized metal-organic framework(MOF), Ui O-66(Zr)-(COOH)2, in membrane-based H2S/CH4 separation. The results show...A computational study was firstly performed in this work to examine the applicability of an acid-functionalized metal-organic framework(MOF), Ui O-66(Zr)-(COOH)2, in membrane-based H2S/CH4 separation. The results show that this MOF could be potentially interesting when being used as the pure membrane material for the separation of the mixture with low H2 S concentration. Further, the performance of 10 different mixed matrix membranes(MMMs) on the basis of the MOF was predicted by combing the molecular simulation data and the Maxwell permeation model. The results indicate that using this MOF as filler particles in MMMs can signi ficantly enhance the permeation performance of pure polymers. The findings obtained in this work may be helpful in facilitating the application of this promising MOF for practical desulfurization process of fuel gas.展开更多
Diffusion of pure H2, CO, N2,O2 and CH4 gases through nanoporous carbon membrane is investigated by carrying out non-equilibrium molecular dynamics (NEMD) simulations. The flux, transport diffusivity and activation ...Diffusion of pure H2, CO, N2,O2 and CH4 gases through nanoporous carbon membrane is investigated by carrying out non-equilibrium molecular dynamics (NEMD) simulations. The flux, transport diffusivity and activation energy for the pure gases diffusing through carbon membranes with various pore widths were investigated. The simulation results reveal that transport diffusivity increases with temperature and pore width, and its values have a magnitude of 10^-7 m^2·s^-1 for pore widths of about 0.80 to 1.21 nm at 273 to 300 K. The activation energies for the gases diffusion through the membrane with various pore widths are about 1-5 kJ·mol^-1, The results of transport diffusivities are comparable with that of Rao and Sircar (J. Membr. Sci., 1996), indicating the NEMD simulation method is a good tool for predicting the transport diffusivities for gases in porous materials, which is always difficult to be accurately measured by experiments.展开更多
In this work,the solubility data and liquid-phase mass transfer coefficients of hydrogen(H2),methane(CH4)and their mixtures in vacuum gas oil(VGO)at temperatures(353.15-453.15 K)and pressures(1-7 MPa)were measured,whi...In this work,the solubility data and liquid-phase mass transfer coefficients of hydrogen(H2),methane(CH4)and their mixtures in vacuum gas oil(VGO)at temperatures(353.15-453.15 K)and pressures(1-7 MPa)were measured,which are necessary for catalytic cracking process simulation and design.The solubility of H2 and CH4 in VGO increases with the increase of pressure,but decreases with the increase of temperature.Henry’s constants of H2 and CH4 follow the relation of In H=-413.05/T+5.27 and In H=-990.67/T+5.87,respectively.The molar fractions of H2 and system pressures at different equilibrium time were measured to estimate the liquid-phase mass transfer coefficients.The results showed that with the increase of pressure,the liquid-phase mass transfer coefficients increase.Furthermore,the solubility of H2 and CH4 in VGO was predicted by the predictive COSMO-RS model,and the predicted values agree well with experimental data.In addition,the gas-liquid equilibrium(GLE)for H2+CH4+VGO system at different feeding gas ratios in volume fraction(i.e.,H285%+CH415%and H290%+CH410%)was measured.The selectivity of H2 to CH4 predicted by the COSMO-RS model agrees well with experimental data.This work provides the basic thermodynamic and dynamic data for fuel oil catalytic cracking processes.展开更多
The destruction of hydrocarbon in deep carbonate diagenetic environment is one of problems on the formation of oil and gas. Organic-inorganic reactions in the process of TSR(Thermochemical Sulfate Reduction) are the m...The destruction of hydrocarbon in deep carbonate diagenetic environment is one of problems on the formation of oil and gas. Organic-inorganic reactions in the process of TSR(Thermochemical Sulfate Reduction) are the main reason to make disappearance of the hydrocarbons. The work in this field has often been the subject of much research work in recent years. In this paper, the thermodynamics of CH4-CaSO4 and H2S-Fe2O3 systems is discussed to investigate the possibility of reactions. It is found that these two reactions can proceed spontaneously.Increasing temperature is favorite for CH4-CaSO4 system but disfavorite for H2S-Fe2O3 system. Thermal simulation experiments were carried out using autoclave at high temperature and high pressure. The properties of the products were characterized by microcoulometry, FT-IR and XRD methods. On the basis of the experimental data, a reaction kinetic model is developed and kinetic parameters are determined.展开更多
基金the financial support of TUB-ITAK via Project 107E163.
文摘We report comparatively on fabrication of two-section ridge-waveguide tapered 3 quantum well (QW) InGaAsP/InP (1300 nm) and 5 QW AlGaInAs/InP (1550 nm) diode lasers. Gas mixtures of CCl2F2/O2 and H2/CH4 were used to form ridge-waveguide on the lasers with InP-based material structures. As known, chlorine- and hydro-carbon based gases are used to fabricate ridge-waveguide structures. Here, we show the difference between the structures obtained by using the both gas mixtures in which surface and sidewall structures as well as performance of the lasers were analysed using scanning electron microscopy. It is demonstrated that gas mixtures of CCl2F2/O2 highly deteriorated the etched structures although different flow rates, rf powers and base pressures were tried. We also show that the structures etched with H2/CH4 gas mixtures produced much better results that led to the successful fabrication of two-section devices with ridge-waveguide. The lasers fabricated using H2/CH4 were characterized using output power-current (P-I) and spectral results.
文摘在带有输送煤样的管式反应器上进行了霍林河褐煤加压快速氢解实验,分析了H2对煤/半焦的化学键断裂和对CH4生成规律的影响。在加压快速氢解条件下,CH4产率随着热解温度升高、压力的增大而增大;在50%H2气氛下,操作压力为1.0 M Pa、温度为900℃时,CH4产率为8.08%,达到最大,较N2气氛下的提高了72.5%。H2或H·自由基诱发了芳环的开裂、侧链、脂肪链和醚键的断裂,促进了煤热解。CH4产率的增加主要是由于外部供H的结果;热解温度低于700℃时,H2对煤结构中活性基团的作用促进了煤热解,导致了CH4产率的增加;而热解温度高于700℃后,煤/半焦加氢气化促进了CH4产率的增加。
基金This work was supported by Doctor Foundation of Hebei Education Committee Hebei Natural Science Foundation(599091 ) of China
文摘Monte Carlo simulations are adopted to study the electron motion in the mixture of H2 and CH4 during diamond synthesis via Glow Plasma-assisted Chemical Vapor Deposition (GPCVD). The non-uniform electric field is used and the avalanche of electrons is taken into account in this simulation. The average energy distribution of electrons and the space distribution of effective species such as CH3, CH+3, CH+ and H at various gas pressures are given in this paper, and optimum experimental conditions are inferred from these results.
基金Supported by the National Key Basic Research Program of China(2013CB733503)the National Natural Science Foundation of China(21136001,21276009 and 21322603)the Program for New Century Excellent Talents in University(NCET-12-0755)
文摘A computational study was firstly performed in this work to examine the applicability of an acid-functionalized metal-organic framework(MOF), Ui O-66(Zr)-(COOH)2, in membrane-based H2S/CH4 separation. The results show that this MOF could be potentially interesting when being used as the pure membrane material for the separation of the mixture with low H2 S concentration. Further, the performance of 10 different mixed matrix membranes(MMMs) on the basis of the MOF was predicted by combing the molecular simulation data and the Maxwell permeation model. The results indicate that using this MOF as filler particles in MMMs can signi ficantly enhance the permeation performance of pure polymers. The findings obtained in this work may be helpful in facilitating the application of this promising MOF for practical desulfurization process of fuel gas.
基金Supported by the state Key Development Program for Basic Research of China (2003CB615707) and the National Natural Science Foundation of China (20736005).
文摘Diffusion of pure H2, CO, N2,O2 and CH4 gases through nanoporous carbon membrane is investigated by carrying out non-equilibrium molecular dynamics (NEMD) simulations. The flux, transport diffusivity and activation energy for the pure gases diffusing through carbon membranes with various pore widths were investigated. The simulation results reveal that transport diffusivity increases with temperature and pore width, and its values have a magnitude of 10^-7 m^2·s^-1 for pore widths of about 0.80 to 1.21 nm at 273 to 300 K. The activation energies for the gases diffusion through the membrane with various pore widths are about 1-5 kJ·mol^-1, The results of transport diffusivities are comparable with that of Rao and Sircar (J. Membr. Sci., 1996), indicating the NEMD simulation method is a good tool for predicting the transport diffusivities for gases in porous materials, which is always difficult to be accurately measured by experiments.
基金Supported by the National Natural Science Foundation of China(U1862103).
文摘In this work,the solubility data and liquid-phase mass transfer coefficients of hydrogen(H2),methane(CH4)and their mixtures in vacuum gas oil(VGO)at temperatures(353.15-453.15 K)and pressures(1-7 MPa)were measured,which are necessary for catalytic cracking process simulation and design.The solubility of H2 and CH4 in VGO increases with the increase of pressure,but decreases with the increase of temperature.Henry’s constants of H2 and CH4 follow the relation of In H=-413.05/T+5.27 and In H=-990.67/T+5.87,respectively.The molar fractions of H2 and system pressures at different equilibrium time were measured to estimate the liquid-phase mass transfer coefficients.The results showed that with the increase of pressure,the liquid-phase mass transfer coefficients increase.Furthermore,the solubility of H2 and CH4 in VGO was predicted by the predictive COSMO-RS model,and the predicted values agree well with experimental data.In addition,the gas-liquid equilibrium(GLE)for H2+CH4+VGO system at different feeding gas ratios in volume fraction(i.e.,H285%+CH415%and H290%+CH410%)was measured.The selectivity of H2 to CH4 predicted by the COSMO-RS model agrees well with experimental data.This work provides the basic thermodynamic and dynamic data for fuel oil catalytic cracking processes.
基金Supported by the National Natural Science Foundation of China (No.40172047) and National Major Fundamental Research & Development Project(No.G19990433)
文摘The destruction of hydrocarbon in deep carbonate diagenetic environment is one of problems on the formation of oil and gas. Organic-inorganic reactions in the process of TSR(Thermochemical Sulfate Reduction) are the main reason to make disappearance of the hydrocarbons. The work in this field has often been the subject of much research work in recent years. In this paper, the thermodynamics of CH4-CaSO4 and H2S-Fe2O3 systems is discussed to investigate the possibility of reactions. It is found that these two reactions can proceed spontaneously.Increasing temperature is favorite for CH4-CaSO4 system but disfavorite for H2S-Fe2O3 system. Thermal simulation experiments were carried out using autoclave at high temperature and high pressure. The properties of the products were characterized by microcoulometry, FT-IR and XRD methods. On the basis of the experimental data, a reaction kinetic model is developed and kinetic parameters are determined.