Roll motion of ships can be distinguished in two parts:an unavoidable part due to their natural movement while turning and an unwanted and avoidable part that is due to encounter with waves and rough seas in general.F...Roll motion of ships can be distinguished in two parts:an unavoidable part due to their natural movement while turning and an unwanted and avoidable part that is due to encounter with waves and rough seas in general.For the attenuation of the unwanted part of roll motion,ways have been developed such as addition of controllable fins and changes in shape.This paper investigates the effectiveness of augmenting the rudder used for rejecting part of the unwanted roll,while maintaining steering and course changing ability.For this purpose,a controller is designed,which acts through intentional superposition of fast,compared with course change,movements of rudder,in order to attenuate the high-frequency roll effects from encountering rough seas.The results obtained by simulation to exogenous disturbance support the conclusion that the roll stabilization for displacement can be effective at least when displacement hull vessels are considered.Moreover,robust stability and performance is verified for the proposed control scheme over the entire operating range of interest.展开更多
For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mi...For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mixed H_2/H_∞ state feedback attitude control problem of microsatellite based on extended LMI method.Firstly,the microsatellite attitude control system is established and transformed into corresponding state space form.Then,without the equivalence restriction of the two Lyapunov variables of H_2 and H∞performance,this paper introduces additional variables to design the mixed H_2/H_∞ control method based on LMI which can also reduce the conservatives.Finally,numerical simulations are analyzed to show that the proposed method can make the satellite stable within 20 s whether there is additive perturbation of the controller gain or not.The comparative analysis of the simulation results between extended LMI method and traditional LMI method also demonstrates the effectiveness and feasibility of the proposed method in this paper.展开更多
A new semi-active suspension control strategy through mixed H2/H∞ robust technique was developed due to its flexibility and robustness to model uncertainties.A full car model with seven degrees of freedom was establi...A new semi-active suspension control strategy through mixed H2/H∞ robust technique was developed due to its flexibility and robustness to model uncertainties.A full car model with seven degrees of freedom was established to demonstrate the effectiveness of the new control approach.Magneto-rheological(MR) dampers were designed,manufactured and characterized as available semi-active actuators in the developed semi-active suspension system.The four independent mixed H2/H∞ controllers were devised in order to perform a distributed semi-active control system in the vehicle by which the response velocity and reliability can be improved significantly.The performance of the proposed new approach was investigated in time and frequency domains.A good balance between vehicle's comfort and road holding was achieved.An effective and practical control strategy for semi-active suspension system was thus obtained.This new approach exhibits some advantages in implementation,performance flexibility and robustness compared to existing methods.展开更多
The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the ...The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the servo system control problem is transferred into the problem of robust performance optimizing under regional poles constrains described by linear matrix inequality (LMI). These LMIs are easy to solve through the Matlab LMI-toolbox. Simulations indicate that the controller has excellent dynamic, static and disturbance rejection performance, and the control system is robust and has perfect H2 performance to the bounded external torque disturbance.展开更多
The exist researches of the magneto-rheological semi-active suspension(MSAS) control mainly focus on the design of control laws,which aim at obtaining an optimal control strategy to improve the ride comfort and handli...The exist researches of the magneto-rheological semi-active suspension(MSAS) control mainly focus on the design of control laws,which aim at obtaining an optimal control strategy to improve the ride comfort and handling stability.In the controller design,the stability of the MSAS system cannot be confirmed owing to the control input time delay considered little.In this paper,a quarter vehicle MSAS model with time-delay is built.Therefore,through formulating the sprung mass acceleration suitably as the optimization object,suspension deflection and tyre dynamic load and coulomb damping force as the constraint objects,with considering the control input time-delay,a delay-dependent state feedback H2/H∞ controller is designed.According to Lyapunov-Krasovskii functional theory,the sufficient conditions for asymptotic stability and the existence of delay-dependent H2/H∞ controller are obtained,and the controller design is transformed into the minimization problem for linear function through linear matrix inequality(LMI).Random road excitation simulations and experiments are carried out.The simulation and experiment results show that the design can preserve the closed-loop stability and achieve the performances for MSAS system in spite of the existence of the control input time-delay.The present study can provide an important basis and method for research on time-delay problem in MSAS and other chassis subsystems.展开更多
This paper is concerned with the H2 estimation and control problems for uncertain discretetime systems with norm-bounded parameter uncertainty. We first present an analysis result on H2 norm bound for a stable uncerta...This paper is concerned with the H2 estimation and control problems for uncertain discretetime systems with norm-bounded parameter uncertainty. We first present an analysis result on H2 norm bound for a stable uncertain system in terms of linear matrix inequalities (LMIs). A solution to the robust H2 estimation problem is then derived in terms of two LMIs. As compared to the existing results, our result on robust H2 estimation is more general. In addition, explicit search of appropriate scaling parameters is not needed as the optimization is convex in the scaling parameters. The LMI approach is also extended to solve the robust H2 control problem which has been difficult for the traditional Riccati equation approach since no separation principle has been known for uncertain systems. The design approach is demonstrated through a simple example.展开更多
A necessary maximum principle is given for nonzero-sum stochastic Oltterential games with random jumps. The result is applied to solve the H2/H∞ control problem of stochastic systems with random jumps. A necessary an...A necessary maximum principle is given for nonzero-sum stochastic Oltterential games with random jumps. The result is applied to solve the H2/H∞ control problem of stochastic systems with random jumps. A necessary and sufficient condition for the existence of a unique solution to the H2/H∞ control problem is derived. The resulting solution is given by the solution of an uncontrolled forward backward stochastic differential equation with random jumps.展开更多
The problem of H2 output feedback control for generalized system with structural uncertainties is studied using linear matrix inequality approach. A sufficient condition Of linear matrix inequality is presented such t...The problem of H2 output feedback control for generalized system with structural uncertainties is studied using linear matrix inequality approach. A sufficient condition Of linear matrix inequality is presented such that the closed-loop system is stable and satisfies H2 performance for all admissible uncertainties. Furthermore, the solution of the controller is given. An H2 output feedback controller is designed in the airborne dispenser pitch channel, and the simulation results show that the controller is effective.展开更多
This paper proposes an efficient method for designing accurate structure-specified mixed H2/H∞ optimal controllers for systems with uncertainties and disturbance using particle swarm (PSO) algorithm. It is designed t...This paper proposes an efficient method for designing accurate structure-specified mixed H2/H∞ optimal controllers for systems with uncertainties and disturbance using particle swarm (PSO) algorithm. It is designed to find a suitable controller that minimizes the performance index of error signal subject to an unequal constraint on the norm of the closed-loop system. Although the mixed H2/H∞ for the output feedback approach control is considered as a robust and optimal control technique, the design process normally comes up with a complex and non-convex optimization problem, which is difficult to solve by the conventional optimization methods. The PSO can efficiently solve design problems of multi-input-multi-output (MIMO) optimal control systems, which is very suitable for practical engineering designs. It is used to search for parameters of a structure-specified controller, which satisfies mixed performance index. The simulation and experimental results show high feasibility, robustness and practical value compared with the conventional proportional-integral-derivative (PID) and proportional-Integral (PI) controller, and the proposed algorithm is also more efficient compared with the genetic algorithm (GA).展开更多
Generalized H2 (GH2) stability analysis and controller design of the uncertain discrete-time Takagi-Sugeno (T-S) fuzzy systems with state delay are studied based on a switching fuzzy model and piecewise Lyapunov f...Generalized H2 (GH2) stability analysis and controller design of the uncertain discrete-time Takagi-Sugeno (T-S) fuzzy systems with state delay are studied based on a switching fuzzy model and piecewise Lyapunov function. GH2 stability sufficient conditions are derived in terms of linear matrix inequalities (LMIs). The interactions among the fuzzy subsystems are considered. Therefore, the proposed conditions are less conservative than the previous results. Since only a set of LMIs is involved, the controller design is quite simple and numerically tractable. To illustrate the validity of the proposed method, a design example is provided.展开更多
This paper is concerned with the problem of designing robust H∞and H2static output feedback controllers for a class of discrete-time piecewise-affine singular systems with norm-bounded time-varying parameters uncerta...This paper is concerned with the problem of designing robust H∞and H2static output feedback controllers for a class of discrete-time piecewise-affine singular systems with norm-bounded time-varying parameters uncertainties. Based on a piecewise singular Lyapunov function combined with S-procedure,Projection lemma and some matrix inequality convexifying techniques,sufficient conditions in terms of linear matrix inequalities are given for the existence of an output-feedback controller for the discrete-time piecewiseaffine singular systems with a prescribed H∞disturbance attenuation level,and the H2norm is smaller than a given positive number. It is shown that the controller gains can be obtained by solving a family of LMIs parameterized by one or two scalar variables. The numerical examples are given to illustrate the effectiveness of the proposed design methods.展开更多
This paper investigates the problem of robust optimal H<sub>∞</sub> control for uncertain two-dimensional (2-D) discrete state-delayed systems described by the general model (GM) with norm-bounded uncerta...This paper investigates the problem of robust optimal H<sub>∞</sub> control for uncertain two-dimensional (2-D) discrete state-delayed systems described by the general model (GM) with norm-bounded uncertainties. A sufficient condition for the existence of g-suboptimal robust H<sub><sub></sub></sub><sub>∞</sub> state feedback controllers is established, based on linear matrix inequality (LMI) approach. Moreover, a convex optimization problem is developed to design a robust optimal state feedback controller which minimizes the H<sub><sub><sub></sub></sub></sub><sub>∞</sub> noise attenuation level of the resulting closed-loop system. Finally, two illustrative examples are given to demonstrate the effectiveness of the proposed method.展开更多
This paper considers the problem of delay-dependent robust optimal H<sub>∞</sub> control for a class of uncertain two-dimensional (2-D) discrete state delay systems described by the general model (GM). Th...This paper considers the problem of delay-dependent robust optimal H<sub>∞</sub> control for a class of uncertain two-dimensional (2-D) discrete state delay systems described by the general model (GM). The parameter uncertainties are assumed to be norm-bounded. A linear matrix inequality (LMI)-based sufficient condition for the existence of delay-dependent g-suboptimal state feedback robust H<sub>∞</sub> controllers which guarantees not only the asymptotic stability of the closed-loop system, but also the H<sub>∞</sub> noise attenuation g over all admissible parameter uncertainties is established. Furthermore, a convex optimization problem is formulated to design a delay-dependent state feedback robust optimal H<sub>∞</sub> controller which minimizes the H<sub>∞</sub> noise attenuation g of the closed-loop system. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed method.展开更多
文摘Roll motion of ships can be distinguished in two parts:an unavoidable part due to their natural movement while turning and an unwanted and avoidable part that is due to encounter with waves and rough seas in general.For the attenuation of the unwanted part of roll motion,ways have been developed such as addition of controllable fins and changes in shape.This paper investigates the effectiveness of augmenting the rudder used for rejecting part of the unwanted roll,while maintaining steering and course changing ability.For this purpose,a controller is designed,which acts through intentional superposition of fast,compared with course change,movements of rudder,in order to attenuate the high-frequency roll effects from encountering rough seas.The results obtained by simulation to exogenous disturbance support the conclusion that the roll stabilization for displacement can be effective at least when displacement hull vessels are considered.Moreover,robust stability and performance is verified for the proposed control scheme over the entire operating range of interest.
文摘For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mixed H_2/H_∞ state feedback attitude control problem of microsatellite based on extended LMI method.Firstly,the microsatellite attitude control system is established and transformed into corresponding state space form.Then,without the equivalence restriction of the two Lyapunov variables of H_2 and H∞performance,this paper introduces additional variables to design the mixed H_2/H_∞ control method based on LMI which can also reduce the conservatives.Finally,numerical simulations are analyzed to show that the proposed method can make the satellite stable within 20 s whether there is additive perturbation of the controller gain or not.The comparative analysis of the simulation results between extended LMI method and traditional LMI method also demonstrates the effectiveness and feasibility of the proposed method in this paper.
基金Project(50775225) supported by the National Natural Science Foundation of ChinaProjects(CSTC, 2008AC6097, 2008BA6025) supported by National Natural Science Foundation of Chongqing, China
文摘A new semi-active suspension control strategy through mixed H2/H∞ robust technique was developed due to its flexibility and robustness to model uncertainties.A full car model with seven degrees of freedom was established to demonstrate the effectiveness of the new control approach.Magneto-rheological(MR) dampers were designed,manufactured and characterized as available semi-active actuators in the developed semi-active suspension system.The four independent mixed H2/H∞ controllers were devised in order to perform a distributed semi-active control system in the vehicle by which the response velocity and reliability can be improved significantly.The performance of the proposed new approach was investigated in time and frequency domains.A good balance between vehicle's comfort and road holding was achieved.An effective and practical control strategy for semi-active suspension system was thus obtained.This new approach exhibits some advantages in implementation,performance flexibility and robustness compared to existing methods.
文摘The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the servo system control problem is transferred into the problem of robust performance optimizing under regional poles constrains described by linear matrix inequality (LMI). These LMIs are easy to solve through the Matlab LMI-toolbox. Simulations indicate that the controller has excellent dynamic, static and disturbance rejection performance, and the control system is robust and has perfect H2 performance to the bounded external torque disturbance.
基金supported by National Natural Science Foundation of China (Grant No. 51075112,Grant No. 51175135)
文摘The exist researches of the magneto-rheological semi-active suspension(MSAS) control mainly focus on the design of control laws,which aim at obtaining an optimal control strategy to improve the ride comfort and handling stability.In the controller design,the stability of the MSAS system cannot be confirmed owing to the control input time delay considered little.In this paper,a quarter vehicle MSAS model with time-delay is built.Therefore,through formulating the sprung mass acceleration suitably as the optimization object,suspension deflection and tyre dynamic load and coulomb damping force as the constraint objects,with considering the control input time-delay,a delay-dependent state feedback H2/H∞ controller is designed.According to Lyapunov-Krasovskii functional theory,the sufficient conditions for asymptotic stability and the existence of delay-dependent H2/H∞ controller are obtained,and the controller design is transformed into the minimization problem for linear function through linear matrix inequality(LMI).Random road excitation simulations and experiments are carried out.The simulation and experiment results show that the design can preserve the closed-loop stability and achieve the performances for MSAS system in spite of the existence of the control input time-delay.The present study can provide an important basis and method for research on time-delay problem in MSAS and other chassis subsystems.
文摘This paper is concerned with the H2 estimation and control problems for uncertain discretetime systems with norm-bounded parameter uncertainty. We first present an analysis result on H2 norm bound for a stable uncertain system in terms of linear matrix inequalities (LMIs). A solution to the robust H2 estimation problem is then derived in terms of two LMIs. As compared to the existing results, our result on robust H2 estimation is more general. In addition, explicit search of appropriate scaling parameters is not needed as the optimization is convex in the scaling parameters. The LMI approach is also extended to solve the robust H2 control problem which has been difficult for the traditional Riccati equation approach since no separation principle has been known for uncertain systems. The design approach is demonstrated through a simple example.
基金supported by the Doctoral foundation of University of Jinan(XBS1213)the National Natural Science Foundation of China(11101242)
文摘A necessary maximum principle is given for nonzero-sum stochastic Oltterential games with random jumps. The result is applied to solve the H2/H∞ control problem of stochastic systems with random jumps. A necessary and sufficient condition for the existence of a unique solution to the H2/H∞ control problem is derived. The resulting solution is given by the solution of an uncontrolled forward backward stochastic differential equation with random jumps.
基金Sponsored by the Ministerial Level Advanced Research Foundation (G423BQ0110)
文摘The problem of H2 output feedback control for generalized system with structural uncertainties is studied using linear matrix inequality approach. A sufficient condition Of linear matrix inequality is presented such that the closed-loop system is stable and satisfies H2 performance for all admissible uncertainties. Furthermore, the solution of the controller is given. An H2 output feedback controller is designed in the airborne dispenser pitch channel, and the simulation results show that the controller is effective.
文摘This paper proposes an efficient method for designing accurate structure-specified mixed H2/H∞ optimal controllers for systems with uncertainties and disturbance using particle swarm (PSO) algorithm. It is designed to find a suitable controller that minimizes the performance index of error signal subject to an unequal constraint on the norm of the closed-loop system. Although the mixed H2/H∞ for the output feedback approach control is considered as a robust and optimal control technique, the design process normally comes up with a complex and non-convex optimization problem, which is difficult to solve by the conventional optimization methods. The PSO can efficiently solve design problems of multi-input-multi-output (MIMO) optimal control systems, which is very suitable for practical engineering designs. It is used to search for parameters of a structure-specified controller, which satisfies mixed performance index. The simulation and experimental results show high feasibility, robustness and practical value compared with the conventional proportional-integral-derivative (PID) and proportional-Integral (PI) controller, and the proposed algorithm is also more efficient compared with the genetic algorithm (GA).
文摘Generalized H2 (GH2) stability analysis and controller design of the uncertain discrete-time Takagi-Sugeno (T-S) fuzzy systems with state delay are studied based on a switching fuzzy model and piecewise Lyapunov function. GH2 stability sufficient conditions are derived in terms of linear matrix inequalities (LMIs). The interactions among the fuzzy subsystems are considered. Therefore, the proposed conditions are less conservative than the previous results. Since only a set of LMIs is involved, the controller design is quite simple and numerically tractable. To illustrate the validity of the proposed method, a design example is provided.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61004038)
文摘This paper is concerned with the problem of designing robust H∞and H2static output feedback controllers for a class of discrete-time piecewise-affine singular systems with norm-bounded time-varying parameters uncertainties. Based on a piecewise singular Lyapunov function combined with S-procedure,Projection lemma and some matrix inequality convexifying techniques,sufficient conditions in terms of linear matrix inequalities are given for the existence of an output-feedback controller for the discrete-time piecewiseaffine singular systems with a prescribed H∞disturbance attenuation level,and the H2norm is smaller than a given positive number. It is shown that the controller gains can be obtained by solving a family of LMIs parameterized by one or two scalar variables. The numerical examples are given to illustrate the effectiveness of the proposed design methods.
文摘This paper investigates the problem of robust optimal H<sub>∞</sub> control for uncertain two-dimensional (2-D) discrete state-delayed systems described by the general model (GM) with norm-bounded uncertainties. A sufficient condition for the existence of g-suboptimal robust H<sub><sub></sub></sub><sub>∞</sub> state feedback controllers is established, based on linear matrix inequality (LMI) approach. Moreover, a convex optimization problem is developed to design a robust optimal state feedback controller which minimizes the H<sub><sub><sub></sub></sub></sub><sub>∞</sub> noise attenuation level of the resulting closed-loop system. Finally, two illustrative examples are given to demonstrate the effectiveness of the proposed method.
文摘This paper considers the problem of delay-dependent robust optimal H<sub>∞</sub> control for a class of uncertain two-dimensional (2-D) discrete state delay systems described by the general model (GM). The parameter uncertainties are assumed to be norm-bounded. A linear matrix inequality (LMI)-based sufficient condition for the existence of delay-dependent g-suboptimal state feedback robust H<sub>∞</sub> controllers which guarantees not only the asymptotic stability of the closed-loop system, but also the H<sub>∞</sub> noise attenuation g over all admissible parameter uncertainties is established. Furthermore, a convex optimization problem is formulated to design a delay-dependent state feedback robust optimal H<sub>∞</sub> controller which minimizes the H<sub>∞</sub> noise attenuation g of the closed-loop system. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed method.