斜拉桥在风荷载作用下易出现多模态参与的大幅振动,宜采用主动式ATMD(active tuned mass damper)减振。针对斜拉桥风振减振设计中的ATMD及传感器的位置和数量配置问题,在建立风荷载作用下斜拉桥与ATMD组合系统模型的基础上,用模态坐标表...斜拉桥在风荷载作用下易出现多模态参与的大幅振动,宜采用主动式ATMD(active tuned mass damper)减振。针对斜拉桥风振减振设计中的ATMD及传感器的位置和数量配置问题,在建立风荷载作用下斜拉桥与ATMD组合系统模型的基础上,用模态坐标表示H2范数,提出包括外激励影响的分别针对作动器和传感器配置优化的H2范数指标,推导ATMD对结构的共振激振模型,考虑ATMD和加速度传感器的动力性能并对配置指标进行修正,建立能够以开环方式有效实现ATMD和加速度传感器配置的优化方法。以南京长江第三大桥的风振减振为例,定量分析ATMD和加速度传感器的优化位置和数量。结果表明,采用考虑外激励权重的H2范数指标,并结合考虑ATMD动力性能,能够有效实现针对结构多模态参与的风振减振的ATMD和加速度传感器的配置优化。展开更多
The authors consider the problem of boundary feedback stabilization of the 1D Euler gas dynamics locally around stationary states and prove the exponential stability with respect to the H2-norm. To this end, an explic...The authors consider the problem of boundary feedback stabilization of the 1D Euler gas dynamics locally around stationary states and prove the exponential stability with respect to the H2-norm. To this end, an explicit Lyapunov function as a weighted and squared H2-norm of a small perturbation of the stationary solution is constructed. The authors show that by a suitable choice of the boundary feedback conditions, the H2- exponential stability of the stationary solution follows. Due to this fact, the system is stabilized over an infinite time interval. Furthermore, exponential estimates for the C norm are derived.展开更多
文摘斜拉桥在风荷载作用下易出现多模态参与的大幅振动,宜采用主动式ATMD(active tuned mass damper)减振。针对斜拉桥风振减振设计中的ATMD及传感器的位置和数量配置问题,在建立风荷载作用下斜拉桥与ATMD组合系统模型的基础上,用模态坐标表示H2范数,提出包括外激励影响的分别针对作动器和传感器配置优化的H2范数指标,推导ATMD对结构的共振激振模型,考虑ATMD和加速度传感器的动力性能并对配置指标进行修正,建立能够以开环方式有效实现ATMD和加速度传感器配置的优化方法。以南京长江第三大桥的风振减振为例,定量分析ATMD和加速度传感器的优化位置和数量。结果表明,采用考虑外激励权重的H2范数指标,并结合考虑ATMD动力性能,能够有效实现针对结构多模态参与的风振减振的ATMD和加速度传感器的配置优化。
基金Project supported by the Initial Training Network "FIRST" of the Seventh Framework Programme of the European Community’s (No. 238702) the DFG-Priority Program 1253: Optimization with PDEs (No. GU 376/7-1)
文摘The authors consider the problem of boundary feedback stabilization of the 1D Euler gas dynamics locally around stationary states and prove the exponential stability with respect to the H2-norm. To this end, an explicit Lyapunov function as a weighted and squared H2-norm of a small perturbation of the stationary solution is constructed. The authors show that by a suitable choice of the boundary feedback conditions, the H2- exponential stability of the stationary solution follows. Due to this fact, the system is stabilized over an infinite time interval. Furthermore, exponential estimates for the C norm are derived.