Previous cryogenic Raman spectroscopic analysis of H_2O-NaCl-CaCl_2 solutions has identified the Raman peaks of various hydrates of NaCl and CaCl_2,and established a linear relationship between Raman band intensity of...Previous cryogenic Raman spectroscopic analysis of H_2O-NaCl-CaCl_2 solutions has identified the Raman peaks of various hydrates of NaCl and CaCl_2,and established a linear relationship between Raman band intensity of the hydrates and the composition of the solution(NaCl/(NaCl+CaCl_2) molar ratio,or X_(NaC1)) using synthetic fluids,which created the opportunity to quantitatively determine the solute composition of aqueous fluid inclusions with cryogenic Raman spectroscopy.This paper aims to test the feasibility of this newly established method with natural fluid inclusions.Twenty-five fluid inclusions in quartz from various occurrences which show a high degree of freezing during the cooling processes were carefully chosen for cryogenic Raman analysis.X_(Na)Cl was calculated using their spectra and an equation established in a previous study.These inclusions were then analyzed with the thermal decrepitation-SEM-EDS method.The X_(NaCl) values estimated from the two methods show a 1:1 correlation,indicating that the new,non-destructive cryogenic Raman spectroscopic analysis method can indeed be used for fluid inclusion compositional study.展开更多
Raman peaks of various hydrates in the H20-NaCl-CaCl2 system have been previously identified, but a quantitative relationship between the Raman peaks and XNaCl (i.e.,NaCl/ (NaCl+CaCl2)) has not been established, ...Raman peaks of various hydrates in the H20-NaCl-CaCl2 system have been previously identified, but a quantitative relationship between the Raman peaks and XNaCl (i.e.,NaCl/ (NaCl+CaCl2)) has not been established, mainly due to the difficulty to freeze the solutions. This problem was solved by adding alumina powder to the solutions to facilitate nucleation of crystals. Cryogenic (-185℃) Raman spectroscopic studies of alumina-spiced solutions indicate that XNaCl is linearly correlated with the total peak area fraction of hydrohalite. Capsules of solutions made from silica capillary were prepared to simulate fluid inclusions. Most of these artificial fluid inclusions could not be totally frozen even at temperatures as low as -185℃, and the total peak area fraction of hydrohalite is not correlated linearly with XNaCI. However, the degree of deviation (△XNaCl) from the linear correlation established earlier is related to the amount of residual solution, which is reflected by the ratio (r) of the baseline "bump" area, resulting from the interstitial unfrozen brine near 3435 cm^-1, and the total hydrate peak area between 3350 and 3600 cm^-1. A linear correlation between △XNaCl and r is established to estimate XNaCl from cryogenic Raman spectroscopic analysis for fluid inclusions.展开更多
The Wulasigou Cu-Pb-Zn deposit,located 15 km northwest of Altay city in Xinjiang,is one of many Cu-Pb-Zn polymetallic deposits in the Devonian Kelan volcanic-sedimentary basin in southern Altaids.Two mineralizing peri...The Wulasigou Cu-Pb-Zn deposit,located 15 km northwest of Altay city in Xinjiang,is one of many Cu-Pb-Zn polymetallic deposits in the Devonian Kelan volcanic-sedimentary basin in southern Altaids.Two mineralizing periods can be distinguished:the marine volcanic sedimentary PbZn mineralization period,and the metamorphic hydrothermal Cu mineralization period,which is further divided into an early bedded foliated quartz vein stage(Q1) and a late sulfide-quartz vein stage(Q2) crosscutting the foliation.Four types of fluid inclusions were recognized in the Q1 and Q2 quartz from the east orebodies of the Wulasigou deposit:H2O-CO2 inclusions,carbonic fluid inclusions,aqueous fluid inclusions,and daughter mineral-bearing fluid inclusions.Microthermometric studies show that solid CO2 melting temperatures(T(m,CO2)) of H2O-CO2 inclusions in Ql are from-62.3℃ to-58.5C,clathrate melting temperatures(T(m,clath)l) are from 0.5 C to 7.5 C,partial homogenization temperatures(T(h,CO2)) vary from 3.3℃ to 25.9℃(to liquid),and the total homogenization temperatures(T(h,tot)) vary from 285℃ to 378℃,with the salinities being 4.9%-15.1%NaCl eqv.and the CO2-phase densities being 0.50-0.86 g/cm-3.H2O-CO2 inclusions in Q2 have T(m,CO2) from-61.9℃ to-56.9℃,T(m,clath)from 1.3℃ to 9.5℃,T(h,CO2) from 3.4℃ to 28.7℃(to liquid),and T(h,tot) from 242℃ to 388℃,with the salinities being 1.0%-15.5%NaCl eqv.and the CO2-phase densities being 0.48-0.89 g/cm-3.The minimum trapping pressures of fluid inclusions in Q1 and Q2 are estimated to be 260-360 MPa and180-370 MPa,respectively.The δ-(34)S values of pyrite from the volcanic sedimentary period vary from2.3‰ to 2.8‰(CDT),and those from the sulfide-quartz veins fall in a narrow range of-1.9‰ to 2.6‰(CDT).The δD values of fluid inclusions in Q2 range from-121.0‰ to-100.8‰(SMOW),and theδ-(18)O(H2O) values calculated from δ-(18)O of quartz range from-0.2‰ to 8.3‰(SMOW).The δD-δ-(18)O(H2O)data are close to the magmatic and metamorphic fields.The fluid inclusion and stable isotope data documented in this study indicate that the vein-type copper mineralization in the Wulasigou Pb-Zn-Cu deposit took place in an orogenic-metamorphic enviroment.展开更多
On the basis of Parry’s method (1986), an improved method was established to determine the molar volume (Vm) and compositions (X) of the NaCl-H2O-CO2 (NHC) system inclusion. To use this method, the determination of V...On the basis of Parry’s method (1986), an improved method was established to determine the molar volume (Vm) and compositions (X) of the NaCl-H2O-CO2 (NHC) system inclusion. To use this method, the determination of Vm-X only requires three microthermometric data of a NHC inclusion: partial homog-enization temperature (Th ,CO2), salinity (S) and total homogenization temperature (Th). Theoretically, four associated equations are needed containing four unknown parameters: X CO2, XNaCl, Vm and F (volume fraction of CO2 phase in total inclusion when occurring partial homogenization). When they are released, the Vm-X are determined. The former three equations, only correlated with Th ,CO2, S and F, have simplified expressions:XCO2=f1(Th,CO2,S,F),XNaCl=f2(Th,CO2,S,F),Vm=f3(Th,CO2,S,F). The last one is the thermodynamic relationship of X CO2, XNaCl, Vm and Th:f4(XCO2,XNaCl,Vm,Th)=0.Since the above four associated equations are complicated, it is necessary to adopt iterative technique to release them. The technique can be described by:(i) Freely input a F value (0≤F≤1),with Th ,CO2 and S, into the former three equations. As a result,X CO 2,XNaCl and the molar volume value recorded as Vm1 are derived. (ii) Input the X CO2 and XNaCl gotten in the step above into the last equation, and another molar volume value recorded as Vm2 is determined. (iii) If Vm1 is unequal to Vm2, the calculation will be restarted from “(i)”. The iteration is completed until Vm1 is equal to Vm2, which means that the four associated equations are released. Compared to Parry’s (1986) solution method, the improved method is more convenient to use, as well as more accurate to determine X CO 2. It is available for a NHC inlusion whose partial homogenization temperature is higher than clatherate melting temperature and there are no solid salt crystals in the inclusion at parital homogenization.展开更多
A lot of liquid-gas and liquid-gas-solid inclusions were found in Pharkant jadeitites, northwestern Myanmar and their characteristics, geological setting and porphyroclastic jadeites with inclusions in them were descr...A lot of liquid-gas and liquid-gas-solid inclusions were found in Pharkant jadeitites, northwestern Myanmar and their characteristics, geological setting and porphyroclastic jadeites with inclusions in them were described in detail. The results analyzed by Raman spectrometer showed that the component of liquid-gas phase and solid phase (daughter minerals) in fluid inclusions is H2O + CH4 and jadeite separately. The results indicated that Pharkant jadeitites were crystallized from H2O + CH4 bearing jadeitic melt which may originate from mantle. The P-T conditions in which the jadeitites were crystallized were speculated to be T】650℃, P】1.5 GPa.展开更多
On the basis of the study of volcanic products during 1199-1200AD eruption of Baitou Mountain (Baitoushan), the released volatile content was estimated by comparing Cl, F, S, H2O concentrations of undegassed glass inc...On the basis of the study of volcanic products during 1199-1200AD eruption of Baitou Mountain (Baitoushan), the released volatile content was estimated by comparing Cl, F, S, H2O concentrations of undegassed glass inclusions with those of degassed matrix glasses. The calculations show that volatile yields, released from the melt, are 109.88×106 ton of HCI, 196.80×106 ton of HF, 1477.84×106 ton of H2O, 23.14×106 ton of SO2, which could have formed 35.43×106 ton of H2SO4 aerosol in the atmosphere. They could have substantial effect on paleoclimate and paleo-environment.展开更多
In the research on the gold deposits,it has been proposed that gold istransported as sulfide hydrogen complex.But from the analysis of the compositionof the fluid inclusions in gold-quartz veins,only SO<sub>4<...In the research on the gold deposits,it has been proposed that gold istransported as sulfide hydrogen complex.But from the analysis of the compositionof the fluid inclusions in gold-quartz veins,only SO<sub>4</sub><sup>2-</sup> exists and no other sulfur ionshave been found.This may be ascribed to the limitations of the composition analysismethod.By using probe mass spectrometry,gas H<sub>2</sub>S has been found in the fluid in-clusions in gold deposit。but its meaning has been neglected.In China,it is thefirst time to use probe mass spectrometry to analyse the fluid inclusions composition.展开更多
文摘Previous cryogenic Raman spectroscopic analysis of H_2O-NaCl-CaCl_2 solutions has identified the Raman peaks of various hydrates of NaCl and CaCl_2,and established a linear relationship between Raman band intensity of the hydrates and the composition of the solution(NaCl/(NaCl+CaCl_2) molar ratio,or X_(NaC1)) using synthetic fluids,which created the opportunity to quantitatively determine the solute composition of aqueous fluid inclusions with cryogenic Raman spectroscopy.This paper aims to test the feasibility of this newly established method with natural fluid inclusions.Twenty-five fluid inclusions in quartz from various occurrences which show a high degree of freezing during the cooling processes were carefully chosen for cryogenic Raman analysis.X_(Na)Cl was calculated using their spectra and an equation established in a previous study.These inclusions were then analyzed with the thermal decrepitation-SEM-EDS method.The X_(NaCl) values estimated from the two methods show a 1:1 correlation,indicating that the new,non-destructive cryogenic Raman spectroscopic analysis method can indeed be used for fluid inclusion compositional study.
基金supported by an NSERC-Discovery grant(to Chi)in part by the Knowledge Innovation Program of Chinese Academy of Sciences(SIDSSE201302)
文摘Raman peaks of various hydrates in the H20-NaCl-CaCl2 system have been previously identified, but a quantitative relationship between the Raman peaks and XNaCl (i.e.,NaCl/ (NaCl+CaCl2)) has not been established, mainly due to the difficulty to freeze the solutions. This problem was solved by adding alumina powder to the solutions to facilitate nucleation of crystals. Cryogenic (-185℃) Raman spectroscopic studies of alumina-spiced solutions indicate that XNaCl is linearly correlated with the total peak area fraction of hydrohalite. Capsules of solutions made from silica capillary were prepared to simulate fluid inclusions. Most of these artificial fluid inclusions could not be totally frozen even at temperatures as low as -185℃, and the total peak area fraction of hydrohalite is not correlated linearly with XNaCI. However, the degree of deviation (△XNaCl) from the linear correlation established earlier is related to the amount of residual solution, which is reflected by the ratio (r) of the baseline "bump" area, resulting from the interstitial unfrozen brine near 3435 cm^-1, and the total hydrate peak area between 3350 and 3600 cm^-1. A linear correlation between △XNaCl and r is established to estimate XNaCl from cryogenic Raman spectroscopic analysis for fluid inclusions.
基金funded by National Nature Science Foundation of China(41372096)
文摘The Wulasigou Cu-Pb-Zn deposit,located 15 km northwest of Altay city in Xinjiang,is one of many Cu-Pb-Zn polymetallic deposits in the Devonian Kelan volcanic-sedimentary basin in southern Altaids.Two mineralizing periods can be distinguished:the marine volcanic sedimentary PbZn mineralization period,and the metamorphic hydrothermal Cu mineralization period,which is further divided into an early bedded foliated quartz vein stage(Q1) and a late sulfide-quartz vein stage(Q2) crosscutting the foliation.Four types of fluid inclusions were recognized in the Q1 and Q2 quartz from the east orebodies of the Wulasigou deposit:H2O-CO2 inclusions,carbonic fluid inclusions,aqueous fluid inclusions,and daughter mineral-bearing fluid inclusions.Microthermometric studies show that solid CO2 melting temperatures(T(m,CO2)) of H2O-CO2 inclusions in Ql are from-62.3℃ to-58.5C,clathrate melting temperatures(T(m,clath)l) are from 0.5 C to 7.5 C,partial homogenization temperatures(T(h,CO2)) vary from 3.3℃ to 25.9℃(to liquid),and the total homogenization temperatures(T(h,tot)) vary from 285℃ to 378℃,with the salinities being 4.9%-15.1%NaCl eqv.and the CO2-phase densities being 0.50-0.86 g/cm-3.H2O-CO2 inclusions in Q2 have T(m,CO2) from-61.9℃ to-56.9℃,T(m,clath)from 1.3℃ to 9.5℃,T(h,CO2) from 3.4℃ to 28.7℃(to liquid),and T(h,tot) from 242℃ to 388℃,with the salinities being 1.0%-15.5%NaCl eqv.and the CO2-phase densities being 0.48-0.89 g/cm-3.The minimum trapping pressures of fluid inclusions in Q1 and Q2 are estimated to be 260-360 MPa and180-370 MPa,respectively.The δ-(34)S values of pyrite from the volcanic sedimentary period vary from2.3‰ to 2.8‰(CDT),and those from the sulfide-quartz veins fall in a narrow range of-1.9‰ to 2.6‰(CDT).The δD values of fluid inclusions in Q2 range from-121.0‰ to-100.8‰(SMOW),and theδ-(18)O(H2O) values calculated from δ-(18)O of quartz range from-0.2‰ to 8.3‰(SMOW).The δD-δ-(18)O(H2O)data are close to the magmatic and metamorphic fields.The fluid inclusion and stable isotope data documented in this study indicate that the vein-type copper mineralization in the Wulasigou Pb-Zn-Cu deposit took place in an orogenic-metamorphic enviroment.
基金the State Key Development Program for Basic Research of China (Grant No. 2004CB720503)
文摘On the basis of Parry’s method (1986), an improved method was established to determine the molar volume (Vm) and compositions (X) of the NaCl-H2O-CO2 (NHC) system inclusion. To use this method, the determination of Vm-X only requires three microthermometric data of a NHC inclusion: partial homog-enization temperature (Th ,CO2), salinity (S) and total homogenization temperature (Th). Theoretically, four associated equations are needed containing four unknown parameters: X CO2, XNaCl, Vm and F (volume fraction of CO2 phase in total inclusion when occurring partial homogenization). When they are released, the Vm-X are determined. The former three equations, only correlated with Th ,CO2, S and F, have simplified expressions:XCO2=f1(Th,CO2,S,F),XNaCl=f2(Th,CO2,S,F),Vm=f3(Th,CO2,S,F). The last one is the thermodynamic relationship of X CO2, XNaCl, Vm and Th:f4(XCO2,XNaCl,Vm,Th)=0.Since the above four associated equations are complicated, it is necessary to adopt iterative technique to release them. The technique can be described by:(i) Freely input a F value (0≤F≤1),with Th ,CO2 and S, into the former three equations. As a result,X CO 2,XNaCl and the molar volume value recorded as Vm1 are derived. (ii) Input the X CO2 and XNaCl gotten in the step above into the last equation, and another molar volume value recorded as Vm2 is determined. (iii) If Vm1 is unequal to Vm2, the calculation will be restarted from “(i)”. The iteration is completed until Vm1 is equal to Vm2, which means that the four associated equations are released. Compared to Parry’s (1986) solution method, the improved method is more convenient to use, as well as more accurate to determine X CO 2. It is available for a NHC inlusion whose partial homogenization temperature is higher than clatherate melting temperature and there are no solid salt crystals in the inclusion at parital homogenization.
文摘A lot of liquid-gas and liquid-gas-solid inclusions were found in Pharkant jadeitites, northwestern Myanmar and their characteristics, geological setting and porphyroclastic jadeites with inclusions in them were described in detail. The results analyzed by Raman spectrometer showed that the component of liquid-gas phase and solid phase (daughter minerals) in fluid inclusions is H2O + CH4 and jadeite separately. The results indicated that Pharkant jadeitites were crystallized from H2O + CH4 bearing jadeitic melt which may originate from mantle. The P-T conditions in which the jadeitites were crystallized were speculated to be T】650℃, P】1.5 GPa.
基金This work was financially supported by "95" Key Projects of Chinese Academy of Sciences (GrantNo. KZ951-A1-402-06) the National Natural Science Foundation of China (NSFC) (Grant Nos. 40024202 and 49972030). We thank Cheng, J. and Song, Y., Institu
文摘On the basis of the study of volcanic products during 1199-1200AD eruption of Baitou Mountain (Baitoushan), the released volatile content was estimated by comparing Cl, F, S, H2O concentrations of undegassed glass inclusions with those of degassed matrix glasses. The calculations show that volatile yields, released from the melt, are 109.88×106 ton of HCI, 196.80×106 ton of HF, 1477.84×106 ton of H2O, 23.14×106 ton of SO2, which could have formed 35.43×106 ton of H2SO4 aerosol in the atmosphere. They could have substantial effect on paleoclimate and paleo-environment.
文摘In the research on the gold deposits,it has been proposed that gold istransported as sulfide hydrogen complex.But from the analysis of the compositionof the fluid inclusions in gold-quartz veins,only SO<sub>4</sub><sup>2-</sup> exists and no other sulfur ionshave been found.This may be ascribed to the limitations of the composition analysismethod.By using probe mass spectrometry,gas H<sub>2</sub>S has been found in the fluid in-clusions in gold deposit。but its meaning has been neglected.In China,it is thefirst time to use probe mass spectrometry to analyse the fluid inclusions composition.