期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
H_2O_2-induced Leaf Cell Death and the Crosstalk of Reactive Nitric/Oxygen Species 被引量:9
1
作者 Yiqin Wang Aihong Lin +1 位作者 Gary J. Loake Chengcai Chu 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2013年第3期202-208,共7页
In plants, the chloroplast is the main reactive oxygen species (ROS) producing site under high light stress. Catalase (CAT), which decomposes hydrogen peroxide (H2O2), is one of the controlling enzymes that main... In plants, the chloroplast is the main reactive oxygen species (ROS) producing site under high light stress. Catalase (CAT), which decomposes hydrogen peroxide (H2O2), is one of the controlling enzymes that maintains leaf redox homeostasis. The catalase mutants with reduced leaf catalase activity from different plant species exhibit an H2O2-induced leaf cell death phenotype. This phenotype was differently affected by light intensity or photoperiod, which may be caused by plant species, leaf redox status or growth conditions. In the rice CAT mutant nitric oxide excess 1 (noe1), higher H2O2 levels induced the generation of nitric oxide (NO) and higher S-nitrosothiol (SNO) levels, suggesting that NO acts as an important endogenous mediator in H2O2-induced leaf cell death. As a free radical, NO could also react with other intracellular and extracellular targets and form a series of related molecules, collectively called reactive nitrogen species (RNS). Recent studies have revealed that both RNS and ROS are important partners in plant leaf cell death. Here, we summarize the recent progress on H2O2-induced leaf cell death and the crosstalk of RNS and ROS signals in the plant hypersensitive response (HR), leaf senescence, and other forms of leaf cell death triggered by diverse environmental conditions. 展开更多
关键词 h2o2 induced leaf cell death hypersensitive response leaf senescence nitric oxide reactive nitrogen species reactive oxygenspecies.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部